ebook img

Comparison of Four Methods for Estimating Complete Life Tables from Abridged Life Tables Using ... PDF

16 Pages·2005·0.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparison of Four Methods for Estimating Complete Life Tables from Abridged Life Tables Using ...

MathematicalPopulationStudies,12:183–198,2005 Copyright#Taylor&FrancisInc. ISSN:0889-8480print=1543-5253online DOI:10.1080/08898480500301751 Comparison of Four Methods for Estimating Complete Life Tables from Abridged Life Tables Using Mortality Data Supplied to EUROCARE-3 P. Baili A. Micheli Unit ofDescriptive Epidemiology and HealthPlanning, Istituto perlo Studio e laCura dei Tumori, Milan,Italy A. Montanari Department of Statistics, Universityof Bologna,Italy R. Capocaccia National Centerof Epidemiology, HealthSurveillance and Promotion Department, Istituto Superioredi Sanita`,Rome,Italy Toestimatemortalityduetocancer,itisnecessarytohavemortalitydatabyyear ofageinthepopulationofcancerpatients.Whensuchdataarenotavailable,esti- matingone-year(complete)lifetablesfromfive-year(abridged)lifetablesisneces- sary. Four such methods—Elandt–Johnson, Kostaki, Brass logit, and Akima splinemethods—arecomparedwithrespectto782empirical completelifetables pertainingto19Europeanregionsorcountries,from1954to2000.Abridgedlife tablesarefirstderivedfromtheempiricalones,thenusedtoproduceone-year-life tablesbyeachofthefourmethods.Thesereconstitutedcompletelifetablesarethen compared with the empirical complete life tables. Among the four methods, the Elandt–Johnson demographic method produces the best reconstitutions at adultages,specificallythoseagesatwhichobservedcancersurvivalneedstobe corrected. Keywords: abridgedlifetables;completelifetables;EUROCARE-3;generalmortality INTRODUCTION Cancerrelativesurvivalistheratiooftheobservedsurvivalincancer patients to the survival over the same period in the age- and AddresscorrespondencetoDr.PaoloBaili,IstitutoNazionaleperloStudioelaCura deiTumori,ViaVenezian1,20133Milan,Italy.E-mail:[email protected] 183 184 P.Bailietal. sex-matched general population (Capocaccia et al., 2003; Hakulinen, 1982). General survival, usually available in life tables, must be known in order to estimate relative survival (Micheli et al., 1999, 2003). EUROCARE-3 is a European Commission project to estimate relative cancer survival in participating European cancer registries. All registries participating in EUROCARE-3 (Capocaccia et al., 2003) therefore provide information on general mortality for their areas. For the purposes of calculating relative survival, complete life tables for men and for women, for each calendar year from 1978 to 2000,arerequiredforeachregistryarea.However,themortalitydata provided vary considerably in detail, and for many registry areas it is necessary to estimate complete general mortality rates from limited data using mathematical interpolation and extrapolation procedures (Micheli et al., 2003). Alifetableisconsideredcompletewhenitcontainsmortalityinfor- mation for each year of age between 0 and x (in our case x¼99); otherwise the life table is abridged. We compare four methods of estimating complete life tables from abridged ones. We start with authentic complete life tables for both sexes, for the period 1954 to 2000 inclusive, from 19 European populations. From these complete life tables we extract abridged life tables in which mortality infor- mation is grouped into five-year age classes. We then apply each of the methods to estimate complete life tables from the abridged ones and compare the result with the original complete data. The methods usedareElandt–JohnsonandJohnson(Elandt–JohnsonandJohnson, 1980), Kostaki (Kostaki, 2000), Brass logit (Brass, 1971), and Akima (Akima, 1991). We define: q : death probability at age x from complete life tables x q :deathprobabilityinageinterval[x,xþn)fromabridgedlifetables n x l : total number of survivors at age x x Al : total number of survivors at age x from abridged life table x Cl : total number of survivors at age x from complete life table x d : total number of deaths at age x from complete life tables x d :totalnumberofdeathsinageinterval[x,xþn)fromabridgedlife n x tables e : life expectancy at age x. x METHODS TheKostakiandBrassmethodsuseinformationfromotherlifetables (called standard life tables and defined a priori) in order to estimate the complete life tables. These standard life tables could be either (a) life tables of the region or country including the registry area FromAbridgedtoCompleteLifeTable 185 studied, for each calendar year, or (b) life tables for the registry area but for a different calendar year. A. The Elandt–Johnson Method This method yields a complete life table from an abridged one using ‘‘smoothing’’ formulae and three interpolation schemes depending on agex(Elandt–JohnsonandJohnson,1980).Thestartingpointisthetotal number of survivors Al at age x, obtained from the abridged life table, x fromwhichthesurvivorsofthecompletelifetableCl areestimated. x Forages0–9thecoefficientsinTable1andAl arecombinedlinearly. x Clearly Cl ¼Al . If Al ¼Al , there are no deaths in the interval 5 5 x xþ5 [x,xþ5),andinthecompletelifetablethedeathprobabilityq iszero x at each age. TABLE 1 Coefficients Used toCalculate Cl (cid:1)Cl 2 9 Al Al Al Al Al Al 1 5 10 15 20 25 Cl2 0.562030 0.717600 (cid:1)0.478400 0.283886 (cid:1)0.100716 0.015600 Cl3 0.273392 1.047199 (cid:1)0.531911 0.299200 (cid:1)0.103747 0.015867 Cl4 0.096491 1.108800 (cid:1)0.328533 0.172800 (cid:1)0.058358 0.008800 Cl6 (cid:1)0.041667 0.798000 0.354667 (cid:1)0.152000 0.048000 (cid:1)0.007000 Cl7 (cid:1)0.048872 0.561600 0.665600 (cid:1)0.240686 0.072758 (cid:1)0.010400 Cl8 (cid:1)0.037281 0.333200 0.888533 (cid:1)0.244800 0.070147 (cid:1)0.009800 Cl9 (cid:1)0.018379 0.140800 1.001244 (cid:1)0.160914 0.043116 (cid:1)0.005867 Al :totalnumberofsurvivorsatagexfromavailableabridgedlifetable. x Cl : total number of survivors at age x from complete life table to estimate x Source:Elandt–Johnson,1980. For ages 10–74 the coefficients in Table 2 and Al are combined x linearly. TABLE 2 Coefficients Used toCalculate Cl (cid:1)Cl 10 74 Al Al Al Al Al Al 5m(cid:1)10 5m(cid:1)5 5m 5mþ5 5mþ10 5mþ15 Cl5mþ1 0.008064 (cid:1)0.07392 0.88704 0.22176 (cid:1)0.04928 0.006336 Cl5mþ2 0.011648 (cid:1)0.09984 0.69888 0.46592 (cid:1)0.08736 0.010752 Cl5mþ3 0.010752 (cid:1)0.08736 0.46592 0.69888 (cid:1)0.09984 0.011648 Cl5mþ4 0.006336 (cid:1)0.04928 0.22176 0.88704 (cid:1)0.07392 0.008064 .m¼2 fo.r .cl11(cid:1)cl14 . . . where . . . m¼14 for cl70(cid:1)cl74 Al5mþj:totalnumberofsurvivorsatage5mþjfromavailableabridgedlifetablewith j¼(cid:1)10;(cid:1)5;0;5;10;15. Cl5mþI:total number ofsurvivorsatage 5mþi fromcompletelifetabletoestimate withi¼1;...;4Source:Elandt–Johnson,1980. 186 P.Bailietal. For ages 75 and above, the Elandt–Johnson method uses the Gompertz survival distribution: SðxÞ¼eRað1(cid:1)eaxÞ ¼b1(cid:1)cx where x>0;R>0;a>0;b¼eRa and c¼ea ð1Þ with age x and parameters a and R. The parameters b and c (functions of parameters a and R) are estimated for each age x using Eq. (2). Starting from the logarithms of the ratio of the two adjacent values of Al , this system yields the x parameters bx and cx for age x. The estimates stop at bbbx and ccbx when x¼X(cid:1)10 where X is the oldest age in the abridged life table for which Al is available. x 8><ccbx ¼(cid:1)yy12(cid:2)(cid:1)1=5 where8>><yy1 ¼¼llooggf10gAAAllxlxþxþ55 ð2Þ >:bbbx ¼10cc^xxðcc^y5x1(cid:1)1Þ >>:x2¼75;8f010;g.A.l.xþ;1X0 (cid:1)10 After estimating these parameters we calculate the survivals according to Eq. (1): 1(cid:1)cc^xþi i¼1;...;4 forx¼75;80;...;X(cid:1)15 SSbðxþiÞ¼bbb x where x i¼1;...;ð109(cid:1)XÞ forx¼X(cid:1)10 ð3Þ Starting from the survival SSbðxÞ we estimate the total numbers of sur- vivors Cl in the complete life tables: x SSbðxþiÞ i¼1;...;4 forx¼75;80;...;X(cid:1)15 Cl ¼Al where xþi x SSbðxÞ i¼1;...;ð109(cid:1)XÞ forx¼X(cid:1)10 ð4Þ For example: ð1(cid:1)cc^89Þ SSbð89Þ bbb 85 Cl ¼Al ¼Al 85 for X¼90; 95;or 100 89 85SSbð85Þ 85bbbð1(cid:1)cc^8855Þ 85 ð1(cid:1)cc^89Þ SSbð89Þ bbb 75 Cl ¼Al ¼Al 75 for X¼85 89 75SSbð75Þ 75bbbð1(cid:1)cc^7755Þ 75 Appendix A gives an application of this method in adult ages. FromAbridgedtoCompleteLifeTable 187 B. The Kostaki Method Kostaki (Kostaki, 2000, 2001) gives a simple non-parametric method relating the n-death probabilities q of an abridged life table to the n x one-year death probability of a standard complete life table defined a priori. Thehypothesisofthismethodisthatineachageinterval½x; xþnÞ, theforceofmortalityl oftheabridgedlifetableisaconstantmultiple x of the force of mortality Sl of the standard life table in the same age x interval. We therefore estimate a constant K for each age interval n x ½x; xþnÞ using: lnð1(cid:1) q Þ K ¼ n x ð5Þ n x n(cid:1)1 P lnð1(cid:1)Sq Þ xþi i¼0 where q istheprobabilityofdeathfromtheabridgedlifetableforthe n x interval½x; xþnÞandSq istheprobabilityofdeathfromthestandard x complete life table at age x, with x2½x; xþnÞ. The complete death probabilities are estimated as follows: q ¼1(cid:1)ð1(cid:1)Sq ÞnKxx^ ð6Þ x x using: K for x2½1;4(cid:2) 4 1 K for x2½5;9(cid:2) 5 5 . . . . . . . . . K for x2½95;99(cid:2) 5 95 C. The Brass Logit Method Thismethod(Brass,1971)isusedtoestimatelifetablesinpopulations for which only two data points are known. It assumes the linear relation (7) between the ‘‘logit’’ functions (8) of the survivors of the reallifetablel andthestandardlifetable l (definedaprioriforeach x S x age x). logitð1(cid:1)l Þ¼aþb logitð1(cid:1) l Þ ð7Þ x S x (cid:3) (cid:4) 1 1(cid:1)l with logitð1(cid:1)l Þ¼ ln x ð8Þ x 2 l x 188 P.Bailietal. To determine the parameters a and b with the two simultaneous linear equations, only two values of the independent variable logitð1(cid:1)l Þ need to be known. We choose l and l . After estimating x 1 50 theparametersaandb,allsurvivorsl arereconstructedusingEq.(9) x derived from Eq. (8): 1 l ¼ ð9Þ x 1þe2ðaþblogitð1(cid:1)SlxÞÞ D. The Akima Method Akima suggests two techniques (Akima, 1970, 1991) for the interp- olation of univariate single-valued functions. Both techniques are implemented inthe softwareR2.0.1 under thenamesof‘‘Akima orig- inal’’ (Akima, 1970) and ‘‘Akima improved’’ (Akima, 1991). We choose the Akima improved technique as it gives better results for our pur- poses (data not shown). The Akima spline interpolates the total num- berofsurvivorsAl atagexwithapiecewisefunctioncomposedofaset x of third-degree polynomials (Akima, 1991). If Al ¼Al , the interpolated distribution of the total number of xx^ xx^þ5 survivors has the same Cl ¼Al for each age x in the interval x xx^ ½xx; xxþ5Þ. b b DATA Westartwith782authenticcompletelifetablesforbothsexes,forthe period 1954 to 2000 inclusive, and from 19 European countries or regions. TheselifetablesarearchivedintheEUROCARE-3database, but their original sources are mainly the national statistical offices of the countries participating in EUROCARE. For two countries, Norway and Sweden, the life tables are grouped intotwosetsofcalendaryears(1954–1975and1976–1997forNorway, 1958–1977 and 1978–1999 for Sweden) in order to compare the four methods in time. For the Kostaki and Brass methods, which require standard life tables, we use standard life tables of the same population and sex, and the calendar year (or group of years) immediately succeeding theyearofinterest,exceptforthelastyearwhereweuseasstandard the year or group of years immediately prior to that year. For the ItalianareasweuseasstandardlifetablesthoseforthewholeofItaly for the same calendar year as that studied. ThechoiceofstandardlifetableismoreimportantintheBrasslogit becauseitreliesononlytwodatapointsfromtheoriginalabridgedlife FromAbridgedtoCompleteLifeTable 189 table,whereastheKostakimethodfeelstheeffectofthischoicelessas the data for each five year interval of the abridged life table are coupled with those from the standard life table in the same interval. In fact the results of the Brass logit are highly sensitive to the stan- dard life table used, while the results obtained with Kostaki method are less sensitive to the choice of standard life table. RESULTS The death probabilities, for each year of age, estimated by the four methodsarecomparedwiththoseoftheauthenticcompletelifetables, using the measure: (cid:5)(cid:5)Yqqbx(cid:1)qx(cid:5)(cid:5): ð10Þ whereYqq isthedeathprobabilityatagexestimatedbymethodYand bx q is the real death probability at age x. x From the comparison in Table 3 of the four methods applied to 782 European life tables in terms of the minimum value of Eq. (10), the Elandt–Johnson method is the best, in that its estimates are closest tothetruemortalityfor28.1%ofallages.ItisfollowedbytheKostaki method (26.8%) and the Akima method (26.7%). Comparing the Elandt–JohnsondirectlywiththeKostakimethod(columnA1inTable3) and then directly with the Akima method (column A2 in Table 3), the former comparison provides mortality estimates closer to reality for 56% of ages and the latter for 52%. Furthermore, for national populations the Elandt–Johnson gives better results in comparison with the Kostaki method. In Norway and Sweden, where we compare the situations before and after 1975 for Norway and before and after 1978 for Sweden, the Elandt–Johnson method gives the most accurate results. Another result from Table 3 is that there are no considerable differences between the methods in estimating survivals in men and women. When local Italian areas are considered individually, the Kostaki method gives the best results, while the Elandt–Johnson and Akima methods have similar results. The Elandt–Johnson method is compared with Kostaki method in Table 4andwithAkimamethodinTable5bythepercentagesofages for which the former is better than the latter in both tables. Once again Table 4 shows that for all local Italian populations considered, mortalities estimated by the Kostaki method are always closer to real mortalities than those estimated by the Elandt–Johnson method. For national populations the Kostaki method is better for age classes 1–5 es.en % 484956574852464552525257514851505251505248504954 anLifeTablwhichaGiv Elandt-JohnsonvsAkima(A2) 10381073122512511902079649421026102011411234101295710189821022101193498110871146391429 opefor % 626263615558525846435052464345434245424359605351 782EurofAges) andt-nsonvsaki(A1) 1340134713631322219229107612159108531097112490484289784982588378580513391362420405 toal Elohost dt JK eo ppliofT % 293128253129293122222523232423242024242131292926 ablesAentage Akima(D) 640666601551123113608649444445535500457469461473394469445398707657233208 Tc eer % 1818971311181725241918262524222624192018171413 LifdP s 564235585831460173806639 CompleteAges(anShown Bras(C)% 243924382519271628529428372535304932472942294030513149314833433351314736343737224024392811339 matingmberofalityis Kostaki(B) 519519538578112114576519599638624639594620614653653612681691511548225258 MethodsofEstin,theTotalNutheTrueMort Elandt-Johnson(A)% 624296072884539887411082712431520255532744222419215962763829415213952042521423214162142622407224222265329676302212822729 Fourulatioateto (cid:3)bN 21782178217821783963962079207919801980217821781980198019801980198019801881188122772277792792 sofPoptim 9 9 8 7 9 7 7 7 7 0 nofResultforEachClosestEs aPeriod 1978199... 1978199... 1978199... 1978199... 1978199... 1978199... 1978199... 1978199... 1978199... 1976–1999 1978200... 1976–1999 TABLE3ComparisoForEachMethodandMethodProvidedthe Population Denmark-MenDenmark-WomenEstonia-MenEstonia-WomenFinland-MenFinland-WomenItaly-MenItaly-WomenFlorence(I)-MenFlorence(I)-WomenGenoa(I)-MenGenoa(I)-WomenMacerata(I)-MenMacerata(I)-WomenRomagna(I)-MenRomagna(I)-WomenTurin(I)-MenTurin(I)-WomenVeneto(I)-MenVeneto(I)-WomenNetherlands-MenNetherlands-WomenEindhoven(Nl)-MenEindhoven(Nl)-Women 190 525053535054585965645352535250535150 52 aki, ma, st ki o A 283534446347984548 2 K ( 1131091161141071157475252511010711511296101110109 3970 hod( thod t e e m Norway-Men19541975217859827532244352061328127158...Norway-Women217861128534254051962829126758Norway-Men19761997217863829537254141958927132461...Norway-Women217865630482224091963129137263Scotland-Men19781999212856427579273831860228121957...Scotland-Women212859928505244131961129133063Slovakia-Men1981–19981287555432642110783612885967Slovakia-Women1287566442742111393342687468Basque(E)-Men1975–19963962195554141331102831179Basque(E)-Women396207526817621152928973Granada(E)-Men19781998207960929535263641857127126661...Granada(E)-Women207962630508243631758228130463Navarra(E)-Men19781999217866731492234422057726138964...Navarra(E)-Women217864330586273691758027133461Sweden-Men19581977192550126482253661957630111058...Sweden-Women192554828475253671953528113959Sweden-Men19781999217864630507234111961428129559...Sweden-Women217863029566263531662929131760 Totals7681221552282061527141411820504274268156 aCalendaryearsconsideredinthisstudy:y1y2indicatesalllifetablesfromy1toy2inclusiveareinvestigated....y1–y2indicatesthatnotalllifetablesintheperiody1–y2areinvestigated.bTotalnumberofagesforwhichestimatedlifetablesarecomparedwithreallifetable.(A)NumberofindividualagesforwhichElandt-JohnsonmethodisbestintermsofminimumvalueofEq.(10).(B)NumberofindividualagesforwhichKostakimethod(Kostaki,2000)isbestintermsofminimumvalueofEq.(10).(C)NumberofindividualagesforwhichBrassmethod(Brass,1971)isbestintermsofminimumvalueofEq.(10).(D)NumberofindividualagesforwhichAkimamethod(Akima,1991)isbestintermsofminimumvalueofEq.(10).(A1)NumberofindividualagesforwhichtheElandt–Johnsonmethod(Elandt–Johnson,1980)isbetterthanKostakim2000)intermsofminimumvalueofEq.(10).(A2)NumberofindividualagesforwhichtheElandt–Johnsonmethod(Elandt–Johnson,1980)isbetterthanAkima1991)intermsofminimumvalueofEq.(10). 191 192 P.Bailietal. TABLE 4 Comparison ofElandt–Johnson and KostakiMethods by Age Classes.TheTableShowsforEachPopulationConsidered,thePercentagesof Individual Ages, GroupedintoAge Classes, forwhich the Elandt–Johnson Methodis Betterthanthe Kostaki Method No.of Ageclass(%) individual Population Perioda yearsb 1–5 6–10 11–20 21–50 51–75 76–99 Denmark-Men 1978...1999 22 37 46 54 66 64 65 Denmark-Women 22 49 56 60 62 65 62 Estonia-Men 1978...1999 22 48 44 35 70 71 64 Estonia-Women 22 37 43 40 66 58 74 Finland-Men 1976–1999 5 16 24 28 65 61 61 Finland-Women 5 44 40 52 68 64 53 Italy-Men 1978...1998 21 15 34 31 62 70 40 Italy-Women 21 36 50 47 70 71 42 Florence(I)-Men 1978...1997 20 45 46 54 46 50 39 Florence(I)-Women 20 34 40 47 46 46 37 Genoa(I)-Men 1978...1999 22 39 32 39 51 54 57 Genoa(I)-Women 22 40 41 44 51 53 59 Macerata(I)-Men 1978...1997 20 48 53 52 47 49 36 Macerata(I)-Women 20 46 52 44 45 43 36 Romagna(I)-Men 1978...1997 20 42 36 41 49 48 42 Romagna(I)-Women 20 38 47 46 43 46 39 Turin(I)-Men 1978...1997 20 42 45 35 42 48 36 Turin(I)-Women 20 45 50 45 47 47 39 Veneto(I)-Men 1978...1996 19 28 26 36 44 40 49 Veneto(I)-Women 19 40 41 42 49 43 36 Netherlands-Men 1978...2000 23 10 55 49 65 64 61 Netherlands-Women 23 26 48 64 63 65 58 Eindhoven(Nl)-Men 1976–1999 8 3 43 40 60 67 49 Eindhoven(Nl)-Women 8 13 38 58 60 64 34 Norway-Men 1954...1975 22 15 41 54 62 64 62 Norway-Women 22 29 54 58 63 59 58 Norway-Men 1976...1997 22 40 55 39 69 67 59 Norway-Women 22 50 59 62 65 65 62 Scotland-Men 1978...1999 22 39 50 44 63 59 59 Scotland-Women 22 54 56 62 65 63 61 Slovakia-Men 1981–1998 13 28 40 24 68 74 89 Slovakia-Women 13 46 48 42 69 68 86 Basque(E)-Men 1975–1996 5 56 28 58 91 94 79 Basque(E)-Women 5 24 20 56 87 89 59 Granada(E)-Men 1978...1998 21 52 55 61 63 64 58 Granada(E)-Women 21 60 61 62 65 63 62 Navarra(E)-Men 1978...1999 22 55 54 56 66 63 69 Navarra(E)-Women 22 51 53 58 65 61 62 Sweden-Men 1958...1977 20 20 49 46 63 65 59 Sweden-Women 20 24 53 57 62 61 63 (Continued)

Description:
Comparison of Four Methods for Estimating Complete. Life Tables from Abridged Life Tables Using Mortality. Data Supplied to EUROCARE-3. P. Baili. A. Micheli.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.