Comparison of filtering methods in SU(3) lattice gauge theory 9 F. Bruckmanna, F. Gruber∗a, C. B. Langb, M. Limmerb, T. Maurera, A. Schäfera and S. 0 Solbriga 0 2 aInstitutfürTheoretischePhysik,UniversitätRegensburg, D-93040Regensburg,Germany n a bInstitutfürPhysik,FBTheoretischePhysik,Karl-Franzens-UniversitätGraz, J A-8010Graz,Austria 5 1 E-mail: [email protected], ] [email protected], t a [email protected], l - [email protected], p [email protected], e h [email protected], [ [email protected] 1 v Wesystematicallycomparefilteringmethodsusedtoextracttopologicalexcitationsfromlattice 6 8 gaugeconfigurations.Weshowthatthereisastrongcorrelationofthetopologicalchargedensities 2 obtainedbyAPEandStoutsmearing. Furthermore,afirstquantitativeanalysisofquenchedand 2 . dynamicalconfigurationsrevealsacrucialdifferenceoftheirtopologicalstructure:thetopological 1 0 chargedensityismorefragmented,whendynamicalquarksarepresent.Thisfactalsoimpliesthat 9 smearinghastobehandledwithgreatcare,nottodestroythesecharacteristicstructures. 0 : v i X r a 8thConferenceQuarkConfinementandtheHadronSpectrum September1-62008 Mainz,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Comparisonoffilteringmethods F.Gruber 1. Filteringmethods ManymethodshavebeendevelopedtoextracttheIRcontentfromlatticedata. Unfortunately, allthesemethodsintroduceambiguitiesandparameters. Thus,togetacoherentpictureofthetopo- logicalstructureoftheQCDvacuum,itisnecessarytofindwaysofcontrollingorevenremoving theseambiguities. OneofthefirstattemptstofilterouttheUV“noise”hasbeenAPEsmearing[1],definedas: (cid:110) α (cid:111) UAPE=P (1−α )Uold+ APE(staples) , (1.1) µ SU(Nc) APE µ 6 where α determines the weight of the old link and the sum of the attached staples. The right APE handsidehastobeprojectedbacktothegaugegroup. Unfortunately,thereisnouniquemapping. One approach is to take the unitary part of the polar decomposition and normalize this matrix by itsdeterminant. Stoutsmearing[2]circumventsthisprojectionbyusingtheexponentialmap: (cid:110)i (cid:111) UStout=exp Q (U,ρ ) ·Uold, (1.2) µ 2 µ µν µ whereQ (U,ρ )isahermitianmatrixconstructedfromallplaquettescontainingtheoldlinkU µ µν µ andweightedbyfactorsρ . Weusethecommonchoiceρ =ρ forisotropicsmearing. µν µν Stout ArelativelynewmethodisLaplacefiltering[3]. Thefilteredlinksareobtainedfromaspectral sumofthelowesteigenmodesofthecovariantlatticeLaplacian1: (cid:40) (cid:41) N ULaplace(x)=P −∑λ Φ (x)⊗Φ†(x+µˆ) . (1.3) µ SU(Nc) n n n n=1 This procedure acts as a low-pass filter in the sense of a Fourier decomposition. At this point it shouldbestressedthatLaplacefilteringiscompletelydifferentfromsmearing,becauseitisbased on rather global objects, namely the eigenmodes, and does not locally modify the gauge links in contrasttosmearing. Takingthefilteredlinksasastartingpoint,onecanreconstructthetopologicalchargedensity q(x)=Tr(cid:0)Fµν(x)F(cid:101)µν(x)(cid:1)/16π2 fromanimprovedfieldstrengthtensor[4]. Also the fermionic definition of the topological charge, via the eigenmodes ψ of a chiral Diracoperator,hasbeenusedtoexploretheIRstructure[5]. ForthissocalledDiracfilteringone truncatesthesumin N (cid:18)λ (cid:19) q (x)= ∑ n −1 ψ†(x)γ ψ (x) (1.4) Dirac 2 n 5 n n=1 and takes only the lowest N modes into account. While the zero-modes determine the total topo- logicalchargeQ=∑q(x)duetotheindextheorem,thenonzero-modesmodifythelocalstructure ofthedensity,leavingthetotalchargeunaffected. 2. Comparisonofthedifferentmethods In an earlier study a qualitative and quantitative similarity of the introduced filtering meth- ods for quenched SU(2) gauge configurations has been observed [6]. One central element of this 1Theoriginallinkisreproducedforalleigenmodes,N=Nc·Vol,withnoprojectionneeded. 2 Comparisonoffilteringmethods F.Gruber comparisonisthecorrelatoroftwotopologicalchargedensitiesq (x)andq (x)definedby: A B (cid:0) (cid:1) (cid:0) (cid:1)(cid:0) (cid:1) χ ≡ 1/V ∑ q (x)−q q (x)−q , (2.1) AB A A B B x wherethemeanvaluesaresubtractedforconvenience. Fromthiswecanconstructaquantitythat reflectsthe“matching”oftwomethods: χ2 Ξ ≡ AB (2.2) AB χ χ AA BB Ξ isobviouslyequaltoone,ifq (x)isproportionaltoq (x)anddeviatesthemorefromone,the AB A B morethedensitiesdiffer. The main idea is now to relate different filter parameters for those combinations where Ξ is maximal. Infig.1thecontourlinesofΞforseveralmethodsandparameterrangesareshown. On therighthandplottwoexemplarycombinationsareindicatedthatcorrespondtothebestmatching valuefordifferentfilteringstrengths. Aninterestingobservationisthatthereisanalmostone-to-onecorrespondencefornstepsof APEandnstepsofStoutsmearingwhenα ≈6·ρ . Asseenintheplotonthelhs.offig.1, APE Stout Ξ>0.95foralargenumberofsmearingsteps. ThisisconsistentwithresultsbyCapitanietal.[7], wheresucharelationhasbeenderivedfromperturbationtheory. Whiletheyhavefocusedonglobal observables with up to 3 smearing steps, our nonperturbative result reflects the local similarity of bothmethodsandtheirstronglycorrelatedtopologicalchargedensitiesupto50steps. 50 40 5) 07 Ξ>0.95 2 L =0. 30 4 ρ s ( 6 p 10 e st 20 0.495 ut 20 o St 40 10 0.739 80 160 0 0 10 20 30 40 50 S1 2 10 2030 50 80 160 APE steps (α=0.45) Figure1: LevelcurvesofΞ=0.95,0.85,...(startingfromthediagonal)forAPEvs. Stoutsmearing(left) andΞ=0.8,0.7,...(startingfromtheinside)forAPEsmearing(S)vs. Laplacemodes(L)(right). (cid:78)and• marktwoexamplesof“matching”parametersforweakandstrongfilteringrespectively(from[6]). 3. Clusteranalysisofthetopologicalchargedensity Another important challenge is to extract observables from lattice data, that could be com- paredwithcontinuummodelsofthevacuum. Onepossibilityistoanalyzetheclusterstructureof the topological charge density. Two lattice points belong to the same cluster, if they are nearest 3 Comparisonoffilteringmethods F.Gruber dynamical dynamical 0.9 quenched quenched 0.8 n 1000 103um nt be pone 0.7 instanton gas, Nf=2 r of c ex 0.6 instanton gas, quen. lus te rs 0.5 100 102 0.4 6 7 8 910 15 22 30 40 6 7 8 910 15 22 30 40 smearing steps smearing steps Figure2: left: Exponentξ oftheanalysisforclusterscommontoAPEandStoutsmearing. Thesolidlines showthevaluespredictedfromthediluteinstantongas.right:Totalnumberofdistinctclustersforaconstant fraction f =0.0755ofpointslyingabovethecut-off. Lessthan6stepsarenotconsidered,asthedefinition of the topological charge gets ill-defined. Errors have been calculated using an ensemble average over 10 configurationsbutarepartlytoosmalltosee. neighbors and have the same sign of the topological charge density. Bruckmann et al. [6] found a power law for the number of clusters as function of the ratio of points with |q(x)| lying above a variable cut-off q and the total number of lattice points. The exponent ξ of this power law is cut highly characteristic for the topological structure of the QCD vacuum. Different models lead to differentpredictions, whichallowsforaverysensitivetest. Ifonehasforinstancepurenoise, the exponent is 1, as every point forms its own cluster. On the other hand one will have an exponent closetozeroforverysmoothdensitieswithlargestructures. Toreduceambiguitieswetakeonlythoseclustersintoaccount,whicharecommontodifferent filters,whoseparameterswerematchedaccordingtomaximalvaluesofΞ. So,ifthereisanartifact comingfromonemethod,itisunlikelythatthisartifactwillalsobeseenbytheother. TheexponentforclusterscommontoAPEandStoutcanbefoundinfig.2(left). Weusedone quenched and one dynamical N =2 ensemble with equal lattice spacing (see tab. 1). Obviously f theexponentsofthedynamicalconfigurationslieabovethequenchedvalues. In order to interpret the cluster exponent, a model of dilute quantized topological objects of general shape and with a size distribution d(ρ)∼ρβ has been considered in [6]. It leads to ξ = (1+4/(β+1))−1 (in4dimensions). Followingthismodel,ourfindingsgivealargercoefficientβ inthedynamicalcase. Hence,smallertopologicalobjectsbecomesuppressed. Moreover, the rhs. of fig. 2 shows that for a fixed number of points, lying above the cut-off, much more clusters are found in the dynamical case. Thus we conclude that when fermion loops are taken into account, the topological structure is more complex and fragmented, in the sense of larger number of distinct objects per volume. This seems to be in accordance to the findings of the Adelaide group, where small instantons have been seen to be suppressed in the presence of dynamicalquarks,whilethetotalnumberofinstantonsincreased,seefig.6in[8]. Thedifferenceoftheclusterexponentsquenchedvs.dynamicalvanishesforstrongersmearing (∼30steps)andtheexponentssettledowntothesameplateau. Sowehavereasonstobelievethat 4 Comparisonoffilteringmethods F.Gruber toomuchsmearingdestroystheimpactofdynamicalquarks. On the lhs. of fig. 2 we have included for comparison the exponents ξ = 7/11 ≈ 0.64 and ξ =23/35≈0.66 for the SU(3) instanton gas without resp. with dynamical quarks. Taking the dilute instantongas as asimplified model, itis obvious thatthe true vacuumshould have ahigher exponent,asmorestructuresarepresent. However,theresultinfig.2(left)showsthatthisisonly the case for very few smearing steps, for slightly stronger filtering we reach smoother configura- tionsthanpredictedbythediluteinstantongas. Thisisanotherindicationofsmearingartefacts. lat. size lat. spacing β m LW 0 quenched 163·32 0.148 7.90 – dynamical 163·32 0.150 4.65 -0.060 Table 1: Ensembles were generated with the Lüscher-Weisz gauge action and a chirally improved Dirac operator[9]. Forthedynamicalsimulationstwoflavorsofmassdegeneratelightquarkswereused[10]. 4. Conclusionandoutlook Inconclusion,wehavefoundastrongcorrelationofthetopologicalchargedensitiesobtained from APE and Stout smearing. Furthermore, our first results for dynamical quarks imply that the topologicalstructureismorecomplexandfragmentedinthepresenceoffermionloops. Butthere are also indications that smearing has to be used with great caution, especially when dealing with dynamical configurations. The smallness of the cluster exponent is a sign that smearing is more destructiveinSU(3)thaninSU(2). PreliminaryresultsforclusterscommontoAPEsmearingand Laplace filtering do not show such artefacts, as Laplace filtering preserves smaller objects better. Thiseffectisunderinvestigation. References [1] M.Falcionietal., Nucl.Phys.B251(1985)624;M.Albaneseetal., Phys.Lett.B192(1987)163 [2] C.MorningstarandM.J.Peardon, Phys.Rev.,D69(2004)054501, [hep-lat/0311018] [3] F.BruckmannandE.M.Ilgenfritz. Phys.Rev.D72(2005)114502, [hep-lat/0509020] [4] S.O.Bilson-Thompsonetal., Annals.Phys.304(2003)1-21, [hep-lat/0203008v1] [5] P.Hasenfratz,V.LalienaandF.Niedermayer, Phys.Lett. B427(1998)125, [hep-lat/9801021]; I.Horvathetal., Phys.Rev.D67(2003)011501, [hep-lat/0203027];I.Horvathetal., Phys.Rev. D68(2003)114505, [hep-lat/0302009] [6] F.Bruckmannetal., Eur.Phys.J.,A33:333–338(2007), [hep-lat/0612024] [7] S.Capitani,S.Dürr,andC.Hoelbling, JHEP,11:028(2006), [hep-lat/0607006] [8] D.LeinweberandP.J.Moran, Phys.Rev.D78(2008)054506, [arxiv:0801.2016] [9] C.Gattringer, Phys.Rev.D63(2001)114501, [hep-lat/0003005];C.Gattringer,I.Hipand C.B.Lang, Nucl.Phys.D597(2001)451, [hep-lat/0007042] [10] C.B.Langetal., PoS(LATTICE 2007)114(2007),C.B.Langetal.,(2008), [hep-lat/0812.1681] 5