ebook img

Comparison of algorithm in Aerosol and Aghora for compressible flows PDF

21 Pages·2017·1.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparison of algorithm in Aerosol and Aghora for compressible flows

Comparison of algorithm in Aerosol and Aghora for compressible flows Dragan Mbengoue, Damien Genet, Cedric Lachat, Emeric Martin, Maxime Mogé, Vincent Perrier, Florent Renac, François Rue, Mario Ricchiuto To cite this version: Dragan Mbengoue, Damien Genet, Cedric Lachat, Emeric Martin, Maxime Mogé, et al.. Comparison of algorithm in Aerosol and Aghora for compressible flows. [Research Report] RR-8200, 2013. ￿hal- 00773531v1￿ HAL Id: hal-00773531 https://hal.inria.fr/hal-00773531v1 Submitted on 14 Jan 2013 (v1), last revised 17 Jan 2013 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparison of algorithm in Aerosol and Aghora for compressible flows D.A. Mbengoue, D. Genet, C. Lachat, E. Martin, M. Mogé, V. Perrier, F. Renac, F. Rué, M. Ricchiuto G N E + R F 0-- 0 2 8 R-- R A/ RI N I N RESEARCH R S I REPORT 9 9 N° 8200 3 6 9- 4 January2013 2 0 N Project-TeamsBACCHUSand SS I CAGIRE Comparison of algorithm in Aerosol and Aghora for compressible flows D.A.Mbengoue∗,D.Genet†,C.Lachat‡,E.Martin§,M.Mogé¶,V. Perrier(cid:107),F.Renac∗∗,F.Ru醆,M.Ricchiuto‡‡ Project-TeamsBACCHUSandCAGIRE ResearchReport n°8200—January2013—16pages Abstract: This article summarizes the work done within the COLARGOL project during CEMRACS 2012. The aim of this project is to compare the implementations of high order finite elements methods forcompressibleflows thathavebeendevelopedat ONERAandatINRIAfor aboutoneyear, withinthe AGHORAandAEROSOLlibraries. Key-words: Finiteelements,parallelperformance,compressibleflows ∗INRIABordeauxSud-Ouest,EquipeBACCHUS †INRIABordeauxSud-Ouest,EquipeBACCHUS ‡INRIABordeauxSud-Ouest,EquipeBACCHUS §ONERA ¶LMAP,UniversitédePauetdesPaysdel’Adour (cid:107)LMAP,UniversitédePauetdesPaysdel’Adour,INRIABordeauxSud-Ouest,EquipeCAGIRE ∗∗ONERA ††INRIA,serviceSED ‡‡INRIABordeauxSud-Ouest,EquipeBACCHUS RESEARCHCENTRE BORDEAUX–SUD-OUEST 351,CoursdelaLibération BâtimentA29 33405TalenceCedex Comparison of algorithm in Aerosol and Aghora for compressible flows Résumé: CetarticlerésumeletravaileffectuédurantleprojetCOLARGOLpendantle CEMRACS2012.Lebutdeceprojetestdecomparerlesimplémentationsdeméthodes d’élémentsfinisd’ordreélevépourlesfluidescompressiblesdevéloppéesàl’ONERA etàl’INRIAdepuisenvironunandanslesbibliothèquesAGHORAetAEROSOL. Mots-clés: Finiteelements,parallelperformance,compressibleflows COLARGOL 3 Contents 1 DiscontinuousGalerkinmethodsandlibraries 4 1.1 TheEulermodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Runge-KuttadiscontinuousGalerkinformulation . . . . . . . . . . . 5 1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Remarksonquadratureformulas . . . . . . . . . . . . . . . . . . . . 7 2 TheAGHORAandAEROSOLlibraries 7 2.1 TheAGHORAlibrary . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 TheAEROSOLlibrary . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Underthebonnet . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 ThePAMPAlibrary . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Comparisonofimplementations . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Howtotakeintoaccountthegeometry . . . . . . . . . . . . 11 2.3.2 Computationofbasis . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Communicationhandling . . . . . . . . . . . . . . . . . . . . 12 3 Comparisons 12 3.1 Numericaltests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Yeevortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Introduction Ontheneedforhighorderinaerodynamics Overthelastthreedecades,mostofthesimulationsfordesigningaircrafthavebeenre- ducedtosecondorderfinitevolumesmethods,mainlywithRANS(ReynoldsAveraged Navier-Stokes)modelsforturbulence. Theusualtrickforhavinganaccuratesolution withaRANSsimulationconsistsinperformingasequenceofcomputationsonmore and more refined meshes. However, the RANS approach can be inefficient for simu- latingsomeproblemsthatareintrisicallytimedependent,becauseitisatimeaveraged model,andthusstationary. Fortimedependentsimulations,themostaccuratemethod is called DNS (Direct Numerical Simulation) and consists in meshing the domain at theturbulentscale,withoutanyturbulencemodel. However,duetotherequiredmesh fineness,DNSisoftenconsideredonlyforlowReynoldsnumbers(sincethenumberof cellsincreasesasRe9/4)and/orforacademicconfigurations,forwhichefficientfinite differencesmethodscanbeused. Anintermediatesolution,betweenDNSandRANS approachconsistsinapplyingaspatialfiltertotheNavier-Stokesequations.Theresult- ingmodelistimedependent, butshallbeclosedfortakingintoaccountsmallscales. ThismethodiscalledtheLargeEddySimulation(LES)approach. ForbothDNSand LES, the accuracy yielded by adaptive mesh refinement is harder to implement be- causetheproblemistimedependent. Itwouldthereforeimplytheoreticallytoperform ameshadaptationateachtimestep,whichisverycostly.Italsoraisesissuesregarding dynamicloadbalancingasfarasparallelcomputingisconcerned. Howtoderiveahighordermethod Mathematicallyspeaking,asufficientconditionforhavingahighorderapproximation of a function is to find a piecewise polynomial approximation of this function, for RRn°8200 4 D.A.Mbengoueetal examplebyinterpolationorL2-projection. Oncethetypeofapproximationischosen, anumericalschememustbederivedfromthisapproximation. Thefollowingmethods canbeconsidered. • Highorderfinitevolumemethods In finite volume approximations, the solution is considered as piecewise con- stant. For getting a high order method, a high order polynomial representation can be computed, by interpolating the values on the neighboring cells. For ex- ample, in one dimension, a second order polynomial can be computed on one cellbyinterpolatingthevaluesontheleftandrightcells. Thiscanbegeneral- ized to higher dimensions and to higher order polynomial approximations, and thepricetopayforhavingahighorderrepresentationistovisitmoreandmore neighbors. Moreover, in a hyperbolic framework, the aim is to rebuild a non oscillatoryinterpolation[?],whichcomplicatestheproblem. Thismethodisnot compact,andthereforeisnotwellsuitedtoparallelcomputing. • ContinuousGalerkinmethod Inthismethod,thesolutionisapproximatedbypiecewisecontinuouspolynomial functions. ThenumericalschemeisthenobtainedbywritingtheL2orthogonal- itybetweentheapproximationbasisandtheequationprojectedontheapproxi- mation space. It is well adapted to some problems such as purely parabolic or elliptic problems. For Euler equations, and more generally for hyperbolic sys- tems (even linear), this method is known to be unstable. This method can be stabilized, for example with the SUPG method [?]. Nevertheless, this method dependsonparametersthatcanbehardtotune. • ResidualDistributionschemes ThedevelopmentoffluctuationschemesbeganwiththeearlyworkofPhilRoe[?]. Residual distribution is a weighted residual approach in which local discrete equations are derived as a sum of elemental contributions proportional to ele- mentintegralsoftheequations(thecellresiduals)viamatrixweights.Thebasics ofthemethodarethoroughlydiscussedin[?]. Asincontinuousanddiscontin- uous finite element methods, the key toward high accuracy is the use of a high orderpolynomialrepresentationoftheunknownsinthecomputationofthecell residuals[?]. Althoughthisapproachhasshowngreatpotentialinsteadyappli- cations [?, ?], its current state of the art [?] shows that further work is needed tobringthemethodtothelevelofmaturityofmorepopulartechniques,suchas DiscontinuousGalerkin. • DiscontinuousGalerkinmethod ThedevelopmentofdiscontinuousGalerkinfornonlinearhyperbolicequations began in [?]. Its stabilization for flows with shocks was developed in the 90’s, mainlybyCockburnandShu(see[?]forareview). Inthesametime,asolution fordealingwithNavier-Stokesequationswasproposedin[?]. Inspiteofitscost (ithasmuchmoredegreesoffreedomthanclassicalcontinuousfiniteelements methods), it is attractive because it is naturally L2 stable for linear problems, because a cell entropy inequality can be proven [?], and also because it has a compactstencilsothatithasagoodbehaviorinparallelenvironment[?]. The success of these methods lies in their flexibility thanks to their high degree of locality. ThesepropertiesmaketheDGmethodwellsuitedtoparallelcomput- ing,hp-refinement,hp-multigrid,unstructuredmeshes,theweakapplicationof boundaryconditions,etc. Inria COLARGOL 5 The development of different high order methods for aerospace application was the topicoftheEuropeanprojectADIGMA,andwereferto[?]forrecentdevelopmentson thistopic. 1 Discontinuous Galerkin methods and libraries 1.1 TheEulermodel Let Ω ⊂ Rd be a bounded domain where d is the space dimension and consider the followingproblem ∂ u+∇·f(u)=0, inΩ×(0,∞) , (1) t with initial condition u(·,0) = u (·) in Ω and appropriate boundary conditions pre- 0 scribed on ∂Ω. The vector u = (ρ,ρv,ρE)(cid:62) represents the conservative variables with ρ the density, v ∈ Rd the velocity vector and E = ε(p,ρ)+v2/2 where ε is the specific internal energy. Here, we suppose that the fluid follows the perfect gas equation p ε(p,ρ)= , (γ−1)ρ wherepdenotesthepressureandγistheratioofspecificheats. Thenonlinearconvec- tivefluxesin(1)aredefinedby   ρv(cid:62)   f(u)= ρvv(cid:62)+pI  . (2)     (ρE+p)v(cid:62) Theproblem(1)ishyperbolicprovidedtheconservativevariablevectortakesvaluesin thesetofadmissiblestates v2 Ψ ={u∈Rd+2 : ρ>0, E− >0} . (3) 2 1.2 Runge-KuttadiscontinuousGalerkinformulation ThediscontinuousGalerkinmethodisafiniteelementmethodinwhichtheweakfor- mulationisprojectedonaspaceofdiscontinuouspiecewisepolynomialsoftheprob- lem (1). The domain Ω is partitioned into a shape-regular mesh Ω consisting of h nonoverlapping and nonempty elements κ of characteristic size h := min{h ,κ ∈ κ Ω }whereh isad-dimensionalmeasureofκ.WedefinethesetsE andE ofinterior h κ i b andboundaryfacesinΩ ,respectively. h Welookforapproximatesolutionsinthefunctionspaceofdiscontinuouspolyno- mialsVp = {φ ∈ L2(Ω ) : φ| ◦F−1 ∈ Pp(κˆ), ∀κ ∈ Ω },wherePp(κˆ)denotes h h κ κ h the polynomial space associated to the reference element κˆ corresponding to the ele- mentκ. Eachphysicalelementκistheimageofoneofthefollowingreferenceshapes κˆ through the mapping F : simplex (line, triangle or tetrahedron), tensor elements κ (quadrangle, hexaedron), prism or pyramid. The space Pp(κˆ) might be composed of the set of polynomials with degree lower or equal to p in the case of simplex, or of tensorproductofonedimensionalpolynomialswithdegreelowerorequaltopinthe caseoftensorelements, orofatensorofonedimensionalbasisandtwodimensional RRn°8200 6 D.A.Mbengoueetal e v - v + h h κ+ κ- n Figure1:Innerandexteriorelementsκ+andκ−anddefinitionoftracesv±ontheinterfaceeandofthe h unitoutwardnormalvectorn. basis on a triangle if κˆ is a prism, or a conical product of one dimensional basis and two dimensional basis on a quadrangle if κˆ is a pyramid. The numerical solution of equation(1)issoughtundertheform (cid:88)Nκ u (x,t)= φl(x)Ul(t), ∀x∈κ, κ∈Ω , ∀t≥0 , (4) h κ κ h l=1 where (Ul) are the degrees of freedom in the element κ. The semi-discrete κ 1≤l≤Nκ formofequation(1)reads: findu in[Vp]d+2suchthatforallv inVpwehave h h h h (cid:90) v ∂ u dx+B (u ,v )=0 . (5) h t h h h h Ωh Hereafter,wewillusethenotation[[φ]]=φ+−φ−whichdenotesthejumpoperator definedforagiveninterfacee ∈ E . Here,φ+ andφ− arethetracesofanyquantityφ i ontheinterfaceetakenfromwithintheinterioroftheelementκ+ andtheinteriorof theneighboringelementκ−,respectively(seeFigure1). Thespacediscretizationinequation(5)canthenbewrittenas (cid:18)un+1−un(cid:19) M h h +B (un,v )=0 . (6) κ δt h h h fortheexplicitEulertimestepping,theextensiontootherexplicittimesteppingbeing straightforward. In(6)M denotesthelocalmassmatrixdefinedas κ (cid:90) ∀(i,j)∈[0;N ]×[0;N ] M(i,j) = φi(x)φj(x)dx , κ κ κ κ κ κ andthespacediscretizationoperatorB isdefinedby h (cid:90) B (u ,v ) = − f(u )·∇v dV h h h h h Ωh (cid:90) + [[v ]]˜f(u+,u−,n)dS h h h Ei (cid:90) + v+f(u (u+,n))·ndS , (7) h b h Eb Inria COLARGOL 7 wherendenotestheunitoutwardnormalvectortoanelementκ+ (seeFigure1)and u isanappropriateoperatorwhichallowstoimposeboundaryconditionsonE . The b b numerical flux ˜f may be chosen to be any monotonic Lipschitz function satisfying consistency,conservativityandentropydissipativityproperties(see[?]forinstance). Throughoutthisstudy,thesemi-discreteequation(5)isadvancedintimebymeans ofanexplicittreatmentwiththird-orderstrongstabilitypreservingRunge-Kuttameth- ods[?,?]. 1.3 Algorithm AsanexplicitRunge-Kuttatimesteppingwaschosen,thealgorithmconsistsincom- putingthespatialresidual,andtheninupdatingtheintermediate(orthefinal)stepsof theRunge-Kuttamethodbyinvertingthemassmatrix. InthediscontinuousGalerkin method,themassmatrixisblockdiagonal. Itcanactuallybediagonalprovidedanor- thogonalbasisisusedoneachelement. Wepointoutthatthisstepofthemethoddoes notrequireanycommunicationinadistributedmemoryenvironmentifallelementsare onthesameprocess(whichisalwaysthecase). Wenowdwellonthedifferentloops thatmustbemadeforcomputingthelocalspatialresidualdefinedon(7). Wedetailthe computationsneededfortheelementsloop,theotherloopsbeingsimilar. Weareinterestedincomputing (cid:90) f(u )·∇v dV h h κ forallbasisfunctionv ofκ. UsingthedefinitionofthebasisgiveninSection1.2 h (cid:90) (cid:90) f(u )·∇φidV = f((cid:80)Nκ φl(x)Ul)·∇φidV . h κ l=1 κ κ κ κ κ AsinSection1.2,wedenotebyF themapfromκtoκˆ. Intheintegral,wechangethe κ variablexbyx=F (xˆ),sothat κ (cid:90) (cid:16) (cid:17) (cid:90) (cid:16) (cid:17) f (cid:80)Nκ φl(x)Ul ·∇φidV = f (cid:80)Nκ φl ◦F (xˆ)Ul ·DF−1∇φˆi |detDF | dxˆ l=1 κ κ κ l=1 κ κ κ κ κˆ κ κ (cid:90)κˆ (cid:16) (cid:17) = f (cid:80)Nκ φˆl(xˆ)Ul ·DF−1∇φˆi |detDF | dxˆ . l=1 κˆ κ κ κ κ κˆ An approximated quadrature formula is used for computing this integral. We denote byxˆ thequadraturepointsandbyω theweights. α α (cid:90) f(cid:32)(cid:88)Nκ φl(x)Ul(cid:33)·∇φidV ≈(cid:88)ω f(cid:32)(cid:88)Nκ φˆl(xˆ )Ul(cid:33)·DF−1(xˆ )∇φˆi(xˆ )|detDF (xˆ )| κ κ κ α κˆ α κ κ α κ α κ α κ l=1 α l=1 1.4 Remarksonquadratureformulas Forlinearproblems,quadratureformulascanbechosenforbeingexact. Fornonlinear problems,[?]suggests,foranapproximationofdegreep,totakea(2p)thorderformula forcells,anda(2p+1)thorderforfaces. For hypercube shapes, the optimal set of points (i.e. the one ensuring the highest degree with a given number of points) is the Gauss set of points. For other shapes, the optimal set of points is often unknown. A systematic way of deriving quadrature RRn°8200

Description:
parison of algorithm in Aerosol and Aghora for compressible flows. [Research Report] RR-8200,. 2013. . HAL Id: hal-00773531.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.