ebook img

Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT PDF

19 Pages·2016·3.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT

hydrology Article Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site RafaelPimentel1,*,CristinaAguilar2,†,JavierHerrero2,†,MaríaJoséPérez-Palazón1,† and MaríaJoséPolo1,* 1 FluvialDynamicandHydrology,AndalusianInstituteforEarthSystemResearch,UniversityofCordoba, ÁreadeIngenieríaHidráulica,EdificioLeonardodaVinci,CampusRabanales,14071Cordoba,Spain; [email protected] 2 FluvialDynamicandHydrology,AndalusianInstituteforEarthSystemResearch,UniversityofGranada, CentroAndaluzdeMedioAmbiente(CEAMA),Av.delMediterráneos/n,18006Granada,Spain; [email protected](C.A.);[email protected](J.H.) * Correspondence:[email protected](R.P.);[email protected](M.J.P.);Tel.:+34-957-212-662(R.P.) † Theseauthorscontributedequallytothiswork. AcademicEditor:JurajParajka Received:1November2015;Accepted:16February2016;Published:23February2016 Abstract:Albedoplaysanimportantroleinsnowevolutionmodelingquantifyingtheamountofsolar radiationabsorbedandreflectedbythesnowpack,especiallyinmid-latituderegionswithsemiarid conditions.Satelliteremotesensingisthemostextensivetechniquetodeterminethevariabilityof snowalbedoover mediumtolarge areas; however, scaleeffectsfrom thepixelsizeof thesensor source may affect the results of snow models, with different impacts depending on the spatial resolution. This work presents the evaluation of snow albedo values retrieved from (1) Landsat images,L(16-dayfrequencywith30ˆ30mpixelsize)and(2)SPOTVEGETATIONalbedoproducts, SV(10-dayfrequencywith1ˆ1kmpixelsize)intheSierraNevadamountainrangeinSouthSpain,a Mediterraneansiterepresentativeofhighlyheterogeneousconditions. Dailysnowalbedomapseries werederivedfrombothsources,andusedasinputforthesnowmoduleintheWiMMed(Watershed IntegratedManagementinMediterraneanEnvironment)hydrologicalmodel,whichwasoperational at the study area for snow monitoring for two hydrological years, 2011–2012 and 2012–2013, in theGuadalfeoriverbasininSierraNevada. Theresultsshowedsimilaralbedotrendsinbothdata sources,butwithdifferentvalues,theshiftbetweenbothsourcesbeingdistributedinspaceaccording tothealtitude. ThisdifferenceresultedinlowersnowcoverfractionvaluesintheSV-simulations thataffectedtherestofsnowvariablesincludedinthesimulation. Thisunderestimation,mainly duetotheeffectsofmixedpixelscomposedbybothsnowandsnow-freeareas,producedhigher divergencesfrombothsourcesduringthemeltingperiodswhentheevapo-sublimationandmelting fluxesaremorerelevant. Therefore, theselectionofthealbedodatasourceintheseareas, where snowevapo-sublimationplaysaveryimportantroleandthepresenceofsnow-freepatchesisvery frequent,canconditionthefinalaccuracyofthesimulationsofoperationalmodels;Landsatisthe recommendedsourceifthemonitoringofthesnowpackisthefinalgoalofthemodeling,whereas theSVproductmaybeadvantageouswhenwaterresourceplanninginthemediumandlongterm isintended. Applicationsoflargepixelsizealbedosourcesneedfurtherassessmentforshort-term operationalobjectives. Keywords: snowalbedo;Landsat;SPOTVEGETATION;Mediterraneanregions Hydrology2016,3,10;doi:10.3390/hydrology3010010 www.mdpi.com/journal/hydrology Hydrology2016,3,10 2of19 1. Introduction Albedoplaysinimportantroleintheenergyandwaterbalanceinareaswiththepresenceofsnow, sinceitaffectstheshortwaveradiativeflux(0.3–2.5µm),quantifyingtheamountofsolarradiation reflectedandthenabsorbedbythesnowpack. Specifically,itisoneofthemainfactorsinvolvedin the melting processes due to the dominant importance of the radiation components during these periods[1,2]. Thisinfluenceisenhancedinsemiaridareas,duetoboththesignificantlyhighersolar energyfluxesthroughouttheyear[3]andthesuccessivemeltingcyclesthatusuallytakeplaceduring thesnowseason. AlthoughsnowfallisnotthemostcommonformofprecipitationinMediterranean-climateregions, waterresourceavailabilityduringthewarmseasonandfluvialregimearehighlydependentonthe snowoccurrenceandevolutioninmountainousareassuchastheAtlasMountains(Morocco), the southernAlps(Italy),MountArarat(Turkey),MountLebanon(Lebanon),SierraNevada(California), the Andean (Chile), and Sierra Nevada Mountains (Spain). Recent data show the importance of thissolidwaterresourceinCaliforniaandtheimpactofclimatechangefordroughtfrequencyand snowretrievalinthemediumterm[4]. Theuseofenergyandwaterbalancemodelstocharacterize andpredictthesnowpackdynamicsisthemostrecommendedapproachunderthehighlyvariable conditionsdominantintheseregions[5–7],togetherwiththeadoptionofaspatialresolutionhigh enoughtorepresentthehydrologicalresponseofthewatershed[8]. Thisisespeciallyhighlighted during the snowmelt periods to be capable of predicting the snow contribution to runoff and, potentially,tospringfloods. However,longandhigh-frequencyseriesofalbedovaluesarenotalwaysavailable. Measuring andmonitoringsnowalbedopresentdifficulties,whichincreasewhenthemodelsrequirespatially distributeddata. Satelliteremotesensingisthemostextendedtechniqueusedtomonitorsnowalbedo atmediumandlargescales,sincethissourcepotentiallycapturesthevariabilityofsnowalbedoineach ofthethreedomains: time,spaceandfrequency[9,10]. However,theinclusionofthesemeasurements inmodelsissomehowlimitedbythefixedresolutionofsatelliteimages(e.g.,NOAA,dailyimages with1kmˆ1kmcellsize;MODIS,dailyimageswith250mˆ250mcellsize;Landsat,16-dayimages with30mˆ30mcellsize;SPOT,10dayssceneswith1kmˆ1km)andtheirspectralwavelength range,aseachsatelliteprovidesinformationincertainbandsoftheelectromagneticspectrum. Some otherconsiderationsthatmaycomplicatetheacquirementofsnowalbedofromremotesensingmust betakenintoaccount. First, theatmosphericeffectsbetweenthesensorandtheobservedsurface, such as the scattering produced by water vapour and aerosols, or the presence of clouds, make it difficult to obtain information during long time periods over the snow season. Additionally, the degreeofanisotropyofthemeasuredsurfaceconditionstherelationbetweentheincidentandreflected angle, andthenarrowbandtobroadbandconversion[11,12]. Furthermore, inroughmountainous areastopographyusuallyproducesanintenseshadowingeffect,whichneedstobeconsideredinthe modellingprocessbutwhichalsomodifiesalbedoduringtheday,andhasasignificantinfluenceon theeffectivevaluetobeincludedinmodels. Shadedareasshowlessreflectancethanexpectedfrom thesurfacematerials,whereassunnyconditionsexhibittheoppositebehaviour,witharesultinghighly variableresponsefromsnowwiththesameagebutdifferentlocation[13]. Moreover,itisessentialtoaccuratelyapproximatethecorrectdistributionofthesnowduringthe wholeseason,inordertodistinguishsnowfromotherlandcoverspresentinthearea. Theoccurrence of small but abundant patches of snow during the melting cycles involves working with high frequency/spatialresolutionimages,whichcannoteasilybeachievedfromasinglesatellite;terrestrial photographyhasbeenusedtoanalysethesemicroscaleeffects[14].Givenalltheseconsiderations, LandsatTM,ETM+andOLIproducethemosthighlyrecommendedimagestostudysnowalbedo evolutioninmountainousareasinsemiaridregions,duetotheirspatialscale(30mˆ30m);however, therevisitingtimeis16days,whichconstrainstheobtainmentofinformationabouttheevolution duringquickprocessesandgeneratestimegapslongerthanonemonthduringwetperiods(cloudy conditions). Moreover,albedomustberetrievedbytheuserfromeachimagethroughasequential Hydrology2016,3,10 3of19 processinvolvingcorrections,snowdetectionandbandintegration. Asanalternative,MODISdaily snow products provide direct estimations of albedo and snow cover fraction, and they have been widelyusedtomonitorthesnowpackevolutioninsnow-dominatedregions;however,theircellsize (500mˆ500mforsnowproducts)oftenincludeslargefractionsofno-snowareas,whichreduces thenumberofpixelsintheimagewith“puresnow”conditionsanddecreasestheaccuracyofthe modelling results [15]. This dilemma between time and spatial accuracy is also recurrent in other applications of these data sources, such as vegetation cover fraction studies, evapotranspiration calculations,etcetera[16],beingLandsattheselectedsourcewhenthespatialresolutionisarestriction toachievethedesiredaccuracy[17]. Differentapproachestoderivefusionalgorithmsthatbenefit frombothsources’advantageshavebeenperformed,suchastheDisALEXIS[18]modeltoincrease theoriginalLandsatfrequencybydownscalingMODIS[19],orthesemi-physicalfusionapproachfor MODISBRDF/AlbedoandLandsatETM+forsnowcoverfractionretrieval[20]. Additionally,other satellitesprovidedirectproductswithevenhighercellsizes. ThisisthecaseforSPOTVEGETATION, with similar revisiting time to Landsat, 10 days, and a spatial resolution of 1 km ˆ 1 km, which providesbroadbandalbedoproductintheshortwaveregionofthespectrum. Largerscaleeffectsare expectedifthepixelsizeisincreased,althoughnon-linearitymightdamperthefinalimpactonthe calculations. Ontheotherhand,duringhighlyvariableseasons,theavailabilityofonlyafewbutwith highresolutionimagesmaybiasthesimulationresults,over-orunderestimatingboththeextentand amountofsnow,dependingonhowrepresentativeofthewholeperiodtheconditionsofeachisolated imageare. TheSierraNevadaMountainRangeinsouthernSpainisarepresentativeexampleofthedescribed conditions. Thewiderangeofhabitatsrunningfromitsvalleystothetopsmerititsinclusioninthe NationalParksnetwork,anditssouthernlatitudeledtoitsselectionasoneoftheClimateChange ObservatoriesinSpain,sincetheevolutionofthesnowregimewillnotonlyimpacttheassociated ecosystemsandwaterresourcesbutalsoserveasreferenceforfuturebehaviourofsnowsystemsin regionsfarthernorthinEurope. Theradiativeprocesses,amongothers,conditionahighvariabilityin theannualregimeofsnowrelatedtothedry-wetsequencesduringthesnowseasonandthespring. This work analyses the albedo spatial resolution effect on snow modelling in these environments from two remote sensing sources with similar revisiting time but significantly different pixel size; 2-year coincident series available for this area from Landsat (30 m ˆ 30 m, 16 days) and SPOT VEGETATION images (1 km ˆ 1 km, 10 days) were used to quantify the scale effects and assess selectioncriteriaforsnowmodelling. Thedatasources’influenceontheaccuracyoftheresultingsnow distributionmodellingisevaluatedtogetherwiththeirimpactonthewaterfluxesassociatedwiththe snowevolution. 2. MaterialandMethods 2.1. StudySite ThisstudywascarriedoutintheSierraNevadaMountains,SouthernSpain,whereoneofthe greatestwealthsofbiodiversityinfaunaandflorainEuropecanbefound[21,22]. Thehighestregion oftherangewasdeclaredaUNESCOBiosphereReservein1986,NaturalandNationalParksin1989 andin1999,respectively). TheGuadalfeoriverbasinupstreamtheRulesdamwasselectedforthis study(1058km2)(Figure1). Thearea,withanaverageelevationof1418.5m.a.s.l.,ischaracterized byhightopographicgradientsduetoitsproximitytothecoastline,only40kmsouth. Therefore,a combinationofalpineandMediterraneanclimateconditionscanbefound.Snowfallappearseveryyear ataltitudesover2000m.a.s.l. butitspresenceanddistributionishighlyvariablebetweenconsecutive years depending on the meteorological conditions. Precipitation increases with elevation and the meantemperatureisusuallyhigherthaninalpineclimates. The40-yearmeanannualvaluesofthe precipitationanddailytemperatureare630mmand12.2˝C,respectively[23]. Globalradiationis highthroughouttheyearduetoitssouthernaspectandusuallackofcloudcover,evenduringwinter, Hydrology2016,3,10 4of19 despitethecoldtemperaturesandthepresenceofsnow. Theroughtopographyleadstoimportant differencesintheinstantaneousglobalradiationbetweentheeastandwest-facingmountainsslopes and,consequently,inthesnowalbedovalues[3]. Figure1.LocationoftheGuadalfeoRiverbasinupstreamtheRulesdam(blackline).Thestudyareais theregionabove1500m.a.s.l.andisdividedintofouraltitudinalregions:R1(3500–3000m.a.s.l.),R2 (3000–2500m.a.s.l.),R3(2500–2000m.a.s.l.)andR4(2000–1500m.a.s.l.).Bluedotsindicatethelocation ofthesixweatherstationsusedinthestudy;thereddotshowsthelocationofthealbedoinsitudata monitoringstation. 2.2. RemoteSensingAlbedoData TwosourcesofremotesensingdatawereusedinthisstudyfortheperiodOctober2011–August 2013. Thefirstsourceconsistsofthe21cloud-freemultispectralimagesfromLandsatTM5andETM+ availablefromthe2yearsanalysed;thesecondsourcewastheSPOTVEGETATIONalbedoproduct with52availableimagesintheareaduringthestudyperiod(Figure2). Figure2.Acquisitiondatesoftheavailableimagesfrombothalbedosourcesusedinthestudy. 2.2.1. LandsatAlbedo TwentyoneLandsatTM5andETM+sceneswereselectedwithinthestudyperiodforthecloud freescenesavailableinordertominimizeuncertaintiesduetoheterogeneousatmosphericconditions Hydrology2016,3,10 5of19 (Figure2). Landsatsatellitespresentatemporalresolutionof16daysand30ˆ30mspatialresolutions. Allscenesweresubsettoformtheimageofthestudyarea. Bothsensorsanalysed,TMandETM+, havethesamemultispectralwavebandswithsimilarspectralcoverage. Thereforealltheimageswere processedinthesameway. Priortothesnowalbedocomputation,apre-processingoftheimagesisrequired[24]. Figure3a shows the pre-processing applied in this study that includes the radiometric calibration and the atmospheric, saturation and topographic corrections; in this study, the surface is considered to be Lambertian,thatis,thedegreeofanisotropyofthelandsurfaceisnotconsideredand,therefore,the angularcorrectionisnotapplied[12]. SnowisnotaLambertiansurface;nevertheless,someworks showthisassumptioncanbeadoptedwithoutsignificanterrors. Dumondetal. (2010)[25]showed that,forsnowsurfaces,theanisotropyfactorforwavelengthsunder1.2nmisnearlyconstantandclose totheunit;thus,forthosewavelengths,theLambertianassumptiondoeshold. Forwavelengthsabove this 1.2 nm threshold, the anisotropy factor varies depending on the incident/viewing directions; as the TM sensor is for nadir viewing, the direction is always fixed, and the incident direction is approximatelythesamebecauseofthesensoroverpassforthearea,andforthat,approximately30˝, theanisotropicfactorisalsocloseto1. Figure3. Flowchartofpre-processingandtimealbedo30ˆ30mmapsretrievalfrombothdata sources(a)LandsatTMandETM+sceneand(b)SPOTVEGETATIONdatasets. RadiometriccalibrationwasachievedthroughtheequationsandrescalingfactorsinChanderetal. (2009)[26]. Atmosphericcorrectionwasconductedtoretrievesurfacereflectancebyuseofthedarkobject subtraction(DOS)method,whichrelatesthesatelliteradianceandthesurfacereflectance[27,28]by assumingaLambertiansurfaceandacloudlessatmosphere. Moreover,allthescatteringeffectsare consideredtobethesameasthoseofablackbodywithinthescene[29]. Thisdarkobjectisselected from the minimum radiance value of the histogram with at least 200 pixels [30], excluding those pixelsinthescenethatlieintheshadowsproducedbytheterrainroughness[31]. Thus,fixedvalues for the downwelling transmittance parameters of the atmosphere for each band are adopted [32] and the upwelling atmospheric transmittance and the diffuse irradiance are both neglected. DOS methods constitute a good alternative when the atmospheric optical properties needed by more complexradiativetransferencecodes(RTCs)aretotallyorpartiallyunavailableorareofquestionable quality[33]. Snow in the Landsat scene where the study site is included constitutes less than 5% in the maximumsnowextensionandbecomesinsignificantattheendofthesnowseason. Forthisreason, severalbandsareradiometricsaturated,especiallyinwinterwhenthedifferencebetweensnowand therestoflandcoversinthesceneisgreater. Tocorrectthissaturation,amultivariablecorrelation analysisbetweenbandsisemployedtorecoverthesnow-saturatedpixels[34]. Regardingthetopographiccorrection,aCcorrectionwithlandcoverseparationalgorithmwas applied[31]. Again,undertheLambertiansurfaceassumptionalinearfitbetweentheillumination angleandthedifferentbandsreflectanceisestablished. Additionally,thediffuseirradianceistaken intoaccountviaasemi-empiricalestimationoftheCfactor. Inordertoconsiderthemultiplereflective propertiesofthedifferentvegetativesoilcovers,thepixelswereclassifiedintobaresoilandvegetated areasbyusingtheNormalizedDifferenceVegetationIndex(NDVI)[35]. Hydrology2016,3,10 6of19 Once the images are corrected, the discrimination of snow-covered areas and the narrowband-to-broadbandconversionareappliedtogeneratethesnowalbedomaps. Theseparation of snow-covered and snow-free areas was carried out with the normalized difference snow index (NDSI)[15]andthehighreflectanceofsnowinthevisiblepartofthespectrum(Band1inLandsat images). Inthiswork,thetwothresholdsusedtodiscriminatethesnowwereNDSI>0.4andBand 1>0.1[36,37]. Thenarrowbandtobroadbandconversionwasperformedfollowingthemethodof BrestandGoward(1987)[38],basedonthenumericalintegrationofthesnowspectralalbedocurve throughouttheshortwavespectrum. Intheirwork,thehomogeneouspartsinthesnowspectralalbedo curvewereidentifiedandthenagivenpercentageofthetotalspectrumwasassignedtoeachidentified homogeneousintervalportion. Thedifferentspectralbandsofthesensorwereusedasrepresentative of each one of such parts. This method can be applied to different kinds of mixes surfaces, as the authorsshowed,includingsnowareas. Followingthis,4bands(TM2,TM4,TM5,andTM7)ofthe6 bandsoftheTMsensorwereusedinthisstudy,eachoneassumedtoberepresentativeofthefollowing segments,s1=300–725nm,s2=725–1000nm,s3=1000–1400nm,s4=1400–2500nm(eachoneof themwithapproximatelyconstantspectralalbedo). TheweightingfunctionshowninEquation(1) givesanestimationofthebroadbandalbedoinsnowsurfaces[38,39]. Albedo“0.493 ¨pBand2q ` 0.203 ¨pBand4q ` 0.150 ¨pBand5q ` 0.154¨pBand7q (1) 2.2.2. SPOTVEGETATIONAlbedo Sixty-eightGeoland-2SPOT/VGTAlbedoproductsfromCopernicusLandMonitoringService were analyzed along the study period (Figure 2). The temporal and spatial resolutions of the products were 10 days and 1 km ˆ 1 km respectively. From the two albedo variables available intheGMES/Copernicusdatasets,thehemisphericalalbedo(AL-BH)wastheoneusedinthisstudy. Itprovidestheintegrationofthedirectionalalbedoovertheilluminationhemisphereandassumes a complete diffuse illumination. Moreover, the FLAG sub-product was employed to discriminate snow-coveredandsome-freepixels. Thealgorithmusedtomakethisdiscriminationisalsobasedon theNDSIindex,butinthiscase,adaptedtotheavailablebandinSPOTVEGETATION[40]. Thepre-processingappliedtoSPOTVEGETATIONdataisshowninFigure3b. First,allproducts weresubsettoformtheimageofthestudyarea. Then,astheprojectionsystemsusedbythemodel and the SPOT VEGETATION data are different, an automatic routine to re-project the data was implementedinMATLAB.Finally,inordertomatchthedifferentcell-sizesofbothremotesensing datasources,areshapeinthecellsizeoftheavailableproductsfrom1kmˆ1kmto30mˆ30mwas applied. Anearestneighborinterpolationalgorithmwasthemethodemployed. Followingthisprocess,thealbedomapsarederivedforthesnowcoveredpixelsdeterminedin theFLAGproduct. 2.2.3. InSituAlbedoMeasurements In situ snow albedo data are only available from two stations within the study area, but only oneofthem(ColladoBuitreras;seeFigure1)hasbeenoperativeduringthewholestudyperiod. Itis locatedat2867m.a.s.l. andisbeingmeasuringalbedofromthewinterof2008on;thesecondonehas justbeenoperativefromthelatespringof2013,outofthestudyperiodinthiswork,andthuswas notused. The in situ albedo measurements were used to validate the albedo obtained from the remote sensing sources. Only 7 of the 21 Landsat scenes and 35 of the 52 SPOT VEGETATION scenes could be used in the validation process, since the in situ albedo measurement was out of range intherestofthem. Forcomparison,theinstantaneousin-situalbedovaluemeasuredat10:40a.m. (GMT+1),approximatelytheacquisitiontimeofLandsatscenes,wasselected;inthecaseoftheSPOT VEGETATIONvalidation,anaveragingoftheinstantmeasurementscorrespondingtothe10-days windowsofthesensor’sscenewasobtained. Hydrology2016,3,10 7of19 2.3. MeteorologicalData Dailymeteorologicalobserveddataofprecipitation,temperature,windvelocity,radiationand relativehumidityrecordedatsixweatherstationscoveringthealtitudinalgradientinthearea(Figure1) wereusedinthisstudy. Thesemeteorologicaldatawereusedasinputstothehydrologicalmodel WiMMed(WathershedIntegratedModelinMediterraneanEnvironments),whosesnowmoduleis operationaloverthisareafrompreviousworks[9,14,37,41]. Specificinterpolationalgorithmswere used to distribute the point measurements of the meteorological variables over the whole study area. Precipitation,temperature,humidityandwindspeedareinterpolatedbymeansofasquared inverseofdistanceweightmethod(IDW2);acorrectionbasedontheobservedaltitudinalgradientsis includedfortemperatureandprecipitation. Thesealgorithmsweretestedandvalidatedinthestudy area[42]andarecurrentlyusedintheoperationalversionofthesnowandhydrologicalmodelinthe associatedwatersheds. Moreover,forradiation,aphysicalmodelbasedontheclearnessindexandthe diffuse/directfractionwithinclusionofthedifferenttopographiceffectsisapplied[3]. Finally,forthe atmosphericemissivity,aspecificformulationformountainousareasthatwaslocallyvalidatedatthe studysiteisused[43]. Thestudyperiodcoverstwohydrologicalyears,fromSeptember2011toAugust2013. Toanalyse the most vulnerable changes in snow albedo, only the area usually covered by snow within the watershed,locatedabove1500m.a.s.l.,wasselectedforthestudy. Moreover,thisstudyareahasbeen dividedintofourregionsrelatedtothealtituderange: 3500–3000m.a.s.l. (R1),3000–2500m.a.s.l. (R2), 2500–2000m.a.s.l. (R3)and2000–1500m.a.s.l. (R4)(Figure1). Table1showsthemaintopographicand meanannualclimaticfeaturesdescribingthestudyareaandeachaltitudinalregion,Region3being representativeoftheaveragefeaturesofthestudyarea. Table1.Maintopographicandannualclimaticfeaturesofthestudyareaandeachaltitudinalregions calculatedona10mˆ10mDEMsuppliedbytheRegionalAndalusianGovernment. Area Altitude Slope Precipitation Snowfall Tmean Tmax Tmin (km2) (m.a.s.l.) (mm´1) (mm) (mm) (˝C) (˝C) (˝C) REGION1 15.8(5%) 3110.8 0.22 935 759 2.9 16.685 ´13.95 REGION2 100.6(33%) 2727.5 0.19 834 565 4.8 18.3 ´11.5 REGION3 124.8(41%) 2249.4 0.21 735 323 7.4 20.8 ´8.15 REGION4 151.8(51%) 1744.6 0.22 637 129 10.3 24.0 ´4.5 TOTAL 393.0 2211.4 0.21 731 328 7.7 21.1 ´7.8 2.4. SnowModelling Thesnowmelt-accumulationmodeldevelopedbyHerreroetal. (2009)[5]isaphysicalmodel basedonapointmassandenergybalance,spatiallydistributedbymeansofdepletioncurves[37,41]. ThismodelwascreatedandmainlytestedinMediterraneanandsemiaridhighmountains. Thepointmodelassumesaone-layereduniformsnowpack. Inthecontrolvolumedefinedby thesnowcolumnperunitarea,whichhastheatmosphereasanupperboundaryandthegroundasa lowerone,thewatermassandenergybalancecanbeexpressedbyEquations(2)and(3): dSWE “ R´E`W´M (2) dt dpSWE¨uq dU “ “K`L`H`G`R¨u ´E¨u `W ¨ u ´M¨ u (3) R E W M dt dt whereSWE(snowwaterequivalent)isthewatermassinthesnowcolumn,anduistheinternalenergy perunitofmass(Ufortotalinternalenergy). Inthemassbalance,Rdefinestheprecipitationrate;Eis watervapourdiffusionrate(evaporation/condensation);Wrepresentsthemasstransportratedueto wind;andMisthemeltingwaterrate. Ontheotherhand,regardingenergyfluxes,Kisthesolaror shortwaveradiation;Lthethermalorlong-waveradiation;Htheexchangeofsensibleheatwiththe Hydrology2016,3,10 8of19 atmosphererate;Gtheheatexchangewiththesoilrate;andu ,u ,u andu aretheadvectiveheat R E W M ratetermsassociatedwitheachoneofthemassfluxesinvolvedinEquation(2). InthemassbalanceEquation(2),Wisdisregardedduetothequicksnowmetamorphosisobserved atthestudyarea,thatcompactsthesnowpackandreducesitsmobility. Gisnotconsideredeither intheenergybalanceequation,beingusuallyconsideredasecondarytermperseinthisbalance[44] Shortwaveradiation(K)iscalculatedthroughthemeasureddownwellingshortwaveradiationfluxand thealbedo.Longwaveradiationiscalculatedbymeansofanempiricalformulationfortheatmospheric longwaveemissivity,locallyvalidatedinthearea[43].Finally,Hismodelledasadiffusionprocess[45]. Thepointmodelisthendistributedoverthestudyareausinga30mˆ30mrectangulargrid wherethesnowenergybalanceisperformedovereachcell. Theparameterizationofsubgridprocesses iscarriedoutbydefiningdepletioncurves,whichareempiricalfunctionsthatrelatethefractionofcell areacoveredbysnowwithsomeothersnowstatevariable. Theyallowquantificationofthedecrease insnowcoverareawithinthecelltotakeintoaccountthereductionofthesurfaceareaimpliedinthe energy-massbalance. Becauseoftheannualoccurrenceofdifferentsnowmeltcyclesduringthesnow seasonandtheirvariabilitybetweenyears,differentdepletionscurveswereproposedforeachkind ofmelting/accumulationcycleidentifiedinthearea. Themodelhasbeenpreviouslycalibratedand validatedovertheareaintermofsnowcoverfraction(SCF)obtainedfromLandsatTMandETM+ usingaspectralmixture(Figure4)[41]. Figure4.Comparisonbetweensimulatedsnowcoverfractionvalues(SCF)(WiMMedsnowmodel) and“measured”snowcoverfractionvalues(fromLandsatspectralmixtureanalysisovertheGuadalfeo watershed,Figure1)duringthe2004–2013period.RMSE=0.05m2¨m´2,associatedwithaglobalvalue of50km2overthewholewatershed. 2.5. ComparisonbetweenLandsatandSPOTVEGETATIONAlbedoValues Snowalbedovaluesretrievedfrombothdatasourceswereusedtoobtaindistributeddailyseries ofsnowalbedoof30mˆ30m-cellsizefromOctober2011toAugust2013. Forthis,timeintervals betweentwoconsecutiveimageswerefilledbyassumingtheacquisitiondatevalueduringNdays beforeandafterwards;then,linearinterpolationwasappliedfortherestoftheintermediateperiod. Nwasfixedas10and5daysforLandsatandSPOTVEGETATION,respectively. TheresultingalbedomapswereusedasinputvaluesinthesnowmoduleofWiMMedmodel, operationalatthestudysite,toassessalbedoresolutioninfluenceonthesnowregime.Twosimulations wereperformed:Simulation1and2,usingalbedovaluesobtainedfromLandsatTM,ETM+,andSPOT VEGETATIONdataset,respectively. Themodelresultsanalyzedineachsimulationwerethedaily valuesofthefollowingsnowvariables: meansnowcoverfraction(SCF),meansnowwaterequivalent (SWE),snowmelt(Melt)andevapo-sublimation(Ev).Theiraveragevaluesoverthewholestudyarea arepresentedinthiswork,togetherwiththeiraveragevaluesovereachoneofthefouraltitudinal regionspreviouslydefined. TheSCFresultsshownforeachsimulationandareacorrespondtothemodelestimations;the indirectinformationaboutSCFvaluesthatbothremotesensingsourcesprovidedhasnotbeenusedin thiswork,sincethemaingoalwasassessingthealbedosourceinfluence. However,somedisagreement mayappearbetweenthemodeldetectionofsnow(SCFdifferentfromzero)andtheimagedetection (albedodifferentfromzero); insuchcases,theSCFestimatedvaluewasmaintained. Toavoidthe Hydrology2016,3,10 9of19 associatednon-continuityinthecalculations,thefollowingcriteriawerefollowed: whenSCFresults differentfromzero-whereaswhenthesnowalbedoisequaltozero,aminimumalbedovalueof0.4is assignedbythemodel,providedSCFishigherthan0.5;similarly,whenthecalculatedSCFisequal tozerobutthesnowalbedoisdifferentfromzero,thesnowalbedodataisignoredandazerovalue isadopted. Finally,toassesstheinfluenceofthefractionofmixedpixels(SCF<1)ontheresultsduringthe meltingperiods,theSCFvaluesretrievedbyPimenteletal. (2014)[41]fromLandsatimagesbymeans ofspectralmixtureanalysiswereusedfortheLandsatacquisitiondates(Figure2). 3. Results 3.1. SnowAlbedoTimeSeriesduringtheStudyPeriod Figure5showsbothLandsat(L)andSPOTVEGETATION(SV)snowalbedodailyseriesusedas inputinSimulation1andSimulation2,respectively,averagedoverthewholestudysite(Figure5a) andeachoneofthefouraltitudinalregionsidentifiedinthiswork(Figure5b),duringthestudyperiod (October 2011-August 2013); the periods with zero albedo correspond with no-snow conditions in the study area (2012/05/28–2012/09/16; 2013/03/28–2013/05/31; 2013/06/07–2013/06/16; 2013/06/23–2013/08/31). Bothseriesexperimentasimilarevolutionwhenaveragedoverthewhole studyarea(Figure5a),withcoincidentincreasinganddecreasingphasesduringthesnowseasons. L-albedoisgenerallylowerthanSV-albedowhenaveragedoverthestudyarea,withameanvalue forthestudyperiodof0.11against0.21;thedifferenceishigherduringwarmperiodsandincreases fromthebeginningofspringtosummer. L-albedoexhibitsamaximumaveragevalueof0.36and aminimumof0.01inMarch2013,respectively;forSV-albedo,thesevaluesare0.34and0.13,inthe sameperiods. Figure5.AveragedailysnowalbedovaluesretrievedfromLandsat(solidlightblueline)andSPOT VEGETATION(soliddarkblueline)sourcesoverthetotalstudyarea(a),andeachaltitudinalregion (b);seeregionclassificationinTable1.Dashedlinesrepresentthemaximumdailysnowalbedovalues measuredthroughoutthestudyperiod,Landsat(grayline)andSPOTVEGETATION(blackline).The areabetweendashedandzerolinelimitstherangeofcellvaluescorrespondingtoeachdayforeach albedosource. The regional analysis (Figure 5b) shows a clear decrease of the average snow albedo with the elevation, with mean average L-albedo values of 0.38, 0.27, 0.08, 0.01 for Region 1, 2, 3 and 4,respectively,and0.38,0.35,0.18,0.14meanSV-albedovaluesforeachregiontoo. Althoughmean L-albedo values are always lower than those from SV-albedo, the difference increases as altitude Hydrology2016,3,10 10of19 decreases,ascanbeeasilyobservedfromtheFigure5. Again,thedifferenceishigherduringspring andsummer,wherethepresenceofmixedpixelsismoresignificant. ThevalidationofthealbedovaluesobtainedfromremotesensingsourcesisshowninFigure6 foreachoneoftheavailabledates. Ascanbeseen,theobtainedvaluesfallwithintheobservedrange, taking into account the fact that the sensor-albedo values correspond to 1 ˆ 1 km and 30 ˆ 30 m pixel areas from SPOT VEGETATION and Landsat respectively, whereas the in situ albedo values arepointmeasurements. Themixednatureoftheareasrepresentedbyeachpixelinthestudysite duringlongperiodsjustifiestheselowervalues,sinceitisasurfacevalueagainstasnowpointvalue, andthepixelisnotjustasnowsurface,butaheterogeneousone. Onlypuresnowpixelscouldbe approximateinthiscomparison. ARMSEof0.17and0.30wasfoundbetweeninsituvaluesandeach sourcerespectively. Figure6.Comparisonbetweenthesnowalbedoin-situmeasurementsthroughoutthestudyperiod andthealbedoobtainedfrombothremotesensingsourcesatthemonitoringpointinColladoBuitreras (Figure1).Dispersiongraphsforbothalbedoproductsareincluded. 3.2. SimulatedSnowCoverFraction TheevolutionofthedailymeansnowcoverfractionsimulatedfrombothLandSV-albedovalues (Simulation1and2,respectively)throughoutthestudyperiodisshowninFigure7. AsinSection3.1, theresultsarerepresentedastheaveragevaluesoverthewholestudyarea(Figure7a)andovereach region(Figure7b). Veryclosevaluesforbothsimulationsarefoundinallthecases,withgenerally similarorlowerSV-SCF(Simulation2),withameandifferencefromL-SCFof0.02m2¨m´2(Figure7a), andmaximumdifferencesbetween0.38and0.33associatedtotheoccurrenceofisolatedsnowfall eventsinspring(March–April2012andMay2013)andduringsomeoftheintermediatefall-winter meltingcycles(December2011,November2012)(Figure7). Figure 8 shows the difference between the simulated daily L and SV-SCF values against the differencebetweenthedailyLandSV-albedovalues,bothvariablesaveragedoverthewholestudy area(Figure8a). FromFigure8b–e,itcanbeobservedthatthemeandifferenceofLandSV-albedo valuesshiftsfromapositivevalueinRegion1(0.034)tonegativevaluesintherestofregions(´0.062, ´0.102,´0.127respectively),withanincreasingtrendintheirabsolutevalueasthealtitudedecreases (redaxesinthegraphs),whereasthemeandifferencesfoundbetweenL-SCFandSV-SCFvaluesare alwayspositive,alsoclearlydependentonthealtituderegion,withhighervaluesinRegions1and2, wheresnowfallhasastrongerpresenceandpersistence,andageneraldecreasingtrendasaltitude islower. ThemeanSCFdifferencefoundrangesfrom0.086inRegion1to0.020inRegion4. Thisis

Description:
Fluvial Dynamic and Hydrology, Andalusian Institute for Earth System .. Brest and Goward (1987) [38], based on the numerical integration of the snow in the GMES/Copernicus datasets, the hemispherical albedo (AL-BH) was the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.