pssheaderwillbeprovidedbythepublisher Comparison between models of insulator and semiconductor thin films islanding 8 0 0 Franc¸oisLallet∗1,AlainDauger∗∗1etNathalieOlivi-Tran∗∗∗1 2 1 SPCTS,UMR-CNRS663847a`73AvenueAlbertThomas,87065Limogescedex,FRANCE n a J 3 Mots-cle´ PVD-CVD,Sol-gelprocessing,MonteCarlosimulation,thinfilmislanding. 2 PACS 04A25 The synthesis of self-organized quantum dots (QD’s) can be achieved through bottom up layer by layer ] depositionprocesses aschemical vapor deposition(CVD)orphysical vapor deposition(PVD).However, i c QD’smayalsobesynthesizedviasol-gelroute,whichinvolvesaspontaneousevolutionfromthinfilmsto s discreteQD’swithoutfurtherdeposition.Theaimofthepaperistodiscussandcomparethephysicalphe- - nomenainvolvedinQD’sformationwhichinitiatefromthinfilmsurfacerougheningbetweenPVD-CVD l r andsol-gelsynthesisapproaches.Weproposetwosimplephysicalmodelswhicharerelevanttoexplainthe t m fundamentaldifferencesbetweenthosemethods. . t Copyrightlinewillbeprovidedbythepublisher a m - d n 1 Introduction o c Many authors have presented and studied epitaxial QD’s growth through PVD-CVD synthesis pro- [ cesses.Thephysicalphenomenaassociatedwithsuchapproacheshavebeenwidelystudiedboththeoreti- 1 cally[1][2][3]andexperimentally[4][5],inparticularthroughthemodelsystemGe/Si[6][7][8][9][10][11][12], v becauseofitspromisingtechnologicalapplications.HoweverthesynthesisofQD’sepitaxiallygrownon 9 a crystalline substrate can be achieved through a sol-gel approach. Indeed, Bachelet et al [13] have re- 1 cently synthesized and studied the microstructure of zirconia QD’s grown on a c-cut sapphire substrate 6 3 during thermal annealing of a zirconia precursor xerogel thin film deposited on the substrate by sol-gel . dip-coating. 1 0 Theaimofthisarticleistodiscussthephysicalphenomenainvolvedintheseprocessesthroughtheana- 8 lysisoftwophysicalmodels,basedonenergeticconsiderations,whichhavebeendevelopedfornumerical 0 simulations.Wesuppose,forthesakeofsimplicity,thatQD’ssynthesisisachievedwithoutnucleation. : v i X 2 Physicalmodels r a WehavedevelopedaMonteCarlo(MC)algorithmtosimulatetheislandingofathinfilmonaperfect crystalline subtrate during thermalannealing without further deposition [14]. The numericalthin film is dividedintomesoscopicdomainswhicharecharacterizedbytheirheightandtheircrystallographicorien- tationwithregardtotheirnearestneighbors(NN)andthesubstrate.AteachMCstep,adomainiischosen at randomand the probabilityP to change its height(h ) and/or its crystallographicorientation(c , d ) i i i i iscalculatedthroughtheclassicalMetropolisscheme[15].Theenergyofthedomainiwithregardtoits ∗ Correspondingauthor:e-mail:[email protected],Phone:+33555452222,Fax:+33555790998 ∗∗ Secondauthor:e-mail:[email protected],Phone:+33555452224,Fax:+33555790998 ∗∗∗ Thirdauthor:e-mail:[email protected],Phone:+33555452247,Fax:+33555790998 pssdatawillbeprovidedbythepublisher 4Sh.FirstAuthor,Sh.SecondAuthoretSh.ThirdAuthor:Comparisonbetweenmodelsofinsulatorandsemiconductorthinfilmsislanding nearestneighborsisexpressedas: ℓ2 NN ℓ2 NN D γ ∆t NN Ei =γ1(cid:18)h +ℓ(cid:19) (ci−cj)+γ2(cid:18)h +ℓ(cid:19) (di−dj)+Y(1+ν)r ks sT ℓ2 (hi−hj) (1) i Xj=1 i Xj=1 B Xj=1 wherethefirstandsecondtermoftherighthandsideoftheequalitycorrespondtotheinterfacialenergyof thedomainwithregardtothesubstrateandtoitsneighborsrespectively.Thethirdtermcorrespondtothe surfaceenergyrelatedtotheheightsofthedomains.γ1 istheboundarysurfacetension(domain/domain), γ2theinterfacialsurfacetension(domain/substrate),ℓthedistancebetweendomainianditsnearestneigh- bors,Y theYoungmodulus,ν thePoisson’sratio,D thesurfacediffusioncoefficient,γ thefreesurface s s tension,k theBoltzmannconstantandTtheabsolutetemperature. B We presentanotherphysicalmodelwhich allows one to discuss, at least qualitatively,the main para- metersresponsibleforthemorphologicalevolutionofathinfilmepitaxiallygrownonaperfectcrystalline substratethroughadepositionprocess(PVDorCVD).Thismodelisinspiredfromthepreviousworksof Kawamura[16]andRusso[17]whoestablishedMCalgorithmsattheatomicscaletomodelQD’sforma- tionmodesduringdepositionprocesses.Theenergyofanadatomiiscomputedasthesumofitsbonding energyandelasticenergy[16][17]: E =NE −(E −E ) (2) i B withadatomi withoutadatomi where N is the number of chemical bonds of the adatom i with its neighbors, E is the energy of a B chemicalbondandE thetotalelasticenergy.Fromequation(2),wededuceamodelinwhichanepitaxial monocrystallinethinfilmisdepositedonaperfectcrystallinesubstrate.Wemodelthisfilmasacubicarray of mesoscopic domainsi of heighth andwidth ℓ. Each domainis submitted bothto its surface tension i γ andtoanelasticstressfieldinducedbythelatticemismatchbetweenthefilmandthesubstrate,ǫ.The s volumeenergydensityofathinfilmofinitialthicknessh,duetofreesurfaceenergy,isexpressedasγ /h. s Thus, the surface tension of a domain i can be written as (γ h )/h and therefore the surface energy of s i domaini(relatedtoNE )inducedbythefreesurfaceenergyis(ℓ2γ h )/hwhereℓ2 isthefreesurface B s i areaatthetopofeachdomain.Theelasticstressfieldleadstoanelasticenergyinsideeachdomainofthe film.Thiselasticenergy(relatedtoE −E )canbeexpressedthroughlinearelasticity withadatomi withoutadatomi theory. We suppose for the sake of simplicity that the elastic stress tensor is diagonal (for example for cubicphasedmaterials).Withthesameassumption,ǫ,whichisthelatticemismatchbetweenthefilmand the substrate,is constantinthe horizontalplane.Thusthe resultingforceinthe horizontalplanereduces to 2Yǫℓh with ℓh the area of surfaces of domain i perpendicularto the x and y axis. Futhermore,the i i resultingforcesupportedbythedomainiontheverticalaxiszisequaltoνYǫℓ2.Therefore,theresulting elasticenergyrelatedtodomainiandinducedbythelatticemismatchǫisgivenbytheworkofthiselastic force,foracharacteristicdisplacementǫℓinthehorizontalplane: 2 E =Yǫ(2ℓh +νℓ )ǫℓ (3) i Consequently,theenergyofadomainiwithregardtoitsneighborsj mightbewritten: NN γ E =ℓ2 s −2Yǫ2 (h −h ) (4) i i j h (cid:16) (cid:17)Xj=1 3 Discussion The formation of QD’s without nucleation is achieved through the evolution of the roughness of a thin film until nanometer scale islands are clearly identified. In the numerical models, the evolution of the roughnessof a film is simulated by the evolution of the heights of the discrete mesoscopic domains (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim pssheaderwillbeprovidedbythepublisher 5 composingthevirtualthinfilm.Theenergyofamesoscopicdomainiofathinfilmsynthesizedviasol-gel route is calculated with equation (1). One can see that the roughnessof the surface of the film is driven bysurfacediffusionandsurfacetension.Theenergyofamesoscopicdomainiofathinfilmsynthesized viaadepositionprocessiscalculatedthroughequation(4).Thisequationallowsonetounderstandthatthe roughnessofthefilmisdrivenbyacompetitioneffectbetweensurfaceandstressenergies. The probability of changing the height of a domain with regard to equation (1) follows a monotonic tendencywithregardtotheintrinsicparametersofthethinfilm.Figure(1)presentstheevolutionoftheis- landingofnumericalthinfilmsdepositedonasubstratebysol-geldip-coatingafter107MCSasafunction ofthe initialthicknessofthe film. Theannealingtemperatureis fixed,so alltheparametersofthe equa- tionarefixed.Onecanseethatastheinitialthicknessofthefilmincreases,thesubstrateislessdewetted. Indeed,astheinitialthicknessincreases(h = 4nm),theamplitudeoftheroughnesswhichappearsatthe topofthelayercannotreachthesubstrateasfastasforthinerfilms(h=1nm). Theprobabilityofchangingtheheightofadomainwithregardtoequation(4)dependsontherelative values of the parameters γ /h and 2Yǫ2. Indeed, if γ /h > 2Yǫ2 then the energy of the domain i is s s expressedasE =K NN(h −h )(whereK =γ /h−2Yǫ2)withK >0,whereasK <0otherwise. i j=1 i j s Ontheonehand,ifthePlatticemismatchǫislowand/orwithalowfilmthickness(K >0),thentheeffectof surfaceenergyispredominant.Thereforetheprobabilityofrougheningislowandthefilmremainsalmost flatduringthegrowingofthefilmwhichisdescribedthroughtheFrank-van-der-Merke(F-M)deposition process(orALDAtomicLayerDepositionprocess).Ontheotherhand,ifthenumericalvaluesofǫand/or filmthicknessarehigh(K <0),thentheprobabilityofrougheningincreases;thereforetheeffectofstress fieldinsidethefilmispredominantwhichleadstotheformationofislands.Thesurfacerougheningstage can either initiate from the top of a wetting layer, which is called the Stranski-Krastanov (S-K) growth mode,ordirectlyfromthetopofthesubstratewithoutpreviousdepositionofawettinglayer(ǫveryhigh) which is the Volmer-Weber (V-W) growth mode. Figure (2) illustrates the numerical calculations of the islanding process through the effect of the initial film thickness (top, ǫ=0.04) while the bottom presents thisevolutionwithregardtolatticemismatch(bottom,h=2nm)after107MCS.Wefocusonthetransition ofKfrompositivetonegativevaluesastheislandsareformedwhenK <0.Onecannotethattheincrease ofhorǫleadstoahighernumberofQD’s,whichiscontrarytotheevolutionofathinfilmsynthesizedvia sol-gelprocessingwherethehigherthicknessofthefilmleadstoalowernumberofQD’s.Moreover,itis clearthatQD’sformationismoresensitivetothevariationofthelatticemismatchthantothevariationof the initialthicknessofthe film asE isa functionofǫ2 and1/h.Thusthe modeldescribesqualitatively i theevolutionfromaF-MorS-Kgrowthmode(K > 0andK ≈ 0respectively)toaV-Wgrowthmode K < 0asthenumberofQD’ssynthesizedgrowswiththeincreaseofǫand/orh.Thosetendencieshave alreadybeenreportedfortheGe/Sisystem[18]. 4 Conclusion OursimpleenergeticmodelsallowustodescribethemaintendencyofQD’sformationfromthinfilm synthesizedeitherviadepositionprocesses(PVD-CVD)orsol-geldip-coating. The main difference between those approaches is that thin films synthesized via sol-gel route lead to a greater number of QD’s when they are thin while thin films synthesized via deposition processes demonstrate the opposite behaviour. This result is explained through equations (1) and (4) which point outthat surface rougheningof thin films synthesized via sol-gelroute is drivenby surface diffusionand surfacetension,whereasitis theconsequenceofa competitivemechanismbetweenelastic stress energy andsurfacetensionforthinfilmssynthesizedlayerbylayerinPVDorCVDprocesses. References [1] L.Nurminen,A.KuronenandK.KaskiPhys.Rev.B63,035407(2000). (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 6Sh.FirstAuthor,Sh.SecondAuthoretSh.ThirdAuthor:Comparisonbetweenmodelsofinsulatorandsemiconductorthinfilmsislanding Fig.1 Simulationoftheislandingprocessofnumericalthinfilmswithoutdeposition(sol-gel)asafunctionofthe initialthicknessofthefilmafter107MCS. Fig.2 Simulationoftheislandingprocessofnumericalthinfilmswithdeposition(PVD-CVD)asafunctionofthe initialthicknessofthefilm(top)andofthelatticemismatch(bottom)after107MCS. [2] M.Kalke,D.V.Baxter,Surf.Sci.477,(2001)95-101. [3] P.Liu,Y.W.Zhang,C.LuPhys.Rev.B68,035402(2003). [4] K.Alchalabi,D.Zimin,G.Kostorz,H.ZoggPhys.Rev.Lett.90026104(2003). [5] J.C.Nie,H.Yamasaki,Y.MawatariPhys.Rev.B70,195421(2004). [6] P.Sutter,M.C.LagallyPhys.Rev.Lett.84,4637(2000). [7] R.M.Tromp,F.M.RossandM.C.ReuterPhys.Rev.Lett.84,4641(2000). [8] G.Capellini,M.DeSeta,F.EvangelistiMater.Sci.Eng.B89,(2001)184-187. [9] A.Portavoce,M.KammlerandR.HullPhys.Rev.B70,195306(2004). [10] P.S.Chen,Z.Pei,Y.H.Peng,S.W.Lee,M.-J.TsaiMater.Sci.Eng.B108,(2004)213-218. [11] R.J.WagnerandE.GulariPhys.Rev.B69,195312(2004). [12] R.J.Wagner,E.GulariSurf.Sci.590,(2005)1-8. [13] R. Bachelet, A. Boulle, B. Soulestin, F. Rossignol, R. Guinebretie`re and A. Dauger, submitted to Thin Solid Films. [14] F.Lallet,R.Bachelet,A.DaugerandN.Olivi-TranArXiv:cond-mat/0512228. [15] N.Metropolis,A.W.Rosenbluth,M.N.Rosenbluth,A.T.Teller,E.J.Teller,Chem.Phys.21(1953)1087. [16] T.Kawamura,T.Natori,Surf.Sci.438,(1999)148-154. [17] G.Russo,P.Smereka,J.Comp.Phy.214,(2006)809-828. [18] B.Voigtla¨nder,Surf.Sci.Rep.43,(2001)127-254. (cid:13)c 2003WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Greek symbols – w-greek.sty α \alpha θ \theta o o τ \tau β \beta ϑ \vartheta π \pi υ \upsilon γ \gamma ι \iota ̟ \varpi φ \phi δ \delta κ \kappa ρ \rho ϕ \varphi 8 ǫ \epsilon λ \lambda ̺ \varrho χ \chi 0 0 ε \varepsilon µ \mu σ \sigma ψ \psi 2 ζ \zeta ν \nu ς \varsigma ω \omega n η \eta ξ \xi a J 3 Γ \itGamma Λ \itLambda Σ \itSigma Ψ \itPsi 2 ∆ \itDelta Ξ \itXi Υ \itUpsilon Ω \itOmega ] Θ \itTheta Π \itPi Φ \itPhi i c s Table 1: Slanted greek letters - l r t m a \upalpha q \uptheta o \upo t \uptau . at b \upbeta J \upvartheta p \uppi u \upupsilon m g \upgamma i \upiota v \upvarpi f \upphi - d \updelta k \upkappa r \uprho j \upvarphi d n e \upepsilon l \uplambda ̺ \varrho c \upchi o ε \varepsilon m \upmu s \upsigma y \uppsi c [ z \upzeta n \upnu V \upvarsigma w \upomega 1 h \upeta x \upxi v 9 1 Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi 6 ∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega 3 Θ \Theta Π \Pi Φ \Phi . 1 0 Table 2: Upright greek letters 8 0 : v i X r a 1 α \bm{\alpha} θ \bm{\theta} o \bm{o} τ \bm{\tau} β \bm{\beta} ϑ \bm{\vartheta} π \bm{\pi} υ \bm{\upsilon} γ \bm{\gamma} ι \bm{\iota} ̟ \bm{\varpi} φ \bm{\phi} δ \bm{\delta} κ \bm{\kappa} ρ \bm{\rho} ϕ \bm{\varphi} ǫ \bm{\epsilon} λ \bm{\lambda} ̺ \bm{\varrho} χ \bm{\chi} ε \bm{\varepsilon} µ \bm{\mu} σ \bm{\sigma} ψ \bm{\psi} ζ \bm{\zeta} ν \bm{\nu} ς \bm{\varsigma} ω \bm{\omega} η \bm{\eta} ξ \bm{\xi} Γ \bm{\itGamma} Λ \bm{\itLambda} Σ \bm{\itSigma} Ψ \bm{\itPsi} ∆ \bm{\itDelta} Ξ \bm{\itXi} Υ \bm{\itUpsilon} Ω \bm{\itOmega} Θ \bm{\itTheta} Π \bm{\itPi} Φ \bm{\itPhi} Table 3: Boldface variants of slanted greek letters aaa \pmb{\upalpha} qqq \pmb{\uptheta} ooo \pmb{\upo} ttt \pmb{\uptau} bbb \pmb{\upbeta} JJJ \pmb{\upvartheta} ppp \pmb{\uppi} uuu \pmb{\upupsilon} ggg \pmb{\upgamma} iii \pmb{\upiota} vvv \pmb{\upvarpi} fff \pmb{\upphi} ddd \pmb{\updelta} kkk \pmb{\upkappa} rrr \pmb{\uprho} jjj \pmb{\upvarphi} eee \pmb{\upepsilon} lll \pmb{\uplambda} ̺̺̺ \pmb{\varrho} ccc \pmb{\upchi} εεε \pmb{\varepsilon} mmm \pmb{\upmu} sss \pmb{\upsigma} yyy \pmb{\uppsi} zzz \pmb{\upzeta} nnn \pmb{\upnu} VVV \pmb{\upvarsigma} www \pmb{\upomega} hhh \pmb{\upeta} xxx \pmb{\upxi} Γ \bm{\Gamma} Λ \bm{\Lambda} Σ \bm{\Sigma} Ψ \bm{\Psi} ∆ \bm{\Delta} Ξ \bm{\Xi} Υ \bm{\Upsilon} Ω \bm{\Omega} Θ \bm{\Theta} Π \bm{\Pi} Φ \bm{\Phi} Table 4: Boldface variants of upright greek letters 2