ebook img

Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw PDF

24 Pages·2017·6.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw

energies Article Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation RafałŁukajtis*,KarolinaKucharska,IwonaHołowacz,PiotrRybarczyk,KatarzynaWychodnik, EdytaSłupek,PaulinaNowakandMarianKamin´ski FacultyofChemistry,DepartmentofChemicalandProcessEngineering,Gdan´skUniversityofTechnology, Narutowicza11/12Street,80-233Gdan´sk,Poland;[email protected](K.K.); [email protected](I.H.);[email protected](P.R.);[email protected](K.W.); [email protected](E.S.);[email protected](P.N.);[email protected](M.K.) * Correspondence:[email protected];Tel.:+48-58-347-23-10 Received:19February2018;Accepted:8March2018;Published:13March2018 Abstract: Thispaperconcernsthecomparisonoftheefficiencyoftwo-stagehydrolysisprocesses, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatichydrolysis,carriedoutinordertoobtainreducingsugarsfromtriticalestraw. Foreachof theanalyzedsystems,theoptimizationoftheprocessingconditionswascarriedoutwithrespectto theglucoseyield. Forthealkalinepre-treatment,anoptimalcatalystconcentrationwasselectedfor constantvaluesoftemperatureandpre-treatmenttime. Forenzymatichydrolysis,optimalprocess time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performedwith85%phosphoricacid,theoptimumtemperatureandhydrolysistimeweredetermined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars wasdeterminedusingHPLC.Theobtainedhydrolysatesweresubjectedtoethanolfermentation. Theconcentrationsoffermentationinhibitorsaregivenandtheireffectsonthealcoholicfermentation efficiencyarediscussed. Keywords: lignocellulosicbiomass;enzymatichydrolysis;acidhydrolysis;alkalinepre-treatment; optimization;Box-Behnkendesign;bioethanolfermentation 1. Introduction Fermentation is an anaerobic respiration process carried out by many types of bacteria and fungi. Fermentation,bydefinition,isadisproportionationreaction. Ethanolfermentationiscarried outbyyeasts,includingSaccharomycescerevisiae[1–5]. Yeastsareabletofermenthexosesandsome oligosaccharides, e.g., sucrose, maltose, or inulin, at specific conditions. A decreased pH value or the presence of inhibiting fermentation products, i.e., ethanol, influences the growthabilities of Saccharomyces cerevisiae. At ethanol concentrations up to 120 g/L, Saccharomyces are capable of performingfermentationandtheyareabletogrowatethanolconcentrationsupto200g/L[6–8]. Thecurrentglobaldemandforbiofuelsislargelycoveredbytheproductionoffirst-generation bioethanol from sucrose or starch contained in such raw materials as sugar cane, wheat, or corn. An interesting alternative is the production of the second-generation bioethanol as a result of fermentation processes from lignocellulosic waste. Lignocellulose, the most abundant renewable carbohydrate-richbiomass,isaccumulatedinlargequantitiesfromagricultural,forestry,ormunicipal activitiesanddonotcompetewithfoodcrops. Itisalsolessexpensivethanconventionalagricultural feedstocks. However,accordingtothecomplexityofthechemicalstructure,lignocellulosicbiomassis Energies 2018,11,639;doi:10.3390/en11030639 www.mdpi.com/journal/energies Energies 2018,11,639 2of24 resistanttobiodegradation. Cellulose,hemicellulose,andlignin,maincomponentsoflignocellulosic complex,arestronglyintermeshedandbondedtroughcovalentandnon-covalentbonds. Ligninis the major barrier to make the carbohydrate components (cellulose and hemicellulose) suitable for bioconversion[9,10]. Therefore,thepre-treatmentstephasalargeimpactonsubsequentenzymatic hydrolysis and fermentation steps [11]. It should improve the formation of sugars, be effective in the removal of lignin, and produce no, or limited amounts of, products that inhibit the action of thehydroliticenzymesorthegrowthoffermentativemicroorganisms. Pre-treatmentmethodscan beclasssifiedasbiological, physical, chemical, andphysico-chemicalprocesses. Acombinationof differentpre-treatmentmethodshavealsobeenconsidered[12]. Themaingoalofalkalinetreatment,oneofthemostcommonchemicalpre-treatmentmethods, istoremoveligninfromthebiomass[13]. Theactionofalkalinereagentsleadstothedegradation of side chains of esters and glycosides and then to the structural modification of lignin, cellulose swelling,cellulosedecrystallization,andhemicellulosesolvation. Ca(OH) alsoremovesacetylgroups 2 fromhemicellulose,reducingsterichindranceandincreasingtheavailabilityoftheenzymetothe surfaceofhemicelluloseandcellulose. Thesemethodsaremoreeffectiveforcellulosedigestibility andforligninsolubilization,exhibitingminorcelluloseandhemicellulosedissolutionthanacidor hydrothermalprocesses[9]. Theadvantageofalkalinemethodsistheirlowcost, especiallywhen usingCa(OH) . Thelimitationisthatalkaliareconvertedintoun-saltedorintroducedasbiomass 2 saltsafterthepre-treatmentand,therefore,thewaterconsumptionforsaltremovalfrombiomassis high. Theligninremovalstepisnessesarytoavoidtheformationofinhibitors(salts,furfural,phenolic acid,aldehydes). Abudietal.[14]investigatedtheeffectsofalkalineandperoxidepre-treatmentof ricestraw(RS).TheresultsindicatethatNaOHandH O pre-treatmentsaffectedthelignocellulose 2 2 compositiondifferentlyandareparticularlyeffectiveintermsofsolubilizationofRShemicellulosemore thanofcelluloseandlignin. NaOHpre-treatmentledtoapproximately11%,32%,and22%reductions inhemicellulose,cellulose,andlignincontent,respectively. InthecaseofH O pre-treatment,the 2 2 correspondingreductionswere16%,41%,and7%,respectively. After the pre-treatment of lignocellulosic biomass, the hydrolysates are further processed by biochemical methods.During the enzymatic hydrolysis, crystalline cellulose and hemicellulose not decomposed during pretreatment, and are degraded to reducing sugars, fermentable by microorganisms. The conversion of cellulose and hemicellulose is catalysed by cellulases and hemicellulases,respectively.Cellulasesareusuallyamixtureofseveralenzymes.Thethreepredominant onesare:endo-1,4-β-glucanase,whichhydrolyzestheinnerβ-1,4-glycosidicbonds;exo-1,4-β-glucanase, which removes mono- and dimers from the free chain-ends; and β-glucosidase (cellobiase), which hydrolyzesglucosedimers[15–17].Cellulosehydrolysisstartswithadsorptionofcellulaseenzymes onto the surface of cellulose. Afterwards, cellulose isbiodegraded to the fermentable sugars and cellulaseisdesorbedfromthebiomasssurface.Cellulosemicrofibersaresurroundedbyhemicellulose polysaccharides. Therefore, auxiliary enzymes that attack hemicellulose are used. In the first step, endo-1,4-β-xylanase depolimerizes xylan into xylooligosaccharides.Further, xylanases, such as β-glucuronidase, α-arabinofuranosidase, and acetyl xylan esterase, cleave side chains and side groupsofheteroxylan,whilegalactomannanaseandglucomannanasehydrolyzeglucomannan[18]. Theoptimalbalancedcombinationofenzymesisneededtoeffectivelymodifythecomplexstructure oflignocellulosicmaterials. Inadditiontothequalityofthehydrolyzingenzymes,thedigestibility ofcelluloseandhemicelluloseisaffectedbypH,temperature,processtimeandporosity,degreeof crystallization,andcellulosecontent[19]. Saccharificationoflignocellulosicbiomasswithanacidcatalystisalsopossible.Themainobjective ofacidtreatmentisthesolubilizationofhemicelluloseandmakingcelluloseaccessibletoenzymes. Acidhydrolysisisanalternativeforenzymatichydrolysis,asacidhydrolyzesbiomasstofermentable sugars. However,intensivewashingisrequiredtoremovetheacidbeforefermentationisperformed. Theadvantageofusingacidsistheirlowpriceandavailability. Additionally,theuseoforganicacids (formic, acetic, maleic) makes the process environmentally friendly [20]. The disadvantage is the Energies 2018,11,639 3of24 need to neutralize the used acid by alkali, which generates a stream of reagents, or by vacuum distillation,Enienrgieos 2r0d18e, r11, txo FOrRe PuEsEeR RtEhVeIEWa c id. Another disadvantage of using acid hydro3l yofs 2i5s is is the possibility of the formation of fermentation inhibitors, especially when high acid concentrations, disadvantage is the need to neutralize the used acid by alkali, which generates a stream of reagents, high tempeorra tbuy revsa,cuaunmd dloisntilglatrieoan,c tiino nortdiemr etos areruesea pthpel ieacdid[. 2A1,n2o2t]h.er Dduisraidnvganatacgide ohfy udsriongly sacisid, the acid catalyzesthheydbrroelyaskisdiso isw thne opfosgsilbyicliotys oidf tihceb foornmdastiobne otwf feeremnenstuatgioanr irnehsibiditoures,s e,sfpoelclioalwly ewdhebny htighhe abcirde akdown concentrations, high temperatures, and long reaction times are applied [21,22]. During acid of released glucose to form hydroxymethylfurfural (HMF), formic acid (FA), and levulinic acid hydrolysis, the acid catalyzes the breakdown of glycosidic bonds between sugar residues, followed (LA) (Figure 1) [23]. Compounds, such as furfural, 5-HMF, and phenolic compoundsaffect the by the breakdown of released glucose to form hydroxymethylfurfural (HMF), formic acid (FA), and microorganleisvmulinmice taacbido l(iLsAm) in(Fitghueref e1r)m [e23n]t. atCioomnpsotuenpd.s,D siulucht eaasc ifdurpfurrea-l,t re5-aHtmMFe,n tanisd mpoherneofliacv ourable forindustricaolmappopunlidcsaatffieocnt stdheu emtoicrtohoergraendisumc timonetaobfotlihsme opine rathteio nfearlmaenntdatmiona instteepn. anDcileutceo satcsi(dc orrosion pre-treatment is more favourable for industrial applications due to the reduction of the operational problems). Additionally,thiskindofpre-treatmentgeneratesfewerdegradationcompoundsthanthe and maintenance costs(corrosion problems). Additionally, this kind of pre-treatment generates concentratedacidpre-treatment[18,24,25]. fewerdegradation compounds than the concentrated acid pre-treatment [18,24,25]. Figure1.FFoigrumrea t1i. oFnoromfatsieolne ocft esedlefceterdm feernmteanttiaotnionin inhhibibiittoorrss frforomm glugclousceo dsueridngu arcinidg haydcirdolyhsyisd. rolysis. The lignocellulosic hydrolysates are very attractive as a substrate for fermentative conversion Theligpnroocceesslelus ltoo sbiicoehthyadnrool.l yTshae treessualrtse ovf etrhye alatttersat crteisveaercahs oan stuheb sptrroadtuectfioonr foef rbmioeenthtaantoivl efrocmo nversion processestowbasitoee ltighnaonceolllu.lToshice brieosmualstss aoref pthreeselnatteeds itnr Teasbelae r1c. hontheproductionofbioethanolfromwaste lignocellulosicbiomassarepresentedinTable1. Table 1. The efficiency of bioethanol production related to the pre-treatment method and used microorganisms. Table1.Theefficiencyofbioethanolproductionrelatedtothepre-treatmentmethodandusedmicroorganisms. Type of Type of Ethanol Yield Lignocellulosic Used Microorganism Processes Involved References Pretreatment (g/g) TypeoMfaterial Typeof Used Ethanol Processes LignocelluCloosttiocn Hydrolysis and References Pretreatment Microorganism Yield(g/g) Involved Materreisaidlues,corn - Saccharomyces cerevisae 0.027 fermentation realized [21] stover separately Hydrolysisand Cottonresidues, Saccharomyces Simultaneous - Kluyveromyces 0.027 fermentation [21] cornstWovheeart straw Steam explosion cerevisae 0.27 saccharification and [26] marxianus reafelrimzeedntsaetipona rately WheatsStrubaagwgaarcsasne e SteasAmtecaiedmx d peixlgopelssotiisooinonn, KPlmuicyhaviraex sritoaimpniutyissc es 0.039.2 7 ssaaccScfhSecifmraheimmrruaimferluitnicafielatntantcaeitaotionoatnueint osaio onnundsa nd [27] [26] Simultaneous Sugarcane Aciddigestion, 0.29 sacchSaimrifuiclattaionne aonuds bagasSsuegarcane steameMxpillloinsgi on PPiicchhiiaa ssttipipitiitsi s 0.39 sacfecrhmaernifitactaiotino nand [28] [27] bagasse Hyfderromlyesnist aantido n 0.27 fermentation realized Simultaneous separately 0.29 saccharificationand Hydrolysis and SugarcRaincee husks AlMkaillinlien dgigestion EPsicchheiraicshtiaip ciotliis 0.21 fermefnetramtioenn rteaatliiozend [29] [28] bagasse Hsyedparroaltyelsyi sand 0.27 fermentation realizedseparately Hydrolysisand 0.21 fermentation realizedseparately Ricehusks Alkalinedigestion Escherichiacoli [29] Simultaneous 0.20 saccharificationand fermentation Energies 2018,11,639 4of24 Table1.Cont. Typeof Typeof Used Ethanol Processes Lignocellulosic References Pretreatment Microorganism Yield(g/g) Involved Material Aciddigestion, Maizecob Zymomonasmobilis 0.42 Batchreactor [30] overliming Drying Clostridium 0.36 thermocellum; Aciddigestion 0.40 Clostridium Alkalinedigestion thermosaccharolyticum 0.42 Bananaremnants Batchreactor [31] Drying 0.33 Clostridium Aciddigestion thermocellum; 0.36 Clostridiumethanolicus Alkalinedigestion 0.39 Currently, lignocellulosic biomass is regarded as the forward-looking, large-scale available non-fossil carbon source for biofuels production. Therefore, there is a strong motivation for research into industrially and economically viable processes for conversion of biomass to fuels, including bioethanol. However, successful and effective conversion of lignocellulosic biomass to monosaccharides in high yields is still a challenge. Acid or enzymatic hydrolysis of biomass polysaccharides after a pre-treatment stage are the main currently-investigated saccharification methods [32–36]. Therefore, the primary objective of the present study is the comparison of the efficiencyoftwo-stagehydrolysisprocesses,i.e.,alkalinepre-treatmentfollowedbyacidhydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducingsugarsfromtriticalestraw. Thecomparisonistoconcernnotonlyresultsobtainedformono sugars,butforbioethanolaswell. Theaimoftheworkisalsotoexaminethecourseandefficiencyoftheenzymatichydrolysisusing cellulolyticenzymesimmobilizedondiatomite. Thisprocedureisintendedtoreduceprocesscosts throughthepossibilityofenzymeregenerationandreuse. Theoptimizationoftheconditionsofthetwo-stagehydrolysisandtheevaluationoftheinfluence of process parameters on the glucose yield were performed according to the Box-Behnken design forthefollowingvariables: concentrationofNaOH,durationtimeofacidhydrolysis,temperature ofacidhydrolysis,thecontentofViscozymeL,andthedurationtimeoftheenzymatichydrolysis process. Finally, the parameters’ significance on the performance of sugars were optimized using the response surface methodology. The effect of acid hydrolysis conditions on the content of typicalfermentationinhibitors,including5-HMF,furfural,andthetotalphenoliccompoundswas investigated. Additionally, pre-treatment and hydrolysis effects were evaluated by performing bioethanolfermentationonpreviously-obtainedhydrolysates. 2. ResultsandDiscussion 2.1. BiomassCharacterisation Milledandmincedlignocellulosicbiomass(triticalestrawTriticumsp.,originatedfromWejherowo, Poland) was used in this study. The determined composition of the Triticum sp. was found to be: 43.6% cellulose, 23% hemicellulose, 21.5% lignin, 8.3% water extractives, 8.6% ethanol extractives, 1.2%ash,andamoisturecontentof6.2%(ondryweightbasis). Hemicellulosecontentwasfoundas follows: xylose(18.1%),galactose(4.1%),andmannosewitharabinose(0.8%). 2.2. InfluenceofAlkalinePre-TreatmentConditionsoftheChemicalCompositionofTriticaleStraw Theoptimizationofthetwo-stagehydrolysisconditionsandtheevaluationoftheinfluenceof processparametersontheglucoseyieldweremadefortwotestsystems. Inthefirstsystem,alkaline pre-treatmentandacidhydrolysiswerecarriedout,while,inthesecondsystem,alkalinepre-treatment Energies 2018,11,639 5of24 followedbyenzymatichydrolysis. Inbothcases,thealkalinepre-treatmentwascarriedoutforsix hoursataconstanttemperatureof65◦C.Thetreatmentwascarriedoutforthecatalystconcentrations (NaOH) of 1%, 6%, and 11%. In the first stage of the research, the effect of alkaline pre-treatment onthechangeoftriticalestrawcompositionwasdetermined. Forthispurpose,thecompositionof biomass(reducingsugarsandlignincontents),aswellasthedegreeofligninremoval,thedegreeof celluloseandhemicelluloserecoveriesweredeterminedintheresidueremainingafterthealkaline treatment. The results (Table 2) indicate that an increase in the concentration of NaOH causes an increase in the biomass loss of 37%, 49%, and 52%, respectively, for catalyst concentrations of 1%, 6%,and11%. Asimilardependencewasobtainedin[12,37,38]. Theresearchresultsindicatethatthe useof1%NaOHalreadysignificantlylowersthelignincontent. Afurtherincreaseinthecatalyst concentrationabove1%doesnotsignificantlyaffecttheligninremoval. Thealkalinepre-treatment of the material influences the change in the proportion of the sugar polymer content. The use of 1%NaOHallowsthecontentofallreducingsugarstoincrease. ForNaOHconcentrationsgreaterthan 1%,adecreaseinreducingsugarscomingfromhemicellulosewithasimultaneousincreaseinglucose concentrationisobserved. Table2.Compositionofrawbiomassandobtainedhydrolysates. Glucose Xylose Galactose Mannose, Lignin Cellulose Hemicellulose Lignin Content Content Content ArabinoseContent Content Recovery Recovery Removal (mg/gbiomass) (mg/gbiomass) (mg/gbiomass) (mg/gbiomass) (%) (%) (%) (%) Untreated 436 181 41 8 21.5 - - - 1%NaOH 548 230 58 13 9.5 79.3 82.4 72.1 6%NaOH 644 171 43 0 8.4 75.4 47.4 75.7 11% 701 141 22 0 8.4 77.2 33.9 75.2 NaOH 2.3. OptimisationofAlkalinePre-TreatmentFollowedbyAcidHydrolysis For the analysis of the influence of input variables on the result of two-stage hydrolysis, i.e., alkaline treatment and acid hydrolysis, experiments (Table 3) were performed according to theBox-Behnkendesignforthreevariables. Thefollowingboundaryvalueswereassumedforthe investigatedvariables: concentrationofNaOH1–11%ataconstanttemperatureof65◦Candalkaline pre-treatmenttimeof6h,durationofacidhydrolysisof0.5–8h,andthetemperatureofacidhydrolysis of60–120◦C.Asanoutputparameter,glucoseyield(G )wasselectedasaparameterdescribingthe y efficiencyoftheprocess.Additionally,Table3showstheobtainedvaluesofthesumofreducingsugars. Table3.Box-Behnkendesignforalkalinepre-treatmentandacidhydrolysisofTriticumsp. No. CNaOH(%) Temperature(◦C) Time(h) Gy(mg/gbiomass) SumofSugars(mg/gbiomass) 1 1 90 0.5 334.5 397.3 2 11 90 0.5 293.9 360.8 3 1 90 8 104.6 122.3 4 11 90 8 106.4 118.5 5 1 60 4.25 229.6 314.6 6 11 60 4.25 204.9 285.0 7 1 120 4.25 7.3 13.2 8 11 120 4.25 7.6 8.2 9 6 60 0.5 56.4 147.9 10 6 60 8 301.7 369.3 11 6 120 0.5 271.4 325.3 12 6 120 8 14.3 14.3 13 6 90 4.25 265.6 314.8 14 6 90 4.25 260.7 312.8 15 6 90 4.25 269.8 326.1 Energies 2018,11,639 6of24 Aninfluenceoftheprocessparameters(NaOHconcentration,temperatureanddurationofacid hydrolysis)ontheglucoseyieldwasinvestigated. Onthebasisofmultipleregression,theEquation(1) wasproposed,describingtherelationshipsoccurringduringthetwo-stagehydrolysis. EnergYies[ %20]18=, 1−1, 1x4 F2O6R− PE3E.R9 8RXE1VI+EW34 . 45X2+177.70X3 −0.16X22 −3.64X32+0.57X1·X3 −1.97X2·X36 of (215) IInn EEqquuaattiioonn ((11)),, XX11,, XX22, ,aanndd XX33 rreepprreesseenntt ssooddiiuumm hhyyddrrooxxiiddee ccoonncceennttrraattiioonn,, tteemmppeerraattuurree,, aanndd ttiimmee ooff aacciidd hhyyddrroollyyssiiss,, rreessppeeccttiivveellyy.. YY ddeennootteess gglluuccoossee eeffffiicciieennccyy.. EEqquuaattiioonn ((11)) eennaabblleess ccaallccuullaattiinngg tthhee tthheeoorreettiiccaall gglluuccoossee yyiieelldd wwiitthhiinn tthhee rraannggee ooff vvaarriiaabblleess aaccccoorrddiinngg ttoo tthhee bboouunnddaarryy ccoonnddiittioionnss. . TThhee ppaarraammeetteerrss ooffE qEuqautaiotinon(1 )(a1r) eagriev egnivinenT aibnl eT4a.bIlne o4rd. eIrnt oorddeeter rmtoi ndeettheermefifneec ttohfet heeffpeacrt aomf ettehres psiagrnamifiectaenrcse siognnitfhiceanpceer foonrm thaen cpeerofofrsmugaanrcse, oafn suangaalrys,s iasno afnvaalyrisaisn coef fvoarritahneces uforfra tcheeo sfutrhfaecem oofd tehle's mreosdpoeln'ss erewspasonmsaed we.aTs hmeafdorem. TohfeE fqourmati oonf E(1q)uiasttihoen r(e1s)u ilst othfer erjeescutilnt gotfh reejleecatsitnsgi gthneifi lceaanstt psiagrnamifiectaenrts pinartahmeneteexrtsi tiner tahtiev neesxtet pitse.rTahtiivsep srtoecpesd. uTrheissh porwoceeddtuhraet sthheowleaedst tihmapt othrtea nletapsat riammpeotretrasnitn psaurcahmaestyersste imn siuscthhe ai nsytesrtaecmti oisn tbheet wineteenraccotinocne nbtertawtieoenno cfocnacteanlytsrattainodn toefm captearlaytsut raen(dX 1t·eXm2)p.eFroartutrhei s(Xin1t·Xer2a).c tFioorn ,ththise ipn-tvearalucetiowna, sthme upc-hvahluigeh weratsh manucthhe haigsshuemr tehdansi gthneifi acsasnucmeeldev seilgpni<fic0a.1n,cwe lheivcehl ips w< 0h.y1,i twwhaicshr eisje wctheyd . iBt awseads orenjeacntaeldy.s iBsaosfevda orina nacnea,ltyhseiso botfa vinaerdiavnacleu, ethoef tohbetdaienteerdm vinalautieo nofc otheeffi dcieetnetrm(Ri2na=ti0o.9n9 6co,Fefigfiucireen2t) (iRn2d =ic 0a.t9e9s6a, vFeigryurgeo 2o)d incodrircealtaetsi oan vbeertyw geoeondt hceorerfefilcaiteionncy bceatwlcueelant etdheo enfftihceiebnacsyi scoalfcEuqluaatetido non(1 t)haen bdatshise oafcEtuqaulagtilounc o(1se) aenffidc itehnec aycwtuiatlh ginlutchoesien evfefsictiigenatceyd wraitnhgine othfev ianrviaebslteigs.ated range of variables. Table 4. Model parameters for Box-Behnken design for alkaline pre-treatment and acid hydrolysis Table4.ModelparametersforBox-Behnkendesignforalkalinepre-treatmentandacidhydrolysisof of Triticum sp. Triticumsp. Parameter Value Std. Error t-Value p-Value Parameter Value Std.Error t-Value p-Value Intercept −1426 53.340 −26.746 1.81 × 10−7 IntercepXt1 −1−432.968 513.2.33440 −−32.62.2774 6 0.10.18810× 10−7 X −3.98 1.234 −3.227 0.0180 1 X2 34.45 1.118 30.824 7.74 × 10−8 X 34.45 1.118 30.824 7.74×10−8 X2 X3 17177.77.070 66..448855 2277.3.39977 1.561 .×5 610×−7 10−7 3 X 2 X22 −−00.1.616 00..000066 −−2288.0.08877 1.351 .×3 510×−7 10−7 2 X32 X32 −−33.6.464 00..337766 −−99.6.66633 7.047 .×0 410×−5 10−5 X1·X3X1·X3 0.05.757 00..224466 22.2.29955 0.06105.0 615 X2·X3X2·X3 −−11.9.797 00..005555 −−3355.6.63311 3.263 .×2 610×−8 10−8 400 300 R2= 0,996 Experimental 200 G , mg/mL y 100 0 0 100 200 300 400 Model-predicted G , mg/mL y Figure2.Analysisofvarianceforthetheoretical(model-predicted)andexperimentalglucoseyieldfor Failgkualrien e2.p Aren-tarleyastims oefn tvaanridanacceid fohry tdhreo ltyhseios.retical (model-predicted) and experimental glucose yield for alkaline pre-treatment and acid hydrolysis. Theattachedfiguresshowmodelsurfaceresponsesandaretheeffectoftheinteractionsbetween The attached figures show model surface responses and are the effect of the interactions twoselectedvariableparameters,whilemaintainingthethirdparameterataconstantlevel. Themodel between two selected variable parameters, while maintaining the third parameter at a constant responseistheconcentrationofglucose(glucoseyield)afterthetwo-stagehydrolysis,whereinthe level. The model response is the concentration of glucose (glucose yield) after the two-stage hydrolysis, where in the second stage the obtained solid fraction after the alkaline pre-treatment was used. The analysis of the surface response was useful for the determination of the individual effects of each parameter and the impact of interactive effects of independent variables on the glucose yield. This approach allowed to determine the optimal conditions with respect to each investigated parameter. Figure 3 presents the effect of NaOH concentration and acid hydrolysis temperature on glucose yield (acid hydrolysis time 1h). The results indicate that the glucose yield reaches a Energies 2018,11,639 7of24 secondstagetheobtainedsolidfractionafterthealkalinepre-treatmentwasused. Theanalysisofthe surfaceresponsewasusefulforthedeterminationoftheindividualeffectsofeachparameterandthe impactofinteractiveeffectsofindependentvariablesontheglucoseyield. Thisapproachallowedto determinetheoptimalconditionswithrespecttoeachinvestigatedparameter. Energies 2018, 11, x FOR PEER REVIEW 7 of 25 Figure3presentstheeffectofNaOHconcentrationandacidhydrolysistemperatureonglucose yield (acid hydrolysis time 1h). The results indicate that the glucose yield reaches a maximum at maximum at about 100 °C. Increasing the temperature of acid hydrolysis above 100 °C results in a about 100 ◦C. Increasing the temperature of acid hydrolysis above 100 ◦C results in a decrease of decrease of glucose yield due to the breakdown of simple sugars. The increase in NaOH glucoseyieldduetothebreakdownofsimplesugars. TheincreaseinNaOHconcentrationduringthe concentration during the pre-treatment causes a decrease in a glucose yield. This is caused by a pre-treatmentcausesadecreaseinaglucoseyield. Thisiscausedbyasignificantlossofmassduring significant loss of mass during alkaline pre-treatment. Biomass loss is related to the catalyst alkalinepre-treatment. Biomasslossisrelatedtothecatalystconcentrationanditisequalto38%for concentration and it is equal to 38% for the treatment of 1% NaOH and 52% when 11% NaOH is used. thetreatmentof1%NaOHand52%when11%NaOHisused. 350 G , mg/g y 300 300-350 250 250-300 200 200-250 150-200 150 11 100-150 100 9 50 7 50-100 0 5 0-50 C , % 60 3 NaOH 70 80 90 Time = 1h Temp, oC 100 1 110 120 FFiigguurree 33.. TThhee ssuurrffaaccee rreessppoonnssee pplloottss ooff tthhee eeffffeeccttss ooff NNaaOOHH ccoonncceennttrraattiioonn aanndd tteemmppeerraattuurree aacciidd hhyyddrroollyyssiiss oonn tthhee gglluuccoossee yyiieelldd.. Figure 4 shows the effect of temperature and duration time of acid hydrolysis on the glucose Figure4showstheeffectoftemperatureanddurationtimeofacidhydrolysisontheglucose yield for a constant sodium base concentration (6%). Glucose efficiency increases with increasing yield for a constant sodium base concentration (6%). Glucose efficiency increases with increasing tteemmppeerraattuurree,, hhoowweevveerr,, wwhheenn tthhee ooppttiimmaall tteemmppeerraattuurree ((110000 °◦CC)) iiss rreeaacchheedd,, aa ssiiggnniiffiiccaanntt ddeeccrreeaassee iinn glucose efficiency is observed if the temperature is further increased. For temperaturesin the range glucoseefficiencyisobservedifthetemperatureisfurtherincreased. Fortemperaturesintherange ooff 9900––110000 °◦CC,, aanndd ffoorr aa sshhoorrtt ttiimmee ooff aacciidd hhyyddrroollyyssiiss ((00..55 hh)),, tthhee hhiigghheesstt gglluuccoossee yyiieellddss aarree oobbttaaiinneedd.. An increase in time over 0.5 h results in a decrease in the hydrolysis efficiency. Only for the Anincreaseintimeover0.5hresultsinadecreaseinthehydrolysisefficiency.Onlyforthetemperature toefm60pe◦rCa,tuanrei nocfr e6a0s e°iCn, galunc oisnecreefafisceie ninc ygalluocnogsew ietfhfitchieendcuy raatlioonngt imwietho ftahceid dhuyrdartoiolyns itsimiseo bosfe ravceidd. hydrolysis is observed. Figure 5a,b present an influence of the duration time of acid hydrolysis and NaOH Figure 5a,b present an influence of the duration time of acid hydrolysis and NaOH concentration(alkalinetreatment)ontheglucoseyieldataconstanttemperatureofacidichydrolysis. concentration (alkaline treatment) on the glucose yield at a constant temperature of acidic Twopossibilitiesofinterperationoftwo-stagehydrolysisshouldbeconsideredhere. Inonevariant, hwyhdernoltyhseisa.c Tidwhoy pdoroslsyibsiislittieems poef rianttuerrepeisra1t0i0on◦ Cof( Ftwigou-rseta5gbe), hhyigdhroyliyeslids oshforeudldu cbineg cosungsiadresrceadn hoenrley. bIne one variant, when the acid hydrolysis temperature is 100 °C (Figure 5b), high yield of reducing achievedforashortdurationofacidichydrolysis(0.5h). Theincreaseinthedurationoftreatment sugars can only be achieved for a short duration of acidic hydrolysis (0.5 h). The increase in the results in a decrease of the glucoseyield due to the degradation of simple sugars. When a lower dteumrapteiorant uorfe troefa6t0m◦eCnti sreaspupltlsie idn (oa thdeercrveaarsiea notf, Fthige ugrleu5cao)s,etyhieelhdi gdhuees ttoy itehlde idseagcrhaideavteiodna fotfe rsi8mhpolef sugars. When a lower temperature of 60 °C is applied (other variant, Figure 5a), the highest yield is acidichydrolysis. Thechoiceofprocesstemperature,besidestheefficiencyofreducingsugars,should achieved after 8 h of acidic hydrolysis. The choice of process temperature, besides the efficiency of alsobesupprtedbytheconcentrationoffermentationinhibitorsintheresultinghydrolysate. reducing sugars, should also be supprted by the concentration of fermentation inhibitors in the resulting hydrolysate. Energies 2018,11,639 8of24 Energies 2018, 11, x FOR PEER REVIEW 8 of 25 G, mg/g 350 y 300 300-350 250 250-300 200 200-250 150-200 150 100-150 100 50-100 0-50 50 0 C = 6% NaOH 0,5 2 3,5 5 120 Time, h 6,5 80 100 680 Temp, oC Figure4.Thesurfaceresponseplotsoftheeffectsoftemperatureandtimeontheglucoseyield. Figure 4. The surface response plots of the effects of temperature and time on the glucose yield. G , mg/g y 300 250-300 200-250 250 150-200 200 100-150 150 50-100 100 9 0-50 CNaOH, % 50 5 Temp= 60oC 0 1 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 Time, h (a) Gy, mg/g 400 300-400 300 200-300 200 100-200 0-100 100 1 0 10 7 0,5 1,5 Temp= 100oC 2,5 3,5 4 CNaOH, % 4,5 5,5 6,5 1 Time, h 7,5 (b) Figure 5. The surface response plots of the effects of NaOH concentration and time acid hydrolysis Figure5.ThesurfaceresponseplotsoftheeffectsofNaOHconcentrationandtimeacidhydrolysison on the glucose yield: (a) at a constant temperature 60 °C; (b) at a constant temperature 100 °C. theglucoseyield:(a)ataconstanttemperature60◦C;(b)ataconstanttemperature100◦C. Energies 2018,11,639 9of24 The analysis of the surface response areas (Figures 3–5) allowed to determine the optimal conditions for a two-stage process involving alkaline pre-treatment (6% NaOH, 6 h, 65 ◦C) and acidhydrolysis(100◦C,0.5hand85%H PO ). Fortheseconditions,hydrolysisofthetriticalestraw 3 4 wasperformedtoobtain,from1gofrawmaterial,320mgofglucose,42.8mgofxylose,19mgof galactoseand1.5mgofarabinose,respectively. Asimilarresultoftheyieldofsugarswasobtained for acid hydrolysis with sulfuric acid (70% H SO , 30 ◦C, 2 h) of Saccharum spontaneum, also after 2 4 treatmentwithsodiumbase(7%, 48h,30◦C).Fortheseconditions,amaximumyieldofreducing sugarswasobtained369.6mg/g[14]. Theacidhydrolysiswascarriedoutonstrawwhichhadnot beensubjectedtothepreviousalkalinepre-treatment,obtaining,from1gofrawmaterial,420mgof glucose,150mgofxylose,38mgofgalactoseand4.7mgofarabinose,respectively. Itisclearthatthe efficiencyofreducingsugarsforacidhydrolysiswiththeomissionofthealkalinepre-treatmentis thehighest. 2.4. OptimisationofAlkalinePre-TreatmentFollowedbyEnzymaticHydrolysis The system consists of 15 experiments planned according to the Box-Behnken design. Experiments include two-stage hydrolysis of biomass, i.e., alkaline pre-treatment followed by enzymatic hydrolysis. During the alkaline pre-treatment, NaOH concentration in the first step of hydrolysis is optimized at a constant process temperature of 65 ◦C, pre-treatment time of 6h, and granulation of 0.75 mm. In the second step, enzymatic hydrolysis values of the time and ratio of cellulolyticenzymesimmobilizedonasolidsupportareoptimized. Astheboundaryconditions,on thebasisofpreviousexperiments,NaOHconcentrationsof1%,6%,and11%wereassumed,andfor enzymatichydrolysistime8,16,and24handthecontentofViscozymeLinamixtureof0.9,0.95,and 1wereselected. Box-Behnkendesignestimationallowedthedeterminationoftheresponsesurface basedonthequadraticequation. Astheinitialparameterrepresentingtheefficiencyoftheprocess,the massoftheobtainedglucosewasselected(glucoseyield,G ). Table5showstheobtainedvaluesofthe y glucoseandthesumofreducingsugars. Table5.Box-Behnkendesignforalkalinepre-treatmentandenzymatichydrolysisofTriticumsp. No. CNaOH(%) ViscozymeL Time(h) Gy(mg/gbiomass) SumofSugars(mg/gbiomass) 1 1 0.90 16 234.7 278.8 2 11 0.90 16 250.1 292.8 3 1 1.00 16 186.2 245.3 4 11 1.00 16 207.6 289.4 5 1 0.95 8 143.9 184.0 6 11 0.95 8 189.4 249.7 7 1 0.95 24 219.8 268.5 8 11 0.95 24 159.7 195.4 9 6 0.90 8 208.4 289.0 10 6 1.00 8 163.1 204.2 11 6 0.90 24 234.8 275.9 12 6 1.00 24 218.3 257.2 13 6 0.95 16 231.5 302.0 14 6 0.95 16 235.6 296.8 15 6 0.95 16 227.4 281.4 Theinfluenceoftheinputparameters,i.e.,theNaOHconcentration,theViscozymeLcontent,and thedurationtimeoftheenzymatichydrolysisprocesshavebeenexaminedconsideringtheglucose yieldasthemodeloutput. Theequationdescribingtherelationshipsoccurringduringthetwo-stage hydrolysiswasdeterminedbymultipleregression. Theobtainedregressionequationdescribingthe surfaceresponsetakestheform: Y[%]=700.18−20.89X −763.82X −0,82X 2 −0.52X 2 −0.66X ·X +23.86X ·X (2) 1 4 1 5 1 5 4 5 Energies 2018,11,639 10of24 EneIrgnieEs 2q0u18a, t1i1o, nx F(O2)R XPE1E,RX R4,EaVnIEdWX 5representsodiumhydroxideconcentration,ViscozymeL10c oofn 2t5e nt, andthetimeofenzymatichydrolysis,respectively. Ydenotesaglucoseyield. Equation(2)enables thethcea clcaulclualtaiotinono foft htheet htheeoorreetticicaall gglluuccoossee yyiieelldd wwiitthhiinn tthhee rraanngge eoof fvvarairaibalbelse ascaccocrodrindgin tgo tboobuonudanrdya ry cocnodnidtiiotinosn.s. InIn oorrddeerr ttoo oobbttaaiinn EEqquuaattiioonn ((22)),, tthhee lleeaasst tssigignnifiificacnatn tpapraarmameteertse rwsewree rreejreecjteecdt eidn itnhet he consecutive iterative steps. It turned out that the least important parameters are: NaOH consecutiveiterativesteps. Itturnedoutthattheleastimportantparametersare: NaOHconcentration, concentration, duration of enzymatic hydrolysis, and the ratio of enzymes raised to the square. durationofenzymatichydrolysis,andtheratioofenzymesraisedtothesquare.Equation2isdescribed Equation 2 is described by the model parameters contained in Table 6. Based on the analysis of bythemodelparameterscontainedinTable6. Basedontheanalysisofvariance,theobtainedvalueof variance, the obtained value of the determination coefficient (R2 = 0.934) indicates a good correlation thedeterminationcoefficient(R2=0.934)indicatesagoodcorrelationoftheresultscalculatedfromthe of the results calculated from the equation with the experimental results of glucose efficiency equationwiththeexperimentalresultsofglucoseefficiency(Figure6). (Figure 6). TaTbalebl6e. 6M. Modoedlelp apraarmameeteterrss ffoorr tthhee BBooxx--BBeehhnnkkeenn ddeessiiggnn ffoor raalklkaalilnine epprer-etr-teraetamtmenet natnadn edneznymzyamtica tic hyhdyrdorlyolsyissios foTf rTitriictuicmums psp.. Parameter Value Std. Error t-Value p-Value Parameter Value Std.Error t-Value p-Value Intercept 700.177 75.480 9.276 1.48 × 10−5 IntercepXt1 70200.1.87877 753..448630 69.0.23716 0.010.04381×2 10−5 X1 X4 2−07.6838.7822 38.84.67737 −86..600341 2.58 ×0 .1000−05 312 X4 X12 −7−603..881292 880..727207 −−38.7.6250 4 0.020.55883×0 10−5 X 2 −0.819 0.220 −3.725 0.005830 1 X52 −0.523 0.084 −6.233 0.000250 X 2 −0.523 0.084 −6.233 0.000250 5 X1·X5 −0.656 0.132 −4.964 0.001102 X ·X −0.656 0.132 −4.964 0.001102 X14·XX554·X5 232.38.68464 22.9.97755 88.0.02222 4.2841.2 ×8 110×−5 10−5 270 250 230 Experimental R2= 0,934 210 G , mg/mL y 190 170 150 150 200 250 300 Model-predicted G , mg/mL y Figure6.Analysisofvarianceforthetheoretical(model-predicted)andexperimentalglucoseyieldfor Figure 6. Analysis of variance for the theoretical (model-predicted) and experimental glucose yield alkalinepre-treatmentandenzymatichydrolysis. for alkaline pre-treatment and enzymatic hydrolysis. Theanalysisofreactionmixturesamplesshowsthatthemainproductoflignocellulosicbiomass The analysis of reaction mixture samples shows that the main product of lignocellulosic hybdioromlyassiss hisydmroaliynsliys gislu mcoasien.lyT agbluleco5sep. rTesaebnlet s5t hpereysieenldts otfheth iysiemldo noof stuhgisa rms oinnotshuegharysd rino lythsaet es. Thheyodbrtoalyinseadtesr.e sTuhlet wobastacinoemdp raerseudltw witahs thcoemsupmareodf awllitrhe dtuhec insugmsu ogfa rasl.l Prhedyusiccianlgs tsuudgiaerss.h Pavheyssihcaolw n lowstucodnietse nhtaovfec sehlloowbino lsoewin choyndternotl yosfa cteelsl,otbhieorseef oinre h,yitdwroalsycsrautecsia, lthtoeruesfeoraes, mit awllaasd cdruitcioianl otof βus-ge lau csomsaidlla se inaadmdiitxitounr eowf βit-hglVuicsocsoizdyamsee inL .aC mellioxtbuiores ewisitahn Vinishciobziytomreo fLc. eClleullloolbyitoicsee nisz yanm ienshainbditoitrs opfr ecesellnucloellyotwic ers theenezfyfimcieesn cayndof ietns zpyrmesaetnicceh yldowroelryss isth.eF iegfufirceie7ncpyr eosfe netnszeyxmematipcl ahryydcrhoalynsgise.s Finiggulrue co7s epereffsiecnietsn cy forexeenmzypmlarayti cchhayndgreos liyns igsluccoonsdeu ecftfeicdiefnocry1 f6ohr einnztyhmearatinc gheydofrovlayrsiias bcloensdduecstcerdi bfoerd 1i6nhT ianb tlhee5 r.aBnagsee odf on thevasrhiaabpleeso fdethscerirbeesdp oinn sTeasbuler f5a.c eBaitsecda nonb ethseta sthedapteh aotf ftohre trheespcohnasneg seuirnfaNcea Oit Hcanco bnec esntattreadti othna,ta folor cal mathxeim chuamngaer oinu nNdaO9%H icsoonbcesenrtrvaetdio,na, bao vloecaaln mdabxeilmowumw ahriocuhntdh e9%ob itsa ionbesdergvleudc, oasbeoyviee ladnsda breellooww er. Thwerheifcohr eth,e9 %obNtaainOeHd gcolunccoesnet ryaietilodns iasrec hloowseenr. aTshtehreefoopreti,m 9%al vNaalOueH. Fcoignucreent7raatlisoon sihs ocwhosstehna tast htehree is aloinpetiamrarle lvaatiluone.s hFiigpubree t7w aelesno tshheowyise ltdhaotf tghleurceo isse aa lnindetahr ereralattiioonosfhβip-g bluectwoseiedna stheei nyitehled mofi xgtluurceoswe ith and the ratio of β-glucosidase in the mixture with Viscozyme L during the enzymatic hydrolysis, ViscozymeLduringtheenzymatichydrolysis,whereanincreaseintheratioofβ-glucosidase(orthe where an increase in the ratio of β-glucosidase (or the decrease of Viscozyme L) corresponds with decreaseofViscozymeL)correspondswithanincreaseintheyieldofglucoseafterenzymatichydrolysis. an increase in the yield of glucose after enzymatic hydrolysis. The mentioned changes are small

Description:
composition differentlyand are particularly effective in terms of solubilization of RS hemicellulose more The efficiency of bioethanol production related to the pre-treatment method and used microorganisms For the analysis of the influence of input variables on the result of two-stage hydrolysis,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.