RESEARCHARTICLE Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea Ice from the Lincoln Sea BenjaminA.Lange1,2,3*,ChristineMichel4,JustinF.Beckers3,J.AlecCasey3, HaukeFlores1,2,IdoHatam5,GuillaumeMeisterhans4,AndreaNiemi4,ChristianHaas3,6 1 PolarBiologicalOceanography,Alfred-Wegener-InstitutHelmholtz-ZentrumfürPolar-und Meeresforschung,Bremerhaven,Germany,2 UniversityofHamburg,CentreforNaturalHistory(CeNak), ZoologicalMuseum,BiocenterGrindel,Hamburg,Germany,3 DepartmentofEarthandAtmospheric Sciences,UniversityofAlberta,Edmonton,Alberta,Canada,4 FreshwaterInstitute,FisheriesandOceans Canada,Winnipeg,Manitoba,Canada,5 DepartmentofBiologicalSciences,UniversityofAlberta, Edmonton,Alberta,Canada,6 DepartmentofEarthandSpaceSciencesandEngineering,YorkUniversity, Toronto,Ontario,Canada * [email protected] OPENACCESS Abstract Citation:LangeBA,MichelC,BeckersJF,CaseyJA, FloresH,HatamI,etal.(2015)Comparing Withnear-completereplacementofArcticmulti-yearice(MYI)byfirst-yearice(FYI)pre- SpringtimeIce-AlgalChlorophyllaandPhysical dictedtooccurwithinthiscentury,itremainsuncertainhowthelossofMYIwillimpactthe PropertiesofMulti-YearandFirst-YearSeaIcefrom theLincolnSea.PLoSONE10(4):e0122418. abundanceanddistributionofseaiceassociatedalgae.Inthisstudywecomparethe doi:10.1371/journal.pone.0122418 chlorophylla(chla)concentrationsandphysicalpropertiesofMYIandFYIfromtheLin- AcademicEditor:ConnieLovejoy,LavalUniversity, colnSeaduring3springseasons(2010-2012).Coreswereanalysedfortexture,salinity, CANADA andchla.Weidentifiedannualgrowthlayersfor7of11MYIcoresandfoundnosignifi- Received:November14,2014 cantdifferencesinchlaconcentrationbetweenthebottomfirst-year-iceportionsofMYI, upperold-iceportionsofMYI,andFYIcores.Overall,themaximumchlaconcentrations Accepted:February20,2015 wereobservedatthebottomofyoungFYI.However,therewerenosignificantdifferences Published:April22,2015 inchlaconcentrationsbetweenMYIandFYI.Thissuggestslittleornochangeinalgal Copyright:©2015Langeetal.Thisisanopen biomasswithashiftfromMYItoFYIandthatthespatialextentandregionalvariability accessarticledistributedunderthetermsofthe ofrefrozenleadsandyoungerFYIwilllikelybekeyfactorsgoverningfuturechangesin CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany Arcticseaicealgalbiomass.Bottom-integratedchlaconcentrationsshowednegative medium,providedtheoriginalauthorandsourceare logisticrelationshipswithsnowdepthandbulk(snowplusice)integratedextinctionco- credited. efficients;indicatingastronginfluenceofsnowcoverincontrollingbottomicealgalbio- DataAvailabilityStatement:Theauthorsconfirm mass.ThemaximumbottomMYIchlaconcentrationwasobservedinahummock, thatalldataunderlyingthefindingsarefullyavailable representingthethickesticewithlowestsnowdepthofthisstudy.Hence,inthisand withoutrestriction.Alldataareavailableinthepublic otherstudiesMYIchlabiomassmaybeunder-estimatedduetoanunder-representation repositoryPANGAEA.http://doi.pangaea.de/10.1594/ PANGAEA.842377. ofthickMYI(e.g.,hummocks),whichtypicallyhavearelativelythinsnowpackallowing forincreasedlighttransmission.Therefore,wesuggesttheon-goinglossofMYIinthe Funding:ThisstudywassupportedbytheAlberta IngenuityScholarshipprogram(RN:200700172)to ArcticOceanmayhavealargerimpactonice–associatedproductionthangenerally CH,NSERCDiscoveryGrantstoCH(356589-08) assumed. andCM(http://www.nserc-crsng.gc.ca/index_eng. asp),andtheCanadianFederalProgrammeon EnergyResearchandDevelopmenttoCM(http:// www.nrcan.gc.ca/energy/funding/current-funding- PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 1/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties programs/perd/4993).Somein-kindsupportwas Introduction providedbythePolarContinentalShelfProject Arcticfirst-yearseaice(FYI),fromlowerlatitudeandshelfregions,isgenerallymoreproductive (PCSP;http://www.nrcan.gc.ca/the-north/polar- continental-shelf-program).BAL,JB,JAC,andIH thanmulti-yearice(MYI),whichleadstotheassumptionthatareplacementofMYIbyFYIwill weresupportedbytheNorthernScientificTraining resultinanoverallincreaseofseaicealgalbiomass.Arcticseaicehasalreadyundergoneadra- Program(NSTP)andCircumpolar-BorealArctic maticreductionofMYIwithpronouncedlossesoftheoldestandthickestMYI[1–3].InSeptem- Research(C-BAR)program.Additionalfundingwas ber2012,anewrecordArcticseaiceextentminimumwasset,farexceedingthepreviousrecord providedtoHFandBALaspartoftheHelmholtz minimumof2007,whichwasitselfaremarkabledeclinefrompreviousyears[4,5].Thedecline YoungInvestigatorsGroup"Iceflux"(VH-NG-800). Thefundershadnoroleinstudydesign,data ofsummerseaicehasoccurredconcurrentlywithanincreaseindurationofthemeltseasonand collectionandanalysis,decisiontopublish,or changesinthetimingofmeltonsetandfreeze-up[5–8].Thesefindingsinconjunctionwithcli- preparationofthemanuscript. mate-modelsimulations[9–12]demonstratethatcontinuedArcticwarminganddecliningArc- CompetingInterests:Theauthorshavedeclared ticseaice,withthereplacementofMYIbyFYI,islikelytocontinueunabatedintothefuture, thatnocompetinginterestsexist. havingprofoundconsequencesforclimatefeed-backs,physicaloceanprocesses,ecosystemlink- ages,andArcticbiodiversity[5,13]. Therapidlossofseaicerepresentsanequallyrapidchangeinhabitatforseaicealgae,pro- tists,andice-associatedfauna.Seaicealgaerepresentanimportantandhighqualityfood source,directlyorindirectly,formanykeyorganismsfoundinpolarregions(e.g.copepods, amphipods,seabirds,polarcod,seals,polarbears;[14–17]).IntheArctic,thetimingofice algalgrowthisimportantforthereproductionandgrowthofkeygrazingzooplanktonspecies, suchascopepods[18,19].Icealgaeprovidefoodforpelagicgrazersormaysinkatthetimeof icemelttothebenthoswheretheyareconsumedbybenthiccommunitiesorsequesteredinto thesediments(e.g.,[20]).Therefore,changesinicealgalbiomassanddistributionareexpected tostronglyimpactArcticfoodwebsandtheArcticcarboncycle,whichcanhavecascadingim- pactsonglobal-scaleecologicalinteractionsandtheglobalcarbonbudget. Seaicedecline,thinningofArcticseaice,andthelossofMYIhaveresultedinreducedArctic- wideseaicealbedo[21]andmorelightreachingtheunder-iceenvironmentinsummer[22]. Suchconditionshavebeensuggestedtobeconducivetothedevelopmentofundericephyto- planktonblooms,whichmaybecomemoreprominentinthefuture[23].Reductionsinseaice thicknessandextenthavealsobeenlinkedtoincreasesinprimaryproductionincoastalshelfre- gions[24,25].However,currentandfutureestimatesforprimaryproduction,includingicealgal andphytoplanktongrowth,inthecentralArcticOceanremainuncertain.Evenwithincreased lightavailability,primaryproductionmaybelimitedbynutrientsupply,resultinginpartfrom increasedsurfacewaterstratification[26]. Thedevelopmentofseaicealgalcommunitiesisinfluencedbyseaicemicrostructure(e.g.,sa- linityandtemperaturewhichinfluencepermeability),nutrientsupply,andtransmittedirradi- ance(seerecentreviewin[27]).Duringspring,themaininfluencesonunder-iceirradianceare thesnowdepthdistribution,withsnowextinctioncoefficientsbetween4to80m-1[28–31],and icethickness,toalesserextent,withextinctioncoefficientsbetween0.8to1.55m-1[28,32–34]. Initialgrowthofseaicealgae,duringearlyspring,isprimarilycontrolledbythesnowdistribu- tion,whichistypicallyevidentbyanegativerelationshipbetweenchlorophylla(chla)andsnow depth(e.g.,[35,36]).Duringtheprogressionofmelt,lighttransmissionincreasesduetochanges intheopticalpropertiesofsnowandice[34,37].Consequently,icealgalgrowthincreasesand shiftstoamorenutrient-limitedsystem,whichcanbeaccompaniedbyacombinationofother limitingfactorssuchas:self-shading,diurnallightpatterns,oriceablation[38–40].Insomein- stanceswhenlighttransmissionincreasesfasterthanalgalcommunitiescanadapt,theincreased lightfieldcanreduceactivityandbiomassofalgalcommunitiesduetophoto-inhibition[41,42]. Icealgalgrowthandthebloomperiodareterminatedduringadvancedandrapidmelt[40]. Manystudieshavecharacterizedtherelationshipbetweensnowdepth,transmittedirradi- ance,andchlaforFYI(e.g.,[35,36]),however,littleisknownabouttheserelationshipsfor PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 2/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Table1. SummaryofrelevantstudiesonArcticMYIchlorophyllabiomass. Region Season Year(s) Study Beaufort-ChukchiSeas Year-round 1997–1998 Melnikovetal.(2002)[77]* FramStrait Winter 1993 Thomasetal.(1995)[76] FramStrait Winter-Spring&Summer 2002&2003 SchünemannandWerner(2005)[49]* GreenlandSea&FramStrait Spring-Summer 1997 WernerandGradinger(2002)[79]* BeringSea Spring <1974 McRoyandGoering(1974)[78] CentralArcticOcean Summer 1991&1994 Gradinger(1999)[81];Gosselinetal.(1997)[92] Beaufort-ChukchiSeas Summer 2002&20032005 Gradingeretal.(2005)[51]Gradingeretal.(2010)[50] GreenlandSea Summer 1994&1995 Gradingeretal.(1999)[95];WernerandZhang(2002)[79]* BarentsSea Summer 1993 GradingerandZhang(1997)[96] *studiesconductedduringmultipleseasons. doi:10.1371/journal.pone.0122418.t001 MYI.Ingeneral,thelargemajorityofstudiesdealingwithicealgaeorchlabiomassfocuson landfastFYI(e.g.,[43–47],seealsosummaryin[48]).Theselimitationsstemfromthelogistical constraintsofsamplingwithintheArcticOcean,particularlywithinregionsdominatedbyMYI. AsummaryofstudiesconcerningArcticMYIchlabiomass(Table1)revealstheneedfor morerecentobservationswithinMYI-dominatedregionsduringtheonsetofalgalgrowth (e.g.,ApriltoMay).TheavailableMYIstudiesareallcurrentlyovernineyearsoldwiththema- joritycoveringthesummerseason(Table1).Thefourstudiesconductedduringthewinter- springtransitionwereconductedwithintheBeringSea,GreenlandSea,FramStraitandBeau- fortSea(Table1)leavingalargeportionoftheMYIcoveredArcticwithnoobservationsdur- ingthistransitionalperiod.OfalltheseMYIstudies(Table1),nonecharacterizethechla- snowdepthrelationshiporprovideadetailedcomparisonbetweenFYIandMYIchlabiomass forthesameregion,whichcouldprovideinsightintoafutureArcticOceanwithlittleorno MYI.MostoftheMYIstudieslistedinTable1,exceptforthethreemostrecentstudies(e.g., [49–51]),wereconductedinadifferentArcticsystemwhenthemeltseasonwasshorter[7], temperatureswerecolder[52],seaicewasthicker[3],andMYIdominated[1].Thus,itmaybe statedthatourcurrentunderstandingofArcticseaicealgaeandchlabiomassisbasedonob- servationswithlimitedspatialandtemporalcoveragefromregionsthathaveexperiencedpro- nouncedchanges.Asaresult,thereisaneedforadditionalMYIchlorophyllobservationstofill importantspatial,temporalandseasonal(i.e.,springperiod)gaps. Thenorth-easterncoastofCanada,includingtheLincolnSea,representsanimportantre- gionasitishometosomeoftheoldestandthickesticeintheArcticandwilllikelybeoneof thelastremainingrefugesforMYIinthefuture[1,5,53,54].Despitetheimportanceofthisre- gion,weareawareofonlytwoseaicebiogeochemicalstudiesintheLincolnSea,characterizing microbialcommunities[55]anddenitrification[56].TheLincolnSeaisoneofthelastremain- ingplaceswherebaselineobservationsofolder(>3years)MYIbiogeochemicalpropertiesare possibleandacomparisonbetweenMYIandFYIwouldprovidemuchneededinsightintothe futureofArcticmarineecosystems.BasedonthelimitedstudiesofMYIandthespatialbiasof FYIstudies,itisdifficulttoestimatehowArcticseaicealgalbiomasswillchangewithashiftto aFYIdominatedsystem. ThemaingoalofourstudywastodetermineifFYIhas,orhasthepotentialfor,higherchla biomassthanMYIintheLincolnSeaanddiscusstheimplicationsofourresultsinthecontext ofafutureArcticwithlittleornoMYI.Weaddressourscientificquestionfirstbyproviding detailedanalysesofthephysicalpropertiesandchlaconcentrationsofseaice(bothMYIand FYI)inthreeconsecutivespringseasons,fromaregionwherenosimilarstudieshavebeen PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 3/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Fig1.OverviewMapsofthestudyregionandicecoringsites.a)MapoftheArcticOceanwithanoutlineofthestudyregion.b)MapoftheLincolnSea andneighboringregions.Driftingicesites(packice),oceanbathymetry,andanoutlineoflandfasticesitesareindicated.c)Mapoflandfasticecoringsites, immediatelyoffshorefromCFSAlert. doi:10.1371/journal.pone.0122418.g001 reported.Thenweevaluatepotentialdifferencesofice-algalchlaconcentrationsandbiophysi- calseaicepropertiesbetweenicetypes,iceages,andtextureclasses.Lastly,weinvestigatethe relationshipbetweenseaicechlaconcentrationsandenvironmentalproperties,suchassnow depth,seaicestructure,andlightavailability. MaterialsandMethods Studyregion Inordertoconductthisresearchprojectinaccordancewithregulationssetforthbythegoverning agenciesresponsibleforthestudyregion,allrelevantresearchlicensesandpermissionswereac- quiredfromtheNunavutResearchInstitute(Licensenumbers:02–07510R-M;02–10811R-M; 0201212R-M)andNunavutImpactReviewBoard(ScreeningDecisionReport08YN057). TheLincolnSea(Fig1)hasbeencalledthe“LastIceArea”bytheWorldWildlifeFund basedonrecommendationsfromArcticCouncilAssessments,indicatingthattheLincolnSea requiresspecificattentionandresearch[57,58].Moststudiesinthisregionfocusonphysical properties(oftheMYI)andhavedocumentedaslightdeclineinmodalicethicknesssince 2004frombetween4.0and4.5m(pre-2008observations)to3.5m(post-2008observations), whichislikelytheresultoflessoldicealongthenortherncoastofCanada[5,54]. PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 4/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties TheLincolnSeaisadynamicareaduetointeractionwith,andexchangeof,seaicewiththe ArcticOcean.TheLincolnSeaicecoveriscomprisedofimmobilelandfastcoastalseaiceatthe southernedgesandmobilepackiceatitsnorthernextent.Thelandfasticeconsistsprimarilyof consolidatedpackicewithsmalleramountsofFYIformingintheinterstitialspaceduring freeze-up.Thedivisionbetweenlandfasticeandpackiceisnotadistinctlinebutratheratransi- tionalregionthatcanbecharacterizedbyicewithlimitedmobilityduetogeographicbarriers andtheintermittentnatureoficeexporttothesouththroughNaresStrait.SeaiceintheLincoln SeatypicallycomesfromtheCentralArcticOceantransportedbytheBeaufortGyreandTrans- polarDriftcirculationpatterns[59,60].However,theoriginofseaiceintheLincolnSeaisun- certainbecauseiceagesaretypicallybetween2to5years,withadecreasingproportionof>5 yearoldice[1].Thismeansthaticeinthisregioncouldhaveoriginatedfromanywhereinthe ArcticOcean. Sampling SamplingwasconductedduringspringinthefirsttwoweeksofMay2010,2011and2012in theLincolnSea.OnesitewaslocatednorthoftheLincolnSea(Fig1).Seaicecoresweretaken atatotalof18sites:11MYIsites(4in2010,4in2011and3in2012),and7FYIsites(1in 2010,2in2011and4in2012),includinglandfasticeandmobilepackice(Fig1).Landfastice siteswerevisitedbysnowmobile,andpackicesiteswerevisitedbyhelicopterorTwin Otteraircrafts. Duringthistimeofyear,whentemperaturesaretypicallybelow-10°Candthelowsalinity MYIisveryhard,coringthickerthan~3.5mbecomesexponentiallymoredifficult.Wethere- forechoserelativelylevelsitesthatweknewwerebelow~3.5mbasedonpre-drilled2inch augerthicknessholes. Ateachsitethreeicecoreswereextractedwithin1mofeachotherusinga9cminnerdiam- etericecorer(KovacsEnterpriseMarkII)andstoredinsterileU-Linebags.Onecorewassam- pledfortextureandbulksalinity(“Texturecore”),onecoreforchlorophylla(“chlacore”)and onetotwocoresformicrobialgenetics(geneticmethodology/protocolandresultsfromone MYIsite“1–11”presentedelsewhere,see[55]).Duetosmalldiscrepanciesbetweencore lengthsatthesamesite,texturecorelengthswereadjustedtocorrespondtothechlacore lengthbylinearlyinterpolatingeachdepthvalue(e.g.textureclass,bulksalinity,temperature andbrinevolume)ofthetexturecoresproportionally.Allcoresweretransportedfromthe fieldbacktotheCanadianForcesStation(CFS)Alert,Nunavut,Canada(82.5°N,62.5°W)and storedat-15to-20°Cinthedark. On-sitemeasurements Ateachcorelocation,snowdepth(hereafterreferredtoascore-location-snow-depth),free- boardandcorelengthweremeasured.Thesemeasurementsrepresentthelocalconditions(i.e., onesinglepoint)atsamplinglocations,whichshouldnotbeconfusedwiththelarger-scale snowdepthandicethicknesssurveymeasurements.Internalicetemperaturesweremeasured ontexturecoresbydrillingholesandinsertingathermometer(Testo720)immediatelyafter coreextraction.Temperaturesweremeasuredfromsurfacetobottomatintervalsof0.1m (cores:1–10,3–10and4–10)and0.5m(core5–10).In2012,onlyicesurfacetemperature (depth0.1m)wasmeasured.Forthesecorestheinternalicetemperatureswerelinearlyinterpo- latedbetweenthesurfaceandassumed(theoretical)bottomtemperatureof-1.78°Cwithtypical surfacewatersalinitiesintheLincolnSeaof~32[61].Duringthestudyperioddailytemperature variationwithintheicewasminimalandbasedonthemeasuredtemperatureprofilesalinear relationshipwithicedepthdemonstratedagoodfit(R2=0.94).Brinevolumeestimateswere PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 5/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Table2. Descriptionofeachseaicetextureclass. IceClass Description Snow-Ice Lookslikegranularbutisclearinun-polarizedimages.Formsduringfloodingorwith presenceliquidwaterandsnownearfreezingandformssmallgranularcrystalsduring rapidfreezing. MeltPond Freshwater,clearinappearance,atorverynearthesurfaceoftheice.Sometimes overlaidbysnow-ice. Retextured Clearicewithunusualcrystalsorverylargecrystals,formsnearsurfacebelowwater level Deteriorated Transformedcolumnarormixedicewithlargebrineorairpockets,nearthesurface usuallyabovewaterlevel. Granular Consolidationoffraziliceusuallynearthesurface(typicallywithmixedlayerunderneath). ThiscanoccurwithinMYIandisevidenceofsuper-cooling,turbulentwaterand/or presenceofadjacentre-freezingleadwhichcreatesconditionsforrapidfreezingand formationoffrazilice. Mixedcol./ Mixtureofcongelationandgranularice.Thisclassalsoincludesintermediate gran. congelation/granularicebecausetheyaredifficulttodistinguish. Columnar Elongatedcrystals doi:10.1371/journal.pone.0122418.t002 calculatedforcoreswithtemperaturemeasurementsusingequationsin[62].Brinevolumeval- uesarereportedinpartsperthousand(ppt). Snowdepthandicethicknesssurveyswereconductedalongtransectsadjacenttoeachcoring site.Thesemeasurementsrepresentthelarger-scalecharacteristicsofthesampledicefloes,which shouldnotbeconfusedwiththepointmeasurements:core-location-snow-depthandcorelength. Snowdepthwasmeasuredusingametalprobeat1or10mintervalsandicethicknesswasmea- suredin2inchaugersholesdrilledintheiceat10mintervals.Thelengthofeachtransectand numberofmeasurementsweredependentonicetypeandtimeconstraints(range=0to400m, mean=100m).Snowdensitymeasurementswerecalculatedfor5snowsamplescollected,atsite 2–10,usinganAdirondacksnowsampler.Additionaldensityvaluesfromthesamestudyregion wereacquiredduringtheCryoSatValidationExperiment(CryoVEx:11to18April,2011[63]). AirtemperaturedatawereprovidedbytheEnvironmentCanadaweatherstationlocated onshoreatCFSAlert,Nunavut.Meandailyairtemperaturesduringthestudywereonaver- age-12.5°C(2010to2012combined),witharangebetween-20.3to-7.4°C,andamaximum temperatureof-3.1°C.Downwellingtotalsolarirradiancemeasurementsrepresentativeofthe samplingareawerealsomeasuredatthenearbyCFSAlertweatherstation.Meanandrange ofvalueswerecalculatedfortheperiodMay1–11,2010to2012(mean=984,range=213 to2313μmolphotonsm-2s-1;dataacquiredfromNOAA/ESRL/GMD/GRAD,the GMD-RadiationGroup,ftp://aftp.cmdl.noaa.gov/data/radiation/baseline/alt/). Texturecores Textureanalysiswasconductedat~-15°C.Texturecoreswerecutinto0.10to0.15mvertical sectionsthatwerefurthercutintoverticalthicksections~<5mmthin,usinganelectricband saw.Foreachsection,theiceremainingaftercuttingwasputintoplasticcontainers,melted andanalyzedforbulksalinityusingasalinometer(WTW3300i).Bulksalinitiesarereportedin partsperthousand(ppt).Thicksectionswereimagedundercrossedpolarizers.Analysisofthe imagesprovidedastratigraphicdescriptionofeachicecorebyidentifyingdifferenticetexture classesandtheboundariesbetweenclasses.Herewedividedicetypesinto7textureclasses basedongrainstructureandappearance,followingclassificationsystemsoutlinedin[64–67] (Table2andFig2).Foreachsectionofthechlacores,thedominanttextureclass(i.e.the PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 6/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Fig2.Crosspolarizedimageryoficecorethinsectionsshowingdifferenticetypes.a)core7–12;b) core7–12;c)core2–10;d)core3–11;e)core1–12;andf)core7–12. doi:10.1371/journal.pone.0122418.g002 PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 7/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties textureclasswiththehighestarealcoverage)fromthecorrespondingtexturecorewasassigned. Forsurfacepiecestheuppermosttextureclasswasalwaysassignedtothesectionbecausedete- rioratediceandsnow-icearedistinctlayersandonlylocatedatthesurface. InMYIcores,weidentifiedthepreviousyear’sannuallayerin7coresbyidentifyingpeaks inbulksalinityprofilesthatcorrespondedwithchangesincrystalstructureatthesamedepth, asdescribedin[68,69].Accordingly,MYIcoresweredividedintotwogroups:thesections abovetheannuallayer(olderice)wereclassifiedasmulti-year(MY)andsectionsbelowthean- nuallayer(newice)wereclassifiedasfirst-year(FY).Therefore,inlateranalysesicetypecate- goriescompriseMYIcoresandFYIcores,whereasiceagecategoriescompriseMY(multi-year sectionsofMYIcores),FY(first-yearicesectionsofMYIcores)andFYI(first-yearicecores). MYportionsrepresenticethathassurvivedatleastonesummer.TheFYportionsrepresent icethathasgrownundertheMYportionsandtypicallybeginstoformduringfreeze-upinSep- tember-October[7].IngeneralFYIandFYrepresenticeofsimilarages(e.g.<1year),howev- er,FYIcanrepresenticethatstartedtoformeitherduringfreeze-uporatalaterstageasopen waterleadsformandrefreeze.FYalsogrowsslowerthanFYIduetoincreasedthermalinsula- tionofthethickerice(MY)andsnowlayeraboveit. Chlorophyllacores Inordertominimizeanypotentialinfluencesonthechlameasurements,thesecoreswereal- waysstoredbelow-15°Cinthedark,foramaximumofninedays.Thecoreswerethen shipped,viaairatamaximumtemperatureof-10°Cinthedark,toResoluteBay,Nunavut, wheretheywerestoredbelow-20°Cinthedarkfor1to2days.Coreswerecutusinganelectric bandsaw(sterilizedwith95%ethanol)ina-20°Cwalk-infreezer.Coreswerecutinto10cm sectionsexceptforendpieces(range:0.09to0.17m),placedinsterileWhirl-Pack(NASCO) bagsandmeltedinthedark.Endpiecesfor2010and2012samplesrefertotheice-airinterface. The2011coreswerecutintheoppositedirection,thereforetheseendpiecesrefertotheice- waterinterface.Coresectionsweremeltedwithouttheadditionoffilteredseawater(FSW)be- causewewerealsomeasuringdissolvedconstituents(i.e.DOC,nutrients;datanotpresented here)inthecoresections.Ithasbeenshownthatforcommonbiologicalanalyses(e.g.,chloro- phyllaconcentrations)meltingwithouttheadditionofFSWisanacceptableprocedure[70]. Chlaconcentrationsweredeterminedonsub-samplesfilteredontoWhatmanGF/Ffilters, after24hextractionin90%acetoneat4°Cinthedark,usinga10AUTunerDesignfluorome- tercalibratedwithpurechlorophyllextractfromAnacystisnidulans(Sigma;[71]).Chlacon- centrationsweredeterminedusingequationsfrom[71]andcorrespondinginstrument calibrationcoefficients.Chlaconcentrationsareexpressedvolumetrically(mgm-3)orarever- ticallyintegrated(mgm-2)forthebottom0.2mcoresections(hereafterreferredtoasbottom- integrated),ageclasscoresections,ortotalcorelength. Statisticalanalyses Initialdataexplorationdemonstratedthatthedistributionsofchladatawerehighlyskewed.To achievethenormaldistributionpatternsrequiredforparametricstatisticalanalyses,log-trans- formationswereappliedtothechladata.Two-samplet-testswereconductedtodeterminethe effectoficetype(MYI&FYI)onthechlaconcentrationsoftheseaice.Varianceanalyses (ANOVAs)wereconductedinordertodeterminetheeffectoficeageclass(MY,FY&FYI); yearandtextureclassonthechlaconcentrationsoftheice.Post-hoctests(Tukey’sHSD)were conductedwhenbothparametricANOVA(transformeddata)andnon-parametricKruskal- Wallis(non-transformeddata)analysesshowedsignificantdifferences. PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 8/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Toinvestigatethepotentialinfluenceofsnowdepthandseaiceopticalpropertieson bottom-integratedchlaconcentrationsalogisticregressionmodelwasapplied.Alogisticre- gressionwasusedinordertoidentifypotentialcriticalvalues(inflectionpoint)oftheindepen- dentvariables(e.g.,snowdepthandbulkintegratedextinctioncoefficients)thatcouldindicate athresholdvalueforoptimalalgalgrowth.Logisticregressionanalysisrequiredvaluesofthe dependentvariableintherange0to1.Therefore,bottom-integratedchlavalueswerenormal- izedtotherange0to1bydividingeachchlavalue(y)bythemaximumvalueforallcores i (y ).Therelationshipbetweenbottom-integratedchlaconcentrationsandbulkintegrated max extinctioncoefficients,forvisibleradiation,wasanalyzedinasimilarmanner.Forallcalcula- tionsweusedextinctioncoefficientsforsnow:k =20.0m-1[28];MYI:k =1.55m-1;andFYI: s m k =1.45m-1[32].Thevalueofk,usedhere,waschosenfromatableofk values[28]basedon f s s acorrespondingsnowdensitycomparabletomeasuredvaluesforourstudyregionbetween 260to281kgm-3(seesectionPhysicalproperties).Thevaluesofk,k ,andk wereintegrated s m f overthedepthofthecorrespondingiceandsnowlayersforeachcoresiteresultingin“integrat- edextinctioncoefficients”(dimensionless),i.e.,avalueforeachsnowandicelayerateachsite. The“bulk(snowplusice)integratedextinctioncoefficient”issimplythesumoftheintegrated extinctioncoefficientsforsnowandice(alsodimensionless),i.e.,onevalueforeachcoresite. Intheresultingbulkintegratedextinctioncoefficients,largervaluesmeanshallowerpenetra- tionoflight. Resultsarereportedasarithmeticmean±onestandarddeviation(μ^±1σ). AllstatisticalanalyseswereconductedwiththeRsoftwarepackagev-2.15.2[72]. Results Physicalproperties Basedonsite-averageddrillholethicknessmeasurements,i.e.,characterizingthelargerscale icepropertiesofthesampledfloes,MYIsitesweremorethantwiceasthick(3.28±0.56m)as FYIsites(1.42±0.42m).MeanMYIcorelength(2.62±0.24m),i.e.,onlycharacterizinglocal icepropertiesofcoresamplinglocations,wasalsonearlytwiceasthickasFYI(1.39±0.52m), withhighervariabilityinFYIcorelengths.FYIsitesrepresentedtwodifferentkindsofice:ice thatformedduringthefallwhenthelandfasticeconsolidated(i.e.,olderandthickerFYIwith moresnow);andicethatformedlaterinmobileicewhenopenleadsformedandthenrefroze (i.e.,youngerandthinnericewithtypicallylesssnow). Site-averagedsnowdepthatMYIsites(0.39±0.10m),ingeneral,wasthickerthanatFYI sites(0.26±0.15m).AlthoughMYIhadlowervariabilitybetweensite-averagedsnowdepth values,FYIhadlowervariabilitywhenconsideringeachsiteindividually.Thiswasillustrated bythemeanofsitestandarddeviationsforFYIsnowdepth:0.08m,comparedtoMYI:0.17m. Meansnowdensityatsite2–10(Fig1)was260±0.03kgm-3(n=5)andduringCryoVex2011 was281±0.7kgm-3(n=11[63]). Therewasnosignificantinter-annualdifferenceinthemeanphysicalproperties(e.g.snow depthandicethickness)ofFYIorMYI(ANOVA,p>0.05).ForFYI,thereweresignificantpos- itiverelationshipsbetweencore-location-snow-depthandicecorelength(R2=0.56,p=0.05, n=7),andbetweensnowdepthandmeanicethicknesssurveymeasurements(R2=0.66, p<0.05,n=7).ForMYI,therewasaninverserelationshipbetweensnowdepthandicecore length(R2=0.51,p=0.01,n=11),andnosignificantrelationshipbetweensnowdepthand meanicethicknesssurveymeasurements(R2=0.12,p=0.3,n=11). TwoFYIcoreswereexceptional(3–10and6–12;Table3),exhibitingconsiderablylowerice thickness,snowdepthandcorelengththantheotherFYIcoresanalyzedinthisstudy.These2 sitesweredeterminedtoberefrozenleadsthatcorrespondtoyoungerFYIthatformedlaterin PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 9/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties 0 58 7 14 6 6 det - - - 0.1 0.000. - -- - 0.1 - 0.101. - - - -- - 0.0 -00. ulk b 6 6 9 6 8 2 75 = ar, TextureClassLengths xgranretexmps-i 030.02--- 40--0.16- 190.27-0.220.1 000.72--- 072.27---66109-01901... 061.32--- 110.01---08066---. 24-0.180.390.0 520.81--- -1.010.260.0 13----3008105903300.... 070.28--- 040.05--- 34--- 050.01---13011---. 81--0.040.0 19---- 29-0.300.110.043-03000700... core-location-snow-depth,sal meanfreeboard,col=column m 0. 1. 0. 1. 0.0. 0. 0.0. 0. 0. - 0.0. 0. 0. 0. 0.0. 0. 0. 0.0. = = w b o f col 0.88 0.67 1.94 0.73 0.71101. 0.23 1.40082. 1.51 1.45 1.20 2.35163. 1.42 1.25 1.42 0.77121. 1.79 2.31 1.69931. h,sn mber, gt u s 1 1 0 14 n n vey N 10 6 42 1 4123 1 53 10 12 9 1010 10 21 1 4141 40 14 2225 ele ple owDepthSur σd 80.045 70.1100 30.2200 0-0 20.2200602125. 8-0 1-400-20 60.2100 20.2100 90.2100 50.2100602100. 80.1100 30.120 7-0 70.04090140. 90.2400 00.1140 00.2200602247. etry,core=cor ance,N=sam Sn μ^ 0.0 0.3 0.3 0.5 0.203. 0.3 0.203. 0.3 0.5 0.3 0.504. 0.2 0.3 0.4 0.002. 0.3 0.3 0.403. ym dist 07 13 23 09 3219 04 0706 29 17 33 1724 11 05 06 0005 24 29 2024 bath d= IceThicknessSurveys μ^σdNfb 0.93-2540. 3.070.910060. 3.490.420090. 2.45-010. 3.100.720090.3030712560... 1.67-030. 1.310.24050.149022040... 3.851.1100100. 2.800.6100120. 4.481.410090. 3.020.8100100.35410100100... 2.00-10040. 1.510.12020. 1.68-010. 0.830.14030.151014030... 3.690.9400110. 3.231.312070. 2.900.5200100.3270924090... ude,lon=longitude,bath.=σ=onestandarddeviation, w-ice,det=deteriorated. hcoreandcoresite. CoreLocation CoreSnowSalBV 0.930.096.1189.4 2.230.423.188.1 2.800.323.4- 2.540.502.0133.0 3.110.052.173.326703226982.... 1.600.384.5- 1.520.175.5-15602850-... 2.410.553.5- 2.960.322.1- 2.530.323.9- 2.590.302.4-26203730-... 1.770.204.490.4 1.340.333.7- 1.770.473.187.7 0.830.045.9141.4143026431065.... 2.670.473.3116.5 2.570.312.0115.9 2.460.603.6184.0256046301388.... ationsandsymbols:lat=latitμ^me(ppt),=arithmeticmean, ed,mp=melt-pond,s-i=sno foreac bath. 257 91 95 199 90119 189 242215 100 199 159 260180 57 99 2156 125609 86 125 99103 Abbrevi nevolu retextur data n 2.0 2.6 2.3 2.0 2.6 2.3 2.2 2.4 2.0 2.2 6.0 2.7 2.4 8.1 8.6 2.7 8.6 2.4 (m). dbri ex= Table3.Summaryofphysical SiteOverview YearTypeidlatlo –2010FYI31082.6-6–2010MYI11082.5-6–MYI21082.8-6–MYI41082.6-6–MYI51082.5-6μ^--- –2011FYI21182.6-6–FYI41182.6-6μ^--- –2011MYI11182.5-6–MYI31182.6-6–MYI51182.6-6–MYI61183.5-6^---μ –2012FYI21282.5-6–FYI31282.5-6–FYI41286.1-7–FYI61282.9-5μ^--- –2012MYI11282.5-6–MYI51282.9-5–MYI71282.5-6μ^--- Allmeasurementsareinmeters salinity(ppt),BV=coreaverage mx=mixed,gran=granular,ret“”-=Notavailable. doi:10.1371/journal.pone.0122418.t003 PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 10/26
Description: