ebook img

Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year PDF

26 Pages·2015·1.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year

RESEARCHARTICLE Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea Ice from the Lincoln Sea BenjaminA.Lange1,2,3*,ChristineMichel4,JustinF.Beckers3,J.AlecCasey3, HaukeFlores1,2,IdoHatam5,GuillaumeMeisterhans4,AndreaNiemi4,ChristianHaas3,6 1 PolarBiologicalOceanography,Alfred-Wegener-InstitutHelmholtz-ZentrumfürPolar-und Meeresforschung,Bremerhaven,Germany,2 UniversityofHamburg,CentreforNaturalHistory(CeNak), ZoologicalMuseum,BiocenterGrindel,Hamburg,Germany,3 DepartmentofEarthandAtmospheric Sciences,UniversityofAlberta,Edmonton,Alberta,Canada,4 FreshwaterInstitute,FisheriesandOceans Canada,Winnipeg,Manitoba,Canada,5 DepartmentofBiologicalSciences,UniversityofAlberta, Edmonton,Alberta,Canada,6 DepartmentofEarthandSpaceSciencesandEngineering,YorkUniversity, Toronto,Ontario,Canada * [email protected] OPENACCESS Abstract Citation:LangeBA,MichelC,BeckersJF,CaseyJA, FloresH,HatamI,etal.(2015)Comparing Withnear-completereplacementofArcticmulti-yearice(MYI)byfirst-yearice(FYI)pre- SpringtimeIce-AlgalChlorophyllaandPhysical dictedtooccurwithinthiscentury,itremainsuncertainhowthelossofMYIwillimpactthe PropertiesofMulti-YearandFirst-YearSeaIcefrom theLincolnSea.PLoSONE10(4):e0122418. abundanceanddistributionofseaiceassociatedalgae.Inthisstudywecomparethe doi:10.1371/journal.pone.0122418 chlorophylla(chla)concentrationsandphysicalpropertiesofMYIandFYIfromtheLin- AcademicEditor:ConnieLovejoy,LavalUniversity, colnSeaduring3springseasons(2010-2012).Coreswereanalysedfortexture,salinity, CANADA andchla.Weidentifiedannualgrowthlayersfor7of11MYIcoresandfoundnosignifi- Received:November14,2014 cantdifferencesinchlaconcentrationbetweenthebottomfirst-year-iceportionsofMYI, upperold-iceportionsofMYI,andFYIcores.Overall,themaximumchlaconcentrations Accepted:February20,2015 wereobservedatthebottomofyoungFYI.However,therewerenosignificantdifferences Published:April22,2015 inchlaconcentrationsbetweenMYIandFYI.Thissuggestslittleornochangeinalgal Copyright:©2015Langeetal.Thisisanopen biomasswithashiftfromMYItoFYIandthatthespatialextentandregionalvariability accessarticledistributedunderthetermsofthe ofrefrozenleadsandyoungerFYIwilllikelybekeyfactorsgoverningfuturechangesin CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany Arcticseaicealgalbiomass.Bottom-integratedchlaconcentrationsshowednegative medium,providedtheoriginalauthorandsourceare logisticrelationshipswithsnowdepthandbulk(snowplusice)integratedextinctionco- credited. efficients;indicatingastronginfluenceofsnowcoverincontrollingbottomicealgalbio- DataAvailabilityStatement:Theauthorsconfirm mass.ThemaximumbottomMYIchlaconcentrationwasobservedinahummock, thatalldataunderlyingthefindingsarefullyavailable representingthethickesticewithlowestsnowdepthofthisstudy.Hence,inthisand withoutrestriction.Alldataareavailableinthepublic otherstudiesMYIchlabiomassmaybeunder-estimatedduetoanunder-representation repositoryPANGAEA.http://doi.pangaea.de/10.1594/ PANGAEA.842377. ofthickMYI(e.g.,hummocks),whichtypicallyhavearelativelythinsnowpackallowing forincreasedlighttransmission.Therefore,wesuggesttheon-goinglossofMYIinthe Funding:ThisstudywassupportedbytheAlberta IngenuityScholarshipprogram(RN:200700172)to ArcticOceanmayhavealargerimpactonice–associatedproductionthangenerally CH,NSERCDiscoveryGrantstoCH(356589-08) assumed. andCM(http://www.nserc-crsng.gc.ca/index_eng. asp),andtheCanadianFederalProgrammeon EnergyResearchandDevelopmenttoCM(http:// www.nrcan.gc.ca/energy/funding/current-funding- PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 1/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties programs/perd/4993).Somein-kindsupportwas Introduction providedbythePolarContinentalShelfProject Arcticfirst-yearseaice(FYI),fromlowerlatitudeandshelfregions,isgenerallymoreproductive (PCSP;http://www.nrcan.gc.ca/the-north/polar- continental-shelf-program).BAL,JB,JAC,andIH thanmulti-yearice(MYI),whichleadstotheassumptionthatareplacementofMYIbyFYIwill weresupportedbytheNorthernScientificTraining resultinanoverallincreaseofseaicealgalbiomass.Arcticseaicehasalreadyundergoneadra- Program(NSTP)andCircumpolar-BorealArctic maticreductionofMYIwithpronouncedlossesoftheoldestandthickestMYI[1–3].InSeptem- Research(C-BAR)program.Additionalfundingwas ber2012,anewrecordArcticseaiceextentminimumwasset,farexceedingthepreviousrecord providedtoHFandBALaspartoftheHelmholtz minimumof2007,whichwasitselfaremarkabledeclinefrompreviousyears[4,5].Thedecline YoungInvestigatorsGroup"Iceflux"(VH-NG-800). Thefundershadnoroleinstudydesign,data ofsummerseaicehasoccurredconcurrentlywithanincreaseindurationofthemeltseasonand collectionandanalysis,decisiontopublish,or changesinthetimingofmeltonsetandfreeze-up[5–8].Thesefindingsinconjunctionwithcli- preparationofthemanuscript. mate-modelsimulations[9–12]demonstratethatcontinuedArcticwarminganddecliningArc- CompetingInterests:Theauthorshavedeclared ticseaice,withthereplacementofMYIbyFYI,islikelytocontinueunabatedintothefuture, thatnocompetinginterestsexist. havingprofoundconsequencesforclimatefeed-backs,physicaloceanprocesses,ecosystemlink- ages,andArcticbiodiversity[5,13]. Therapidlossofseaicerepresentsanequallyrapidchangeinhabitatforseaicealgae,pro- tists,andice-associatedfauna.Seaicealgaerepresentanimportantandhighqualityfood source,directlyorindirectly,formanykeyorganismsfoundinpolarregions(e.g.copepods, amphipods,seabirds,polarcod,seals,polarbears;[14–17]).IntheArctic,thetimingofice algalgrowthisimportantforthereproductionandgrowthofkeygrazingzooplanktonspecies, suchascopepods[18,19].Icealgaeprovidefoodforpelagicgrazersormaysinkatthetimeof icemelttothebenthoswheretheyareconsumedbybenthiccommunitiesorsequesteredinto thesediments(e.g.,[20]).Therefore,changesinicealgalbiomassanddistributionareexpected tostronglyimpactArcticfoodwebsandtheArcticcarboncycle,whichcanhavecascadingim- pactsonglobal-scaleecologicalinteractionsandtheglobalcarbonbudget. Seaicedecline,thinningofArcticseaice,andthelossofMYIhaveresultedinreducedArctic- wideseaicealbedo[21]andmorelightreachingtheunder-iceenvironmentinsummer[22]. Suchconditionshavebeensuggestedtobeconducivetothedevelopmentofundericephyto- planktonblooms,whichmaybecomemoreprominentinthefuture[23].Reductionsinseaice thicknessandextenthavealsobeenlinkedtoincreasesinprimaryproductionincoastalshelfre- gions[24,25].However,currentandfutureestimatesforprimaryproduction,includingicealgal andphytoplanktongrowth,inthecentralArcticOceanremainuncertain.Evenwithincreased lightavailability,primaryproductionmaybelimitedbynutrientsupply,resultinginpartfrom increasedsurfacewaterstratification[26]. Thedevelopmentofseaicealgalcommunitiesisinfluencedbyseaicemicrostructure(e.g.,sa- linityandtemperaturewhichinfluencepermeability),nutrientsupply,andtransmittedirradi- ance(seerecentreviewin[27]).Duringspring,themaininfluencesonunder-iceirradianceare thesnowdepthdistribution,withsnowextinctioncoefficientsbetween4to80m-1[28–31],and icethickness,toalesserextent,withextinctioncoefficientsbetween0.8to1.55m-1[28,32–34]. Initialgrowthofseaicealgae,duringearlyspring,isprimarilycontrolledbythesnowdistribu- tion,whichistypicallyevidentbyanegativerelationshipbetweenchlorophylla(chla)andsnow depth(e.g.,[35,36]).Duringtheprogressionofmelt,lighttransmissionincreasesduetochanges intheopticalpropertiesofsnowandice[34,37].Consequently,icealgalgrowthincreasesand shiftstoamorenutrient-limitedsystem,whichcanbeaccompaniedbyacombinationofother limitingfactorssuchas:self-shading,diurnallightpatterns,oriceablation[38–40].Insomein- stanceswhenlighttransmissionincreasesfasterthanalgalcommunitiescanadapt,theincreased lightfieldcanreduceactivityandbiomassofalgalcommunitiesduetophoto-inhibition[41,42]. Icealgalgrowthandthebloomperiodareterminatedduringadvancedandrapidmelt[40]. Manystudieshavecharacterizedtherelationshipbetweensnowdepth,transmittedirradi- ance,andchlaforFYI(e.g.,[35,36]),however,littleisknownabouttheserelationshipsfor PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 2/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Table1. SummaryofrelevantstudiesonArcticMYIchlorophyllabiomass. Region Season Year(s) Study Beaufort-ChukchiSeas Year-round 1997–1998 Melnikovetal.(2002)[77]* FramStrait Winter 1993 Thomasetal.(1995)[76] FramStrait Winter-Spring&Summer 2002&2003 SchünemannandWerner(2005)[49]* GreenlandSea&FramStrait Spring-Summer 1997 WernerandGradinger(2002)[79]* BeringSea Spring <1974 McRoyandGoering(1974)[78] CentralArcticOcean Summer 1991&1994 Gradinger(1999)[81];Gosselinetal.(1997)[92] Beaufort-ChukchiSeas Summer 2002&20032005 Gradingeretal.(2005)[51]Gradingeretal.(2010)[50] GreenlandSea Summer 1994&1995 Gradingeretal.(1999)[95];WernerandZhang(2002)[79]* BarentsSea Summer 1993 GradingerandZhang(1997)[96] *studiesconductedduringmultipleseasons. doi:10.1371/journal.pone.0122418.t001 MYI.Ingeneral,thelargemajorityofstudiesdealingwithicealgaeorchlabiomassfocuson landfastFYI(e.g.,[43–47],seealsosummaryin[48]).Theselimitationsstemfromthelogistical constraintsofsamplingwithintheArcticOcean,particularlywithinregionsdominatedbyMYI. AsummaryofstudiesconcerningArcticMYIchlabiomass(Table1)revealstheneedfor morerecentobservationswithinMYI-dominatedregionsduringtheonsetofalgalgrowth (e.g.,ApriltoMay).TheavailableMYIstudiesareallcurrentlyovernineyearsoldwiththema- joritycoveringthesummerseason(Table1).Thefourstudiesconductedduringthewinter- springtransitionwereconductedwithintheBeringSea,GreenlandSea,FramStraitandBeau- fortSea(Table1)leavingalargeportionoftheMYIcoveredArcticwithnoobservationsdur- ingthistransitionalperiod.OfalltheseMYIstudies(Table1),nonecharacterizethechla- snowdepthrelationshiporprovideadetailedcomparisonbetweenFYIandMYIchlabiomass forthesameregion,whichcouldprovideinsightintoafutureArcticOceanwithlittleorno MYI.MostoftheMYIstudieslistedinTable1,exceptforthethreemostrecentstudies(e.g., [49–51]),wereconductedinadifferentArcticsystemwhenthemeltseasonwasshorter[7], temperatureswerecolder[52],seaicewasthicker[3],andMYIdominated[1].Thus,itmaybe statedthatourcurrentunderstandingofArcticseaicealgaeandchlabiomassisbasedonob- servationswithlimitedspatialandtemporalcoveragefromregionsthathaveexperiencedpro- nouncedchanges.Asaresult,thereisaneedforadditionalMYIchlorophyllobservationstofill importantspatial,temporalandseasonal(i.e.,springperiod)gaps. Thenorth-easterncoastofCanada,includingtheLincolnSea,representsanimportantre- gionasitishometosomeoftheoldestandthickesticeintheArcticandwilllikelybeoneof thelastremainingrefugesforMYIinthefuture[1,5,53,54].Despitetheimportanceofthisre- gion,weareawareofonlytwoseaicebiogeochemicalstudiesintheLincolnSea,characterizing microbialcommunities[55]anddenitrification[56].TheLincolnSeaisoneofthelastremain- ingplaceswherebaselineobservationsofolder(>3years)MYIbiogeochemicalpropertiesare possibleandacomparisonbetweenMYIandFYIwouldprovidemuchneededinsightintothe futureofArcticmarineecosystems.BasedonthelimitedstudiesofMYIandthespatialbiasof FYIstudies,itisdifficulttoestimatehowArcticseaicealgalbiomasswillchangewithashiftto aFYIdominatedsystem. ThemaingoalofourstudywastodetermineifFYIhas,orhasthepotentialfor,higherchla biomassthanMYIintheLincolnSeaanddiscusstheimplicationsofourresultsinthecontext ofafutureArcticwithlittleornoMYI.Weaddressourscientificquestionfirstbyproviding detailedanalysesofthephysicalpropertiesandchlaconcentrationsofseaice(bothMYIand FYI)inthreeconsecutivespringseasons,fromaregionwherenosimilarstudieshavebeen PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 3/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Fig1.OverviewMapsofthestudyregionandicecoringsites.a)MapoftheArcticOceanwithanoutlineofthestudyregion.b)MapoftheLincolnSea andneighboringregions.Driftingicesites(packice),oceanbathymetry,andanoutlineoflandfasticesitesareindicated.c)Mapoflandfasticecoringsites, immediatelyoffshorefromCFSAlert. doi:10.1371/journal.pone.0122418.g001 reported.Thenweevaluatepotentialdifferencesofice-algalchlaconcentrationsandbiophysi- calseaicepropertiesbetweenicetypes,iceages,andtextureclasses.Lastly,weinvestigatethe relationshipbetweenseaicechlaconcentrationsandenvironmentalproperties,suchassnow depth,seaicestructure,andlightavailability. MaterialsandMethods Studyregion Inordertoconductthisresearchprojectinaccordancewithregulationssetforthbythegoverning agenciesresponsibleforthestudyregion,allrelevantresearchlicensesandpermissionswereac- quiredfromtheNunavutResearchInstitute(Licensenumbers:02–07510R-M;02–10811R-M; 0201212R-M)andNunavutImpactReviewBoard(ScreeningDecisionReport08YN057). TheLincolnSea(Fig1)hasbeencalledthe“LastIceArea”bytheWorldWildlifeFund basedonrecommendationsfromArcticCouncilAssessments,indicatingthattheLincolnSea requiresspecificattentionandresearch[57,58].Moststudiesinthisregionfocusonphysical properties(oftheMYI)andhavedocumentedaslightdeclineinmodalicethicknesssince 2004frombetween4.0and4.5m(pre-2008observations)to3.5m(post-2008observations), whichislikelytheresultoflessoldicealongthenortherncoastofCanada[5,54]. PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 4/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties TheLincolnSeaisadynamicareaduetointeractionwith,andexchangeof,seaicewiththe ArcticOcean.TheLincolnSeaicecoveriscomprisedofimmobilelandfastcoastalseaiceatthe southernedgesandmobilepackiceatitsnorthernextent.Thelandfasticeconsistsprimarilyof consolidatedpackicewithsmalleramountsofFYIformingintheinterstitialspaceduring freeze-up.Thedivisionbetweenlandfasticeandpackiceisnotadistinctlinebutratheratransi- tionalregionthatcanbecharacterizedbyicewithlimitedmobilityduetogeographicbarriers andtheintermittentnatureoficeexporttothesouththroughNaresStrait.SeaiceintheLincoln SeatypicallycomesfromtheCentralArcticOceantransportedbytheBeaufortGyreandTrans- polarDriftcirculationpatterns[59,60].However,theoriginofseaiceintheLincolnSeaisun- certainbecauseiceagesaretypicallybetween2to5years,withadecreasingproportionof>5 yearoldice[1].Thismeansthaticeinthisregioncouldhaveoriginatedfromanywhereinthe ArcticOcean. Sampling SamplingwasconductedduringspringinthefirsttwoweeksofMay2010,2011and2012in theLincolnSea.OnesitewaslocatednorthoftheLincolnSea(Fig1).Seaicecoresweretaken atatotalof18sites:11MYIsites(4in2010,4in2011and3in2012),and7FYIsites(1in 2010,2in2011and4in2012),includinglandfasticeandmobilepackice(Fig1).Landfastice siteswerevisitedbysnowmobile,andpackicesiteswerevisitedbyhelicopterorTwin Otteraircrafts. Duringthistimeofyear,whentemperaturesaretypicallybelow-10°Candthelowsalinity MYIisveryhard,coringthickerthan~3.5mbecomesexponentiallymoredifficult.Wethere- forechoserelativelylevelsitesthatweknewwerebelow~3.5mbasedonpre-drilled2inch augerthicknessholes. Ateachsitethreeicecoreswereextractedwithin1mofeachotherusinga9cminnerdiam- etericecorer(KovacsEnterpriseMarkII)andstoredinsterileU-Linebags.Onecorewassam- pledfortextureandbulksalinity(“Texturecore”),onecoreforchlorophylla(“chlacore”)and onetotwocoresformicrobialgenetics(geneticmethodology/protocolandresultsfromone MYIsite“1–11”presentedelsewhere,see[55]).Duetosmalldiscrepanciesbetweencore lengthsatthesamesite,texturecorelengthswereadjustedtocorrespondtothechlacore lengthbylinearlyinterpolatingeachdepthvalue(e.g.textureclass,bulksalinity,temperature andbrinevolume)ofthetexturecoresproportionally.Allcoresweretransportedfromthe fieldbacktotheCanadianForcesStation(CFS)Alert,Nunavut,Canada(82.5°N,62.5°W)and storedat-15to-20°Cinthedark. On-sitemeasurements Ateachcorelocation,snowdepth(hereafterreferredtoascore-location-snow-depth),free- boardandcorelengthweremeasured.Thesemeasurementsrepresentthelocalconditions(i.e., onesinglepoint)atsamplinglocations,whichshouldnotbeconfusedwiththelarger-scale snowdepthandicethicknesssurveymeasurements.Internalicetemperaturesweremeasured ontexturecoresbydrillingholesandinsertingathermometer(Testo720)immediatelyafter coreextraction.Temperaturesweremeasuredfromsurfacetobottomatintervalsof0.1m (cores:1–10,3–10and4–10)and0.5m(core5–10).In2012,onlyicesurfacetemperature (depth0.1m)wasmeasured.Forthesecorestheinternalicetemperatureswerelinearlyinterpo- latedbetweenthesurfaceandassumed(theoretical)bottomtemperatureof-1.78°Cwithtypical surfacewatersalinitiesintheLincolnSeaof~32[61].Duringthestudyperioddailytemperature variationwithintheicewasminimalandbasedonthemeasuredtemperatureprofilesalinear relationshipwithicedepthdemonstratedagoodfit(R2=0.94).Brinevolumeestimateswere PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 5/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Table2. Descriptionofeachseaicetextureclass. IceClass Description Snow-Ice Lookslikegranularbutisclearinun-polarizedimages.Formsduringfloodingorwith presenceliquidwaterandsnownearfreezingandformssmallgranularcrystalsduring rapidfreezing. MeltPond Freshwater,clearinappearance,atorverynearthesurfaceoftheice.Sometimes overlaidbysnow-ice. Retextured Clearicewithunusualcrystalsorverylargecrystals,formsnearsurfacebelowwater level Deteriorated Transformedcolumnarormixedicewithlargebrineorairpockets,nearthesurface usuallyabovewaterlevel. Granular Consolidationoffraziliceusuallynearthesurface(typicallywithmixedlayerunderneath). ThiscanoccurwithinMYIandisevidenceofsuper-cooling,turbulentwaterand/or presenceofadjacentre-freezingleadwhichcreatesconditionsforrapidfreezingand formationoffrazilice. Mixedcol./ Mixtureofcongelationandgranularice.Thisclassalsoincludesintermediate gran. congelation/granularicebecausetheyaredifficulttodistinguish. Columnar Elongatedcrystals doi:10.1371/journal.pone.0122418.t002 calculatedforcoreswithtemperaturemeasurementsusingequationsin[62].Brinevolumeval- uesarereportedinpartsperthousand(ppt). Snowdepthandicethicknesssurveyswereconductedalongtransectsadjacenttoeachcoring site.Thesemeasurementsrepresentthelarger-scalecharacteristicsofthesampledicefloes,which shouldnotbeconfusedwiththepointmeasurements:core-location-snow-depthandcorelength. Snowdepthwasmeasuredusingametalprobeat1or10mintervalsandicethicknesswasmea- suredin2inchaugersholesdrilledintheiceat10mintervals.Thelengthofeachtransectand numberofmeasurementsweredependentonicetypeandtimeconstraints(range=0to400m, mean=100m).Snowdensitymeasurementswerecalculatedfor5snowsamplescollected,atsite 2–10,usinganAdirondacksnowsampler.Additionaldensityvaluesfromthesamestudyregion wereacquiredduringtheCryoSatValidationExperiment(CryoVEx:11to18April,2011[63]). AirtemperaturedatawereprovidedbytheEnvironmentCanadaweatherstationlocated onshoreatCFSAlert,Nunavut.Meandailyairtemperaturesduringthestudywereonaver- age-12.5°C(2010to2012combined),witharangebetween-20.3to-7.4°C,andamaximum temperatureof-3.1°C.Downwellingtotalsolarirradiancemeasurementsrepresentativeofthe samplingareawerealsomeasuredatthenearbyCFSAlertweatherstation.Meanandrange ofvalueswerecalculatedfortheperiodMay1–11,2010to2012(mean=984,range=213 to2313μmolphotonsm-2s-1;dataacquiredfromNOAA/ESRL/GMD/GRAD,the GMD-RadiationGroup,ftp://aftp.cmdl.noaa.gov/data/radiation/baseline/alt/). Texturecores Textureanalysiswasconductedat~-15°C.Texturecoreswerecutinto0.10to0.15mvertical sectionsthatwerefurthercutintoverticalthicksections~<5mmthin,usinganelectricband saw.Foreachsection,theiceremainingaftercuttingwasputintoplasticcontainers,melted andanalyzedforbulksalinityusingasalinometer(WTW3300i).Bulksalinitiesarereportedin partsperthousand(ppt).Thicksectionswereimagedundercrossedpolarizers.Analysisofthe imagesprovidedastratigraphicdescriptionofeachicecorebyidentifyingdifferenticetexture classesandtheboundariesbetweenclasses.Herewedividedicetypesinto7textureclasses basedongrainstructureandappearance,followingclassificationsystemsoutlinedin[64–67] (Table2andFig2).Foreachsectionofthechlacores,thedominanttextureclass(i.e.the PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 6/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Fig2.Crosspolarizedimageryoficecorethinsectionsshowingdifferenticetypes.a)core7–12;b) core7–12;c)core2–10;d)core3–11;e)core1–12;andf)core7–12. doi:10.1371/journal.pone.0122418.g002 PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 7/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties textureclasswiththehighestarealcoverage)fromthecorrespondingtexturecorewasassigned. Forsurfacepiecestheuppermosttextureclasswasalwaysassignedtothesectionbecausedete- rioratediceandsnow-icearedistinctlayersandonlylocatedatthesurface. InMYIcores,weidentifiedthepreviousyear’sannuallayerin7coresbyidentifyingpeaks inbulksalinityprofilesthatcorrespondedwithchangesincrystalstructureatthesamedepth, asdescribedin[68,69].Accordingly,MYIcoresweredividedintotwogroups:thesections abovetheannuallayer(olderice)wereclassifiedasmulti-year(MY)andsectionsbelowthean- nuallayer(newice)wereclassifiedasfirst-year(FY).Therefore,inlateranalysesicetypecate- goriescompriseMYIcoresandFYIcores,whereasiceagecategoriescompriseMY(multi-year sectionsofMYIcores),FY(first-yearicesectionsofMYIcores)andFYI(first-yearicecores). MYportionsrepresenticethathassurvivedatleastonesummer.TheFYportionsrepresent icethathasgrownundertheMYportionsandtypicallybeginstoformduringfreeze-upinSep- tember-October[7].IngeneralFYIandFYrepresenticeofsimilarages(e.g.<1year),howev- er,FYIcanrepresenticethatstartedtoformeitherduringfreeze-uporatalaterstageasopen waterleadsformandrefreeze.FYalsogrowsslowerthanFYIduetoincreasedthermalinsula- tionofthethickerice(MY)andsnowlayeraboveit. Chlorophyllacores Inordertominimizeanypotentialinfluencesonthechlameasurements,thesecoreswereal- waysstoredbelow-15°Cinthedark,foramaximumofninedays.Thecoreswerethen shipped,viaairatamaximumtemperatureof-10°Cinthedark,toResoluteBay,Nunavut, wheretheywerestoredbelow-20°Cinthedarkfor1to2days.Coreswerecutusinganelectric bandsaw(sterilizedwith95%ethanol)ina-20°Cwalk-infreezer.Coreswerecutinto10cm sectionsexceptforendpieces(range:0.09to0.17m),placedinsterileWhirl-Pack(NASCO) bagsandmeltedinthedark.Endpiecesfor2010and2012samplesrefertotheice-airinterface. The2011coreswerecutintheoppositedirection,thereforetheseendpiecesrefertotheice- waterinterface.Coresectionsweremeltedwithouttheadditionoffilteredseawater(FSW)be- causewewerealsomeasuringdissolvedconstituents(i.e.DOC,nutrients;datanotpresented here)inthecoresections.Ithasbeenshownthatforcommonbiologicalanalyses(e.g.,chloro- phyllaconcentrations)meltingwithouttheadditionofFSWisanacceptableprocedure[70]. Chlaconcentrationsweredeterminedonsub-samplesfilteredontoWhatmanGF/Ffilters, after24hextractionin90%acetoneat4°Cinthedark,usinga10AUTunerDesignfluorome- tercalibratedwithpurechlorophyllextractfromAnacystisnidulans(Sigma;[71]).Chlacon- centrationsweredeterminedusingequationsfrom[71]andcorrespondinginstrument calibrationcoefficients.Chlaconcentrationsareexpressedvolumetrically(mgm-3)orarever- ticallyintegrated(mgm-2)forthebottom0.2mcoresections(hereafterreferredtoasbottom- integrated),ageclasscoresections,ortotalcorelength. Statisticalanalyses Initialdataexplorationdemonstratedthatthedistributionsofchladatawerehighlyskewed.To achievethenormaldistributionpatternsrequiredforparametricstatisticalanalyses,log-trans- formationswereappliedtothechladata.Two-samplet-testswereconductedtodeterminethe effectoficetype(MYI&FYI)onthechlaconcentrationsoftheseaice.Varianceanalyses (ANOVAs)wereconductedinordertodeterminetheeffectoficeageclass(MY,FY&FYI); yearandtextureclassonthechlaconcentrationsoftheice.Post-hoctests(Tukey’sHSD)were conductedwhenbothparametricANOVA(transformeddata)andnon-parametricKruskal- Wallis(non-transformeddata)analysesshowedsignificantdifferences. PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 8/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties Toinvestigatethepotentialinfluenceofsnowdepthandseaiceopticalpropertieson bottom-integratedchlaconcentrationsalogisticregressionmodelwasapplied.Alogisticre- gressionwasusedinordertoidentifypotentialcriticalvalues(inflectionpoint)oftheindepen- dentvariables(e.g.,snowdepthandbulkintegratedextinctioncoefficients)thatcouldindicate athresholdvalueforoptimalalgalgrowth.Logisticregressionanalysisrequiredvaluesofthe dependentvariableintherange0to1.Therefore,bottom-integratedchlavalueswerenormal- izedtotherange0to1bydividingeachchlavalue(y)bythemaximumvalueforallcores i (y ).Therelationshipbetweenbottom-integratedchlaconcentrationsandbulkintegrated max extinctioncoefficients,forvisibleradiation,wasanalyzedinasimilarmanner.Forallcalcula- tionsweusedextinctioncoefficientsforsnow:k =20.0m-1[28];MYI:k =1.55m-1;andFYI: s m k =1.45m-1[32].Thevalueofk,usedhere,waschosenfromatableofk values[28]basedon f s s acorrespondingsnowdensitycomparabletomeasuredvaluesforourstudyregionbetween 260to281kgm-3(seesectionPhysicalproperties).Thevaluesofk,k ,andk wereintegrated s m f overthedepthofthecorrespondingiceandsnowlayersforeachcoresiteresultingin“integrat- edextinctioncoefficients”(dimensionless),i.e.,avalueforeachsnowandicelayerateachsite. The“bulk(snowplusice)integratedextinctioncoefficient”issimplythesumoftheintegrated extinctioncoefficientsforsnowandice(alsodimensionless),i.e.,onevalueforeachcoresite. Intheresultingbulkintegratedextinctioncoefficients,largervaluesmeanshallowerpenetra- tionoflight. Resultsarereportedasarithmeticmean±onestandarddeviation(μ^±1σ). AllstatisticalanalyseswereconductedwiththeRsoftwarepackagev-2.15.2[72]. Results Physicalproperties Basedonsite-averageddrillholethicknessmeasurements,i.e.,characterizingthelargerscale icepropertiesofthesampledfloes,MYIsitesweremorethantwiceasthick(3.28±0.56m)as FYIsites(1.42±0.42m).MeanMYIcorelength(2.62±0.24m),i.e.,onlycharacterizinglocal icepropertiesofcoresamplinglocations,wasalsonearlytwiceasthickasFYI(1.39±0.52m), withhighervariabilityinFYIcorelengths.FYIsitesrepresentedtwodifferentkindsofice:ice thatformedduringthefallwhenthelandfasticeconsolidated(i.e.,olderandthickerFYIwith moresnow);andicethatformedlaterinmobileicewhenopenleadsformedandthenrefroze (i.e.,youngerandthinnericewithtypicallylesssnow). Site-averagedsnowdepthatMYIsites(0.39±0.10m),ingeneral,wasthickerthanatFYI sites(0.26±0.15m).AlthoughMYIhadlowervariabilitybetweensite-averagedsnowdepth values,FYIhadlowervariabilitywhenconsideringeachsiteindividually.Thiswasillustrated bythemeanofsitestandarddeviationsforFYIsnowdepth:0.08m,comparedtoMYI:0.17m. Meansnowdensityatsite2–10(Fig1)was260±0.03kgm-3(n=5)andduringCryoVex2011 was281±0.7kgm-3(n=11[63]). Therewasnosignificantinter-annualdifferenceinthemeanphysicalproperties(e.g.snow depthandicethickness)ofFYIorMYI(ANOVA,p>0.05).ForFYI,thereweresignificantpos- itiverelationshipsbetweencore-location-snow-depthandicecorelength(R2=0.56,p=0.05, n=7),andbetweensnowdepthandmeanicethicknesssurveymeasurements(R2=0.66, p<0.05,n=7).ForMYI,therewasaninverserelationshipbetweensnowdepthandicecore length(R2=0.51,p=0.01,n=11),andnosignificantrelationshipbetweensnowdepthand meanicethicknesssurveymeasurements(R2=0.12,p=0.3,n=11). TwoFYIcoreswereexceptional(3–10and6–12;Table3),exhibitingconsiderablylowerice thickness,snowdepthandcorelengththantheotherFYIcoresanalyzedinthisstudy.These2 sitesweredeterminedtoberefrozenleadsthatcorrespondtoyoungerFYIthatformedlaterin PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 9/26 MYIvs.FYI:ChlorophyllaandPhysicalProperties 0 58 7 14 6 6 det - - - 0.1 0.000. - -- - 0.1 - 0.101. - - - -- - 0.0 -00. ulk b 6 6 9 6 8 2 75 = ar, TextureClassLengths xgranretexmps-i 030.02--- 40--0.16- 190.27-0.220.1 000.72--- 072.27---66109-01901... 061.32--- 110.01---08066---. 24-0.180.390.0 520.81--- -1.010.260.0 13----3008105903300.... 070.28--- 040.05--- 34--- 050.01---13011---. 81--0.040.0 19---- 29-0.300.110.043-03000700... core-location-snow-depth,sal meanfreeboard,col=column m 0. 1. 0. 1. 0.0. 0. 0.0. 0. 0. - 0.0. 0. 0. 0. 0.0. 0. 0. 0.0. = = w b o f col 0.88 0.67 1.94 0.73 0.71101. 0.23 1.40082. 1.51 1.45 1.20 2.35163. 1.42 1.25 1.42 0.77121. 1.79 2.31 1.69931. h,sn mber, gt u s 1 1 0 14 n n vey N 10 6 42 1 4123 1 53 10 12 9 1010 10 21 1 4141 40 14 2225 ele ple owDepthSur σd 80.045 70.1100 30.2200 0-0 20.2200602125. 8-0 1-400-20 60.2100 20.2100 90.2100 50.2100602100. 80.1100 30.120 7-0 70.04090140. 90.2400 00.1140 00.2200602247. etry,core=cor ance,N=sam Sn μ^ 0.0 0.3 0.3 0.5 0.203. 0.3 0.203. 0.3 0.5 0.3 0.504. 0.2 0.3 0.4 0.002. 0.3 0.3 0.403. ym dist 07 13 23 09 3219 04 0706 29 17 33 1724 11 05 06 0005 24 29 2024 bath d= IceThicknessSurveys μ^σdNfb 0.93-2540. 3.070.910060. 3.490.420090. 2.45-010. 3.100.720090.3030712560... 1.67-030. 1.310.24050.149022040... 3.851.1100100. 2.800.6100120. 4.481.410090. 3.020.8100100.35410100100... 2.00-10040. 1.510.12020. 1.68-010. 0.830.14030.151014030... 3.690.9400110. 3.231.312070. 2.900.5200100.3270924090... ude,lon=longitude,bath.=σ=onestandarddeviation, w-ice,det=deteriorated. hcoreandcoresite. CoreLocation CoreSnowSalBV 0.930.096.1189.4 2.230.423.188.1 2.800.323.4- 2.540.502.0133.0 3.110.052.173.326703226982.... 1.600.384.5- 1.520.175.5-15602850-... 2.410.553.5- 2.960.322.1- 2.530.323.9- 2.590.302.4-26203730-... 1.770.204.490.4 1.340.333.7- 1.770.473.187.7 0.830.045.9141.4143026431065.... 2.670.473.3116.5 2.570.312.0115.9 2.460.603.6184.0256046301388.... ationsandsymbols:lat=latitμ^me(ppt),=arithmeticmean, ed,mp=melt-pond,s-i=sno foreac bath. 257 91 95 199 90119 189 242215 100 199 159 260180 57 99 2156 125609 86 125 99103 Abbrevi nevolu retextur data n 2.0 2.6 2.3 2.0 2.6 2.3 2.2 2.4 2.0 2.2 6.0 2.7 2.4 8.1 8.6 2.7 8.6 2.4 (m). dbri ex= Table3.Summaryofphysical SiteOverview YearTypeidlatlo –2010FYI31082.6-6–2010MYI11082.5-6–MYI21082.8-6–MYI41082.6-6–MYI51082.5-6μ^--- –2011FYI21182.6-6–FYI41182.6-6μ^--- –2011MYI11182.5-6–MYI31182.6-6–MYI51182.6-6–MYI61183.5-6^---μ –2012FYI21282.5-6–FYI31282.5-6–FYI41286.1-7–FYI61282.9-5μ^--- –2012MYI11282.5-6–MYI51282.9-5–MYI71282.5-6μ^--- Allmeasurementsareinmeters salinity(ppt),BV=coreaverage mx=mixed,gran=granular,ret“”-=Notavailable. doi:10.1371/journal.pone.0122418.t003 PLOSONE|DOI:10.1371/journal.pone.0122418 April22,2015 10/26

Description:
consolidated pack ice with smaller amounts of FYI forming in the interstitial space during freeze-up. At each site three ice cores were extracted within 1 m of each other using a 9 cm inner diam- eter ice Snow depth was measured using a metal probe at 1 or 10 m intervals and ice thickness was mea
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.