ebook img

COMPARING MODELS FOR FORECASTING THE YIELD CURVE Marco S. Matsumura Ajax RB ... PDF

28 Pages·2006·0.3 MB·Portuguese
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview COMPARING MODELS FOR FORECASTING THE YIELD CURVE Marco S. Matsumura Ajax RB ...

174 Originally published by Ipea in December 2006 as number 1245a of the series Texto para Discussão. COMPARING MODELS FOR FORECASTING THE YIELD CURVE Marco S. Matsumura Ajax R. B. Moreira 174 DISCUSSION PAPER Originally published by Ipea in December 2006 as number 1245a of the series Texto para Discussão. Brasília, January 2015 COMPARING MODELS FOR FORECASTING THE YIELD CURVE Marco S. Matsumura1 Ajax R. B. Moreira2 1. Da Diretoria de Estudos Macroeconômicos do Ipea. E-mail: <[email protected]>. 2. Da Diretoria de Estudos Macroeconômicos do Ipea. Federal Government of Brazil DDIISSCCUUSSSSIIOONN PPAAPPEERR Secretariat of Strategic Affairs of the Presidency of the Republic Minister Roberto Mangabeira Unger AA ppuubblliiccaattiioonn ttoo ddiisssseemmiinnaattee tthhee ffiinnddiinnggss ooff rreesseeaarrcchh ddiirreeccttllyy oorr iinnddiirreeccttllyy ccoonndduucctteedd bbyy tthhee IInnssttiittuuttee ffoorr AApppplliieedd EEccoonnoommiicc RReesseeaarrcchh ((IIppeeaa)).. DDuuee ttoo tthheeiirr rreelleevvaannccee,, tthheeyy pprroovviiddee iinnffoorrmmaattiioonn ttoo ssppeecciiaalliissttss aanndd eennccoouurraaggee ccoonnttrriibbuuttiioonnss.. A public foundation affiliated to the Secretariat of Strategic Affairs of the Presidency of the Republic, ©© IInnssttiittuuttee ffoorr AApppplliieedd EEccoonnoommiicc RReesseeaarrcchh –– iippeeaa 22001155 Ipea provides technical and institutional support to government actions – enabling the formulation of DDiissccuussssiioonn ppaappeerr // IInnssttiittuuttee ffoorr AApppplliieedd EEccoonnoommiicc numerous public policies and programs for Brazilian RReesseeaarrcchh..-- BBrraassíílliiaa :: RRiioo ddee JJaanneeiirroo :: IIppeeaa,, 11999900-- development – and makes research and studies conducted by its staff available to society. IISSSSNN 11441155--44776655 President 11.. BBrraazziill.. 22.. EEccoonnoommiicc AAssppeeccttss.. 33.. SSoocciiaall AAssppeeccttss.. Sergei Suarez Dillon Soares II.. IInnssttiittuuttee ffoorr AApppplliieedd EEccoonnoommiicc RReesseeaarrcchh.. Director of Institutional Development CCDDDD 333300..990088 Luiz Cezar Loureiro de Azeredo Director of Studies and Policies of the State, Institutions and Democracy Daniel Ricardo de Castro Cerqueira TThhee aauutthhoorrss aarree eexxcclluussiivveellyy aanndd eennttiirreellyy rreessppoonnssiibbllee ffoorr tthhee ooppiinniioonnss eexxpprreesssseedd iinn tthhiiss vvoolluummee.. TThheessee ddoo nnoott nneecceessssaarriillyy Director of Macroeconomic Studies rreeflfleecctt tthhee vviieewwss ooff tthhee IInnssttiittuuttee ffoorr AApppplliieedd EEccoonnoommiicc and Policies Cláudio Hamilton Matos dos Santos RReesseeaarrcchh oorr ooff tthhee SSeeccrreettaarriiaatt ooff SSttrraatteeggiicc AAffffaaiirrss ooff tthhee PPrreessiiddeennccyy ooff tthhee RReeppuubblliicc.. Director of Regional, Urban and Environmental Studies and Policies Rogério Boueri Miranda Director of Sectoral Studies and Policies, RReepprroodduuccttiioonn ooff tthhiiss tteexxtt aanndd tthhee ddaattaa iitt ccoonnttaaiinnss iiss Innovation, Regulation and Infrastructure aalllloowweedd aass lloonngg aass tthhee ssoouurrccee iiss cciitteedd.. RReepprroodduuccttiioonnss ffoorr Fernanda De Negri ccoommmmeerrcciiaall ppuurrppoosseess aarree pprroohhiibbiitteedd.. Director of Social Studies and Policies, Deputy Carlos Henrique Leite Corseuil Director of International Studies, Political and Economic Relations Renato Coelho Baumann das Neves Chief of Staff Ruy Silva Pessoa Chief Press and Communications Officer João Cláudio Garcia Rodrigues Lima URL: http://www.ipea.gov.br Ombudsman: http://www.ipea.gov.br/ouvidoria JEL C13; C32; C53; E43; E44; E47; G12; G13. SINOPSE A evolução das diversas maturidades das taxas de juros está relacionada e pode ser descrita por um número reduzido de variáveis latentes comuns. Os modelos de taxas de juros multivariados da literatura de finanças utilizam esta propriedade, assim como os modelos de fator comum da literatura de séries temporais, e modelos de decomposição da curva de juros. Cada um desses modelos tem vantagens e desvantagens, sendo uma questão empírica avaliar o desempenho dessas abordagens. Esse exercício compara a resposta de quatro modelos alternativos para a curva de juros, em três mercados diferentes: juros domésticos brasileiros, juros soberanos externos brasileiros, e juros domésticos dos Estados Unidos. ABSTRACT The evolution of the yields of different maturities is related and can be described by a reduced number of commom latent factors. Multifactor interest rate models of the finance literature, common factor models of the time series literature and others use this property. Each model has advantages and disadvantages, and it is an empirical matter to evaluate the performance of the approaches. This exercise compares 4 alternative models for the term structure using 3 different markets: the Brazilian domestic and sovereign market and the US market. SUMMARY 1 INTRODUCTION 7 2 TERM STRUCTURE MODELS 9 3 INFERENCE 11 4 RESULTS 14 5 CONCLUSION 18 REFERENCES 18 APPENDIX 19 Comparing Models for Forecasting the Yield Curve Marco S. Matsumura ∗ Ajax R. B. Moreira † November 2006 Abstract The evolution of the yields of different maturities are related and can bedescribedbyareducednumberofcommomlatentfactors. Multifactor interest rate models of the finance literature, common factor models of the time series literature and others use this property. Each model has advantages and disadvantages, and it is an empirical matter to evaluate the performance of the approaches. This exercise compares 4 alternative models for the term structure using 3 different markets: the Brazilian domestic and sovereign market and the US market. 1 Introduction Studies after Litterman and Scheinkman (1991) documented that the evolution oftheyieldcurvecouldberepresentedbythepathofupto3latentfactorswhich summarizetheyieldcurveandsomehowrepresentthestateoftheeconomy. The intertemporaldependenceamongthefactorsdescribeinaparsimoniouswaythe movementsoftheyieldcurve. Theyieldsaregivenbyweightedsumsofthestate factors. This summarizes the multifactor interest rate models. The weights can be specified according to approaches that solely emphasize theadherencetodata,orthatcontainnoarbitragerestrictions,orwhichspecify acertainshapefortheyieldcurve. Eachoftheapproachespertaintoadifferent literature. Theonethatonlytakesintoaccountthefittingisthecommonfactor model(CF),astandardmodelinthemultivariatetimeseriesliterature(Harvey, 1989,WestandHarrisson,1997). Oneofthemanymodelsimposingnoarbitrage restrictions is the affine model (NA) of Duffie and Kan (1996). Others assume that the yield curve can be described with components with a given shape, for Corresponding Author. Instituto de Pesquisa Economica Aplicada, Rio de Janeiro, RJ, ∗ Brazil. Email: [email protected]. Address: Av. PresidenteAntônioCarlos,51-17andar, Sala1715,20020-010. Tel: 55213515-8533. Fax: 55 21 3515-8615. InstitutodePesquisa EconomicaAplicada,Rio de Janeiro,RJ,Brazil. † 1 exampleusing1)LegendrePolynomials,Almeida(1998,LP)or2)thefunctions proposed by Nelson and Siegel (1987, NS). Those models possess different characteristics. The NS and LP have less parameters to be estimated, but impose shape restrictions that may not be realistic, and require a number of factors to represent the yield curve that may not be compatible to the number of stochastic sources. The NA model uses a particular rule for the fluctuation of the risk premium and short rate - they are linearly dependent of the state variables -, is more flexible with respect to the format of the curve, has less parameters that have to be estimated than CFmodel, but someof its parameters, thoseof thepremia, introducenonlinear characteristics that make it more difficult to estimate. Finally, the CF model is more flexible than the previous ones, easier to estimate, but contains much moreparameters. However,thismaynotbeanimportantdeficiencyincasethe available data has daily frequency. Themodelthatimposesnoarbitragerestrictionsisconceptuallysuperiorto a purely functional model. It has less scope than a general equilibrium model, butuseslessrestrictivehypothesisandismorenumericallytractable. However, the affine characterization of the model comes from assumptions on the format of the short rate and of the risk premium that may not fit for the Brazilian market, which, until recently, was too concentrated on the short end of the curve. Besides,itisonlyempiricallythatitwillbepossibletoverifyifthelocal marketissufficientlyampleandliquidtoguaranteenoarbitrageorifthepremia is affine with the state variables. Allthemodelsassumedthattheevolutionoftheyieldcurvecanbedescribed with a reduced number - up to 3 - of latent variables. The CF model is a descriptiverepresentationoftheyieldcurveandcanadjustwithmoreflexibility the empirical particularities of the yield curve. Hence it will be used as the benchmark model. Each model has advantages and disadvantages. It is an empirical matter to evaluate which one has the best forecasting performance. To this end, 3 yield curves will be analyzed: 1) the Brazilian domestic market, given by the Brazilian Futures (BM&F) DIxPRE swaps, 2) FED’s constant maturity zero- coupon rates extracted from US treasury bonds, and 3) Bloomberg’s Brazilian sovereign constant maturity zero-coupon rates extracted from Republic bonds and Brady bonds. The models were estimated using Monte Carlo Markov Chain - a Bayesian approach (seeGamerman, 1997, and JohannesandPolson, 2003). It constructs samplesofthedistributionsoftheestimatorsandofassociatedstatistics,which permittheconstructionofperformancecriteriawhichtakeintoaccountthejoint effect of the estimator’s uncertainty. The focus of this text is to compare the model’s capacity to explain and forecast the yield curve, observing that each one has a different number of pa- rameters. This will be achieved by using 3 largely used criteria: 1) Posterior predictive loss, Gelfand and Ghosh (1998), Banerjee et al (2004), 2) DIC, a generalization of the AIC proposed by Spiegelhalter et al (2002), and 3) a mea- sure proposed by Theil which provides a direct indication of the relevance of 2

Description:
Marco S. Matsumura1. Ajax R. B. Moreira2. 1. Da Diretoria de Estudos Macroeconômicos do Ipea. E-mail: . 2. Da Diretoria de
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.