Comparative Study of Surface Waves on High-Impedance Surfaces With and Without Vias O. Luukkonen, A. B. Yakovlev, C. R. Simovski, and S. A. Tretyakov AP-S International Symposium URSI National Radio Science Meeting San Diego, California 5 – 11 July, 2008 Outline Introduction and Motivation Surface Waves on HIS Structures Without Vias Dynamic Models Patch and Jerusalem Cross Arrays EBG Properties of HIS Structures With Vias Wire Media Slab and Mushroom Array Mushroom-like Jerusalem Cross Array Conclusion 2 Introduction Analytical modeling of dense FSS grids and HIS structures with and without vias Homogenization of impedance surface in terms of effective circuit parameters Dynamic model obtained from full-wave scattering problem via the averaged impedance boundary condition Homogenization of wire media slab and mushroom-like HIS structures – ENG approximation 3 Surface Waves on HIS Structures Without Vias Dynamic Models 4 Model 1 – Impedance Surface Transmission Line Model Z Z g d η Z Z Z o g d s Z Z g d Z s Impedance Surface Model TEz TMz H E y y E H x x H E Z z z s h z No fields beyond the impedance surface 5 S. A. Tretyakov, Analytical Modeling in Applied Electromagnetics, Boston, MA: Artech House, 2003 Model 1 – Impedance Surface Impedance Surface Model Impedance Boundary Condition at y=0: TEz TMz H E y y E Z yˆ H E H x H x E Z s z z s z No fields beyond the impedance surface TEz TMz E ZTEH E E e jkzTEz kTyEy E ZTM H H H e jkzTMz kTyM y x s z x 0 z s x x 0 2 2 j ZTM kTE 0 kTE k 1 0 kTM j ZTM kTM k 1 s y ZTE z 0 ZTE y 0 s z 0 s s 0 6 S. A. Tretyakov, Analytical Modeling in Applied Electromagnetics, Boston, MA: Artech House, 2003 Grounded Dielectric Slab with Grid Model 2 - Impedance on Air-Dielectric Interface TEz y H y E x H air z 1 1 grid Z TMz g E h slab y 2 2 H x E z z PEC Two-sided impedance boundary condition at y=h E E Z yˆ H H 1 2 g 1 2 7 Dispersion Equations Two-sided impedance boundary condition at y = h TEz-odd TMz-even TE TM E E Z H H E E Z H H x1 x2 g z1 z2 z1 z2 g x1 x2 Dispersion equations j j k 2 k k coth(k h) 2 k tanh(k h) ZTM 2 y1 y1 y2 y2 ZTE y2 y2 g j ZTM k 1 g 1 g y1 8 Complex Wavenumber Plane Branch points in the complex k -plane at k k z z 1 Re{k } 0 - proper modes on the top Riemann sheet y 1 Re{k } 0 - improper modes on the bottom Riemann sheet y 1 Re{k } 0 - branch cuts condition y 1 Im{k }Re{k } Im{k } 1 1 Hyperbolic k -plane branch cuts: z Re{k } z z Re{k } Re{k } z 1 Im{k / k } z 1 k k2 k2 y z i i 2 -1 1 Re{k / k } k2 n2 z 1 i i c 1/2 c 9 0 0 Transmission-Line Network Analysis k θ η Z Z o g d Z s HIS Reflection coefficient Z Z g d Z Z cos s Z Z TE , s 0 g d Z cos s 0 Parallel resonance Z cos X X 0 TM , s 0 g d Z cos s 0 10 S. A. Tretyakov, Analytical Modeling in Applied Electromagnetics, Boston, MA: Artech House, 2003
Description: