ebook img

Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions PDF

26 Pages·2017·1.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions

Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions Benjamin Godard, E. Falgarone, M. Gerin, D.C. Lis, M. de Luca, J.H. Black, J. R. Goicoechea, J. Cernicharo, D.A. Neufeld, K. M. Menten, et al. To cite this version: Benjamin Godard, E. Falgarone, M. Gerin, D.C. Lis, M. de Luca, et al.. Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions. 2012. ￿hal-00662960￿ HAL Id: hal-00662960 https://hal.archives-ouvertes.fr/hal-00662960 Preprint submitted on 25 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy&Astrophysicsmanuscriptno.Godard2011˙SHp-CHp˙v17˙print c ESO2012 (cid:13) January25,2012 + + Comparative study of CH and SH absorption lines observed ⋆,⋆⋆ towards distant star-forming regions B.Godard1,E.Falgarone2,M.Gerin2,D.C.Lis3,M.DeLuca2,J.H.Black4,J.R.Goicoechea1,J.Cernicharo1,D.A. Neufeld5,K.M.Menten6,M.Emprechtinger3 1 DepartamentodeAstrof´ısica,CentrodeAstrobiolog´ıa,CSIC-INTA,Torrejo´ndeArdoz,Madrid,Spain 2 LERMA,CNRSUMR8112,E´coleNormaleSupe´rieure&ObservatoiredeParis,Paris,France 3 CaliforniaInstituteofTechnology,Pasadena,CA91125,USA 4 DepartmentofEarthandSpaceSciences,ChalmersUniversityofTechnology,OnsalaSpaceObservatory,43992Onsala,Sweden. 5 TheJohnsHopkinsUniversity,Baltimore,MD21218,USA 6 MPIfu¨rRadioastronomie,Bonn,Germany. Received8July2011/Accepted19January2012 Abstract Aims.TheHIFIinstrumentonboardHerschelhasallowedhighspectralresolutionandsensitiveobservationsofground-statetransi- tionsofthreemolecular ions:themethylidynecationCH+,itsisotopologue 13CH+,andsulfanyliumSH+.Becauseoftheirunique chemicalproperties,acomparativeanalysisofthesecationsprovidesessentialcluestothelinkbetweenthechemistryanddynamics ofthediffuseinterstellarmedium. Methods.The CH+, 13CH+, and SH+ lines are observed in absorption towards the distant high-mass star-forming regions (SFRs) DR21(OH), G34.3+0.1, W31C, W33A, W49N, and W51, and towards two sources close to the Galactic centre, SgrB2(N) and SgrA*+50.Allsightlinessamplethediffuseinterstellarmatteralongpathlengths ofseveralkiloparsecsacrosstheGalacticPlane. Inordertocomparethevelocitystructureofeachspecies,theobservedlineprofilesweredeconvolvedfromthehyperfinestructure oftheSH+transitionandtheCH+,13CH+,andSH+spectrawereindependentlydecomposedintoGaussianvelocitycomponents.To analysethechemicalcompositionoftheforegroundgas,allspectraweredivided,inasecondstep,intovelocityintervalsoverwhich theCH+,13CH+,andSH+columndensitiesandabundanceswerederived. Results.SH+ isdetectedalongallobservedlinesofsight,withavelocitystructureclosetothatofCH+ and13CH+.Thelinewidth distributions of the CH+, SH+, and 13CH+ Gaussian components arefound to be similar. These distributions have thesame mean ( ∆υ 4.2kms 1)andstandarddeviation(σ(∆υ) 1.5kms 1).Thismeanvalueisalsoclosetothatofthelinewidthdistribution − − ohfthie∼CH+ visibletransitionsdetectedinthesolarn∼eighbourhood. Weshowthatthelackofabsorptioncomponentsnarrowerthan 2kms 1 isnotanartefactcausedbynoise:theCH+,13CH+,andSH+ lineprofilesarethereforestatisticallybroaderthanthoseof − mostspeciesdetectedinabsorptionindiffuseinterstellargas(e.g.HCO+,CH,orCN).TheSH+/CH+columndensityratioobserved inthe components located away fromthe Galacticcentrespans twoorders of magnitude and correlates withtheCH+ abundance. Conversely,theratioobservedinthecomponentsclosetotheGalacticcentrevariesoverlessthanoneorderofmagnitudewithno apparentcorrelationwiththeCH+abundance.TheobserveddynamicalandchemicalpropertiesofSH+andCH+areproposedtotrace theubiquitousprocessofturbulentdissipation,inshocksorshears,inthediffuseISMandthespecificenvironmentoftheGalactic centreregions. Keywords.Astrochemistry-Turbulence-ISM:molecules-ISM:kinematicsanddynamics-ISM:structure-ISM:clouds 1. Introduction terunderstandingofitsdynamical,thermal,andchemicalevolu- tion.Awidevarietyofdiatomicandtriatomicmolecularspecies Studyingthediffusephasesoftheinterstellarmedium(ISM)is hasalreadybeenobservedinthediffusemedium.Moreover,its essential,notonlybecausetheycontainalargepartofthetotal chemicalcompositionhas now been probedin the solar neigh- gasmassofthecoldISMandaretheprecursorsofdenseclouds, bourhoodthroughUV (e.g. Shull & Beckwith 1982;Crawford butalsobecausetheyharbourthefirststepsofinterstellarchem- & Williams 1997;Snow et al. 2000;Rachfordet al. 2002;Gry istry.SincethedetectionofthefirstdiatomicmoleculesCN,CH, etal. 2002;Lacouretal. 2005),visible (e.g.Crane etal. 1995; andCH+(seereferencesinthereviewofSnow&McCall2006) Gredel1997;Thorburnet al. 2003;Weselak etal. 2008;Maier throughtheir narrow visible absorptionlines, the improvement etal. 2001),andradio(e.g.Haud& Kalberla 2007;Lisztet al. of theobservationaltechniquesandinstrumentshasprovideda 2006andreferencestherein)spectroscopy,andtheinnerGalaxy more comprehensiveview of the diffuse ISM and led to a bet- materialthroughsubmillimetre and radio(millimetre, centime- tre) spectroscopy (e.g. Koo 1997; Fish et al. 2003; Nyman & ⋆ BasedonobservationsobtainedwiththeHIFIinstrumentonboard Millar 1989; Greaves & Williams 1994; Neufeld et al. 2002; theHerschelspacetelescopeintheframeworkofthekeyprogrammes Plumeetal.2004). PRISMASandHEXOS. ⋆⋆ Herschel is an ESA space observatory with science instruments The Herschel space mission has broadened this investiga- providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- tion,givingaccessto thefullsubmillimetredomain,whichhas portantparticipationfromNASA. allowedthedetectionofmanymolecularspeciesthatcouldnot 1 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. bedetectedfromthegroundbeforebecauseofthehighopacity 2. Observationsanddatareduction oftheatmosphere.IntheframeworkoftheHIFIkeyprogramme 2.1.Observingconditions PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) many hydridessuch as HF (Neufeldet al. 2010b; Sonnentrucker et al. 2010), OH+, H O+(Neufeld et al. 2010a; 2 Gerin et al. 2010a), CH (Gerin et al. 2010b), NH, NH , NH 2 3 (Perssonetal.2010),andCH+ (Falgaroneetal.2010)werede- tected in absorption against the strong continuum emission of distantstar-formingregions,providingforthe firsttimea good censusoftheselighthydridesintheinnerGalaxy. Of all molecules targeted by PRISMAS, the methylidyne cation CH+ is particularly interesting because its presence in the diffuse ISM remains one of the most intriguing puzzle in astrophysics. The CH+ abundances predicted by steady-state, UV-dominated, PDR-type (PhotoDissociation Regions) chemi- cal models are several orders of magnitude lower than the ob- servedvalues,becausealltheCH+ formationpathwaysthatare alternativeto thehighlyendothermicC+ +H CH+ +H re- 2 → action,areinefficientinbalancingitsfastdestructionbyhydro- genation. Indriolo et al. (2010) recently showed that the upper limit on the CH+/CH+ abundance ratio observed towards Cyg 3 OB2 can only be reproduced in diffuse molecular clouds with Figure1.OriginalSH+ spectra(double-sideband antenna temperature extremeconditions(i.e. fH2 < 0.2,orT > 1000K).Sofar,the TA beforeremovingthestandingwaves)observedtowardsSgrA*+50, solutiontothispuzzlehasbeentoinvokeregionsofthediffuse W31C, W33A, and W49N in the horizontal polarization and for the gaswhereawarmchemistryisactivatedbythereleaseofsupra- threedifferentLOsettings(inblack,red,andblue).Formoreclaritythe thermal energy in the cold ISM induced by low-velocity mag- redandbluecurveshavebeenshiftedfromtheblackcurveby0.2and netohydrodynamic(MHD)shocks(Draine&Katz1986;Pineau 0.4K(fortheSgrA*+50data),andby0.1and0.2K(fortheW31C, desForeˆtsetal.1986),Alfve´nwaves(Federmanetal.1996),tur- W33A,andW49Ndata). bulentmixing(Xieetal.1995;Lesaffreetal.2007),orturbulent dissipation (Falgarone et al. 1995; Joulain et al. 1998; Godard et al. 2009).Indrioloet al. (2010)claimed that observationsof The observations were carried out from March to October theexcitedlevelsofCH+areabletoprovidethecluesnecessary 3 2010 and in April 2011 towards the eight submillimetre back- tofavouronetheoryovertheother. groundcontinuumsourceslistedinTable1(withtheirGalactic Apotentiallyrelatedproblemistheexistenceofsulfanylium coordinates, their distance from the Sun, and their measured (SH+)inthediffusegas.Becausethehydrogenationreactionof single-sideband continuum temperature Tc in K at 830 and S+ has an endothermicity twice as high as that of C+, a mea- 530 GHz). Using the dual-beam switch (DBS) m∼ode (with surementoftheSH+/CH+abundanceratioshouldprovidevalu- ∼a throwat 3’ fromthe source)and the wide-bandspectrometer ableinsightsabouttheregionswhereCH+isformed.Soughtfor (WBS) of Herschel/HIFI (see Roelfsema et al. 2012 for a de- without success in the local diffuse ISM in absorption against tailed description of the propertiesand performancesof HIFI), nearby stars in the UV domain since 1988 (Millar & Hobbs weobserved 1988; Magnani & Salzer 1989, 1991), this molecular ion was the J = 1 0 absorption lines of CH+ and 13CH+, in the recently detected by Menten et al. (2011) through its ground- • ← upperandlowersidebandsofband3a, staterotationaltransitioninthesubmillimetrerangeobservedin andtheF = 3/2 1/2,5/2 3/2,and3/2 3/2hyper- absorption towards the Galactic centre line of sight SgrB2(M) • ← ← ← finecomponentsoftheN,J =1,2 0,1absorptionlineof withtheAPEXtelescope. SH+,inthelowersidebandofband←1a. In this paper, we report the detection of SH+, CH+, and 13CH+ towardsthe sixdistantstar-formingregionsDR21(OH), The data obtained towards SgrB2(N) were part of the full G34.3+0.1,W31C, W33A, W49N, and W51, and the Galactic HIFI spectral scan performed by the HEXOS key programme; centresightlines1 SgrA*+50andSgrB2(N),andwe performa the corresponding double-sideband spectra were deconvolved crossanalysisoftheobservedpropertiesofthosethreespecies. into single-sideband spectra, including the continuum (Comito The observations, obtained in the framework of the key pro- & Schilke 2002). Towards the other sources, the observations grammesPRISMASandHEXOS,arepresentedinSect.2.The were performed in the framework of the PRISMAS key pro- methodsusedfortheanalysisandtheresultsobtainedareshown gramme;toseparatespectralfeaturesfromupperandlowerside- inSects.3and4,respectively.WeconcludethisworkinSect.5 bands of the WBS spectrometer, each transition was observed with a discussion on the chemical and dynamicalpropertiesof usingthreeslightlydifferentsettingsofthelocaloscillator(LO) thegasseeninabsorption.Thecomparisonwiththemodelpre- frequency,adaptedtoinducearelativevelocityshiftof 30km dictions will be the subject of a forthcoming paper (Godard et s 1betweenthetwosidebands.Thespectroscopicparam∼etersof − al.,inprep.). theobservedlinesarelistedinTable2,alongwiththermsnoise levels relative to the single-sideband continuum intensities ob- tained with an on-sourceintegrationtime rangingfrom1 to 20 1 TheSgrA*+50sightline(GCM-0.02-0.07) corresponds tothe50 min.Inthesefrequencyranges,theWBSresolutionof1.1MHz bkrmigsh−t1suclbomudillliomceattreedsionurthcee(vDicoiwnietylloeftaSlg.r1A9*9,9)w.hichisknowntobea caonrdre13spCoHn+dstrtaonvseitlioocnisty,arnesdooluftion0s.5o7fk∼m0.s361kfomrsth−1efSoHr+thteraCnHsi+- − ∼ 2 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. Table1.Propertiesofbackgroundsources. Source RA(J2000) Dec(J2000) l b Da R T (K)b T (K)b G c c (h)(m)(s) ( )()( ) ( ) ( ) (kpc) (kpc) (830GHz) (530GHz) ◦ ′ ′′ ◦ ◦ SgrA*+50 174550.2 -285953 359.97 -0.07 8.4 0.1 0.4 0.2 SgrB2(N) 174719.9 -282218 0.68 -0.03 8.4 0.1 8.0 2.9 G34.3+0.1 185318.7 011458 34.26 0.15 3.8 5.8 2.3 0.7 W31C 181028.7 -195550 10.62 -0.38 4.8 3.9 1.9 0.5 W33A 181439.4 -175200 12.91 -0.26 4.0 4.7 0.6 0.2 W49N 191013.2 +090612 43.17 +0.01 11.5 7.9 2.4 0.8 W51 192343.9 +143031 49.49 -0.39 7.0 6.6 2.7 1.0 DR21(OH) 203901.0 422248 81.72 0.57 1.0 8.4 1.3 0.4 a ForG34.3+0.1,W31C,W33A,andW49N,thesourcedistancesD,andthesubsequentGalactocentricdistancesR ,aretakenfromFishetal. G (2003)andPandianetal.(2008),whoresolvedthekinematicdistanceambiguity.Distanceuncertaintiesareoftheorderof0.5kpc. b UncertaintiesonthecontinnuumtemperaturesT areoftheorderof10%(Roelfsemaetal.2012). c Table2.CH+X1Σ+,13CH+X1Σ+,andSH+X3Σ spectroscopicparametersfortheobservedpurerotationaltransitions.Numbersinparenthesisare − powerof10. Transition g ν a A ∆υ b I c σ/T d u 0 h h l c (GHz) (s 1) (kms 1) SgrA*+50SgrB2(N)DR21(OH) G34 W31C W33A W49N W51 − − CH+ 1-0 3 835.137504 5.83(-3) 1.1(-2) 9.8(-3) 1.5(-2) 1.9(-2)5.2(-2)2.0(-2)1.7(-2)1.7(-2) 13CH+ 1,1/2-0,1/2 2 830.215004 5.83(-3) 0.59 0.50 13CH+ 1,3/2-0,1/2 4 830.216640 5.83(-3) 0.00 1.00 5.5(-2) 5.5(-3) 1.5(-2) 2.0(-2)1.5(-2)2.9(-2)1.4(-2)2.0(-2) SH+ 1,2,3/2-0,1,1/2 4 526.038722 7.99(-4) +5.26 0.56 SH+ 1,2,5/2-0,1,3/2 6 526.047947 9.59(-4) 0.00 1.00 5.0(-2) 1.5(-2) 2.9(-2) 2.5(-2)9.0(-3)2.4(-2)1.1(-2)1.5(-2) SH+ 1,2,3/2-0,1,3/2 4 526.124976 1.60(-4) -43.93 0.11 a CH+ 13CH+ andSH+linefrequenciesarefromAmano(2010)andSavageetal.(2004),respectively. b VelocityshiftsofthehyperfinecomponentsoftheSH+(1,2 0,1)line,relativetotheF =5/2 3/2transition,thereferencehyperfine ← ← transitioninthetext. c Intensitiesofthehyperfinecomponentscomputed(atT )asg A /g A ,relativetoachosenreferencehyperfinetransition(desig- ex → ∞ u ul u0 ul0 natedbytheindex0inthepreviousformula). d σ/T isthermsnoiseleveldividedbythecontinuumintensitiesofthespectraattheresolutionof1.1MHz. l c tions,andtheHerschelHPBWis26”at835GHzand41”at526 oftheSH+ absorptionfeatures(seeFig.1),theresultingspectra GHz. weresensitivetotheFHFinputparameters:severalplausibleso- The data were calibrated with hot and cold blackbodies lutionswerefounddependingonthenumberofsub-bandstaken (Roelfsema et al. 2012), reduced using the standard Herschel intoaccountforthefit,thenumberofsinewavestoremove,and pipeline to Level 2, and subsequently analysed using the the use of a frequencymask. We estimated a maximalerror of Herschel Interactive Processing Environment2 (HIPE v5.1, Ott 50%onthedeepestabsorptionfeaturesofG34.3+0.1andW51, etal.2010).ThefinalanalysiswasperformedwiththeGILDAS- 30 % on those of W33A, and W31C and 10 % on the others. CLASS90software3(Pety2005),andasetofFortran95numeri- Thelattervalueiscomparabletothatduetotheuncertaintieson calroutinesthatwedeveloped.Whilethesignalsmeasuredinthe thebeamefficiencyandthesidebandgainratio(Roelfsemaetal. two orthogonalpolarizations that were obtained with the three 2012). LOsettingsagreedexcellentlyforboththeCH+ and13CH+ line For each transition and both polarizations, we obtained an observations,theSH+spectra,displayedinFig.1,exhibitstand- average spectrum by combining the data from the three obser- ing waves (SW) of identified origin4 and removed using the vationswithdifferentLOsettings.Becauseweareinterestedin HIPE sine wave fitting task FitHifiFringe (FHF). Since the in- thevelocitystructureandthepropertiesoftheabsorbinggas,the ferreddetectedopacitiesofSH+arelow,andsincetheperiodand spectrainbothpolarizationswerenormalizedtotheirrespective theamplitudeofthewavesaresimilartothesizeandthedepth continuumtemperature.As in Falgaroneetal. (2010),we used the saturatedshape ofthe CH+ absorptionlineprofilestomea- surethesidebandgainratiosRat835.1375GHz,definedasthe 2 Seehttp://herschel.esac.esa.int/HIPE download.shtmlformorein- ratioofthecontinuumtemperaturesinthelowerandupperside- formationaboutHIPE. bands.Forallspectrawithsaturatedabsorptionlines,wefound 3 See http://www.iram.fr/IRAMFR/GILDAS for more information R 0.9 1andR 0.7 0.8inthehorizontalandverticalpolar- aboutGILDASsoftwares. ∼ − ∼ − izations,respectively.We finallyusedthesevaluesat835GHz, 4 MostoftheobservedSWhaveaperiodof 90 100MHz,iden- ∼ − andR = 1at830GHzand526GHz,tocombinethedatafrom tified by Roelfsema et al. (2012) as reflections occuring between the mixer focus and the cold and hot black bodies. For two spectra ob- bothpolarizations,andobtainthefinalaveragespectra(withrms servedtowards W49Nwehadtoremoveanadditional standing wave noise levels given in Table 2) shown in Fig. 2 as functions of withaperiod 150MHz. the LSR (local standardof rest) velocity.This figure illustrates ∼ 3 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. the quality of the baselines over the large bandwidth for most 3. Analysisofthelineprofiles ofthespectra.Thestrongemissionlinesdetectedinthespectra showninFigs.1and2wereidentifiedastheHCO+(6 5)and 3.1.Multi-Gaussiandecomposition → H2CO(6 5)transitionsnear535.1GHzand525.6GHz,three As in Godard et al. (2010), the decomposition of the spectra → methanol lines near 829.9 GHz and 830.3 GHz, and the SO2 in velocitycomponentswas deducedthrougha multi-Gaussian emissionbandnear835GHz,emittedbytheSFRsthemselves. fitting procedure that we developed, based on the Levenberg- Marquardtalgorithm,whichtakesadvantageoftheinformation carriedbythehyperfinestructureofagiventransition.Thisalgo- 2.2.DeconvolutionoftheSH+hyperfinestructure rithmisappliedtoadjust,intheleast-squaressense,theminimal numberofGaussiansrequiredtodescribethedatawithintheob- Unfortunately (see Table 2), the velocity shifts ∆υ associated h servationalerrorswithoutintroducinganysystematiceffect.The withtheSH+hyperfinetransitionsaresmallerthantheobserved number of Gaussians was increased, for instance, when we vi- velocity ranges of the SH+ absorption spectra, and prevent us sually spotted serpentine curves - characteristic of poor fits in fromperforminga directcrosscomparisonofthe velocitypro- the line wings - in the residuals. Thus, for each transition, the filesof theSH+, CH+, and13CH+ lines. To solvethisproblem, observednormalizedlineprofile(line/continuum)iswritten wedevelopedanumericalproceduretoextractthesignalassoci- aetqeudatwioitnhsefoacrhτrh(yυp),eorfivneretthraenesnittiioren,absosolvripntgiotnhveefloolcloitwyidnogmsaeitno,f TT(υc) =exp−XjN=c1XkN=h1Ih(k)τ0(j)e−21(cid:20)υ−υ0σ(j0)−(j∆)υh(k)(cid:21)2, (2) whereτ , υ , andσ are the usualGaussian fitparameters.All 0 0 0 Nh spectraweredecomposedindependentlyfromoneanother,with- Ih(k)τr(υ ∆υh(k))= ln[T(υ)/Tc], (1) out imposing any constraints on the Gaussian parameters. The Xk=1 − − choiceoftheinputparameters,namelytheinitialvaluesofυ0(j) and σ (j) for each velocity components j, was guided by the 0 comparisonofthedifferentlinesobservedtowardseachsource. whereN , I ,τ ,andT(υ)/T arethenumberofhyperfinetran- h h r c To correctlydeterminethe opacityof weak absorptionfeatures sitions,theintensitiesrelativetothestrongesthyperfinecompo- blendedwithsaturatedlines,asobservedintheCH+spectra,we nent, the opacity of the reference hyperfine transition, and the appliedanempiricalmodelconstrainedbythewingsofthesatu- normalized line profile (line/continuum), respectively. The re- ratedlineprofiles.Theresultsofthemulti-Gaussiandecomposi- sultingspectraareshowninFig.3,and,asanexample,theout- tionprocedureandtheassociatederrorsontheGaussianparam- come of the hyperfine decomposition code, applied to the ab- etersaregiveninTableA.1ofAppendixA,andtheresultingfits sorptionlinesobservedtowardsSgrB2(N)andW49N,isshown and models of the saturated line profiles are displayed in Figs. inFig.4.Thisfigureillustratestheexcellentagreementbetween A.1-A.8.Becauseweaimtocomparethekinematicsignatures the originaldata (inblack)andthe spectra rebuiltafterdecom- oftheCH+,13CH+,andSH+spectra,wediscussbelowtherelia- position(ingreen). bilityoftheextractedGaussiancomponentsinviewoftheerrors The13CH+ J =1 0linealsoexhibitsaspin-rotationsplit- ontheirparameters. ← ting (Amano 2010), although the associated F = 3/2 1/2 ← and F = 1/2 1/2 transitions are separated by only 1.636 MHz( 0.59km←s 1)andarethereforetooclosetobeindividu- 3.2.Validityandself-consistencyofthemulti-Gaussian − allyres∼olvedgiventhesignificantvelocitydispersionofthegas. decompositions Thishyperfinestructureinducesasystematicbroadeningofthe Sincethedecompositionalgorithmallowsthedetectionofcom- absorption velocity components that depends on their FWHM ponentswith veryweak centralopacities, the numericalproce- ∆υ :for∆υ varyingbetween2and10kms 1thebroaden- real real − duremayconvergeuponGaussiancomponentswhoserealityis ingranges5between4%and0.1%.Sincethiserrorisfarsmaller questionable. To keep only the most reliable velocity compo- than that imputable to the rms noise levels of the 13CH+ spec- nentsforoursubsequentanalysisofthe linewidths,we applied tra (see Sect. 3), we chose to ignore the hyperfine structure of thefollowingdetectioncriterion:anyGaussiancomponentwas 13CH+ inthefollowinganalysis. considered real if its Gaussian parameters simultaneously ver- The spectra shown in Fig. 3 are highly structuredand have ify ∆υ > 3σ(∆υ) and τ > 2.5σ(τ), where σ(∆υ) and σ(τ) are thefollowingremarkableproperties:(1)thankstothehighsen- theerrorson∆υ andτ respectively.Theresultingconfirmedor sitivity of the HIFI receiver, the SH+ ion is seen in absorption uncertainGaussiancomponents(inthefollowingC-components alongeverylineofsight;(2)allhydridelinesaredetectedinab- andU-components)areindicatedinTableA.1(incolumns4,8, sorption,andwithinthelimitsimposedbythesignal/noise(S/N) and12),andinFigs.A.1-A.8(solidredanddashedbluecurves) ratio, CH+ 13CH+ and SH+ absorptions are detected over the ofAppendixA. wholevelocityrangeoftheforegroundmatteralongeachlineof Intotalwefoundthat25C-componentsaresimultaneously sight;(3)althoughtheopacityratiosvaryfromonelineofsight observedin atleast two molecularspectra towardsDR21(OH), to anotherand from onevelocity rangeto another,the velocity G34.3+0.1,W31C,W33A,W49N,andW51.Whencompared, structureofSH+ issimilartothoseofCH+ and13CH+.Itisthe the positions of these componentsare found to agree with one similarity and differences of these absorption line profiles that anotherwithin their respective error for 18 of them, within 0.5 arethefocusofthepresentstudy. kms 1 for6ofthem,andwithin1.3kms 1 for1ofthem;sim- − − ilarly, out of the 17 common C-components observed towards SgrA*+50 and SgrB2(N), 10 are found to agree with one an- 5 Thisresultonthelineprofilebroadeningisderivedfromtheanaly- otherwithin 1 km s−1, 6 within 2 kms−1, and1 within 3.5km sisof1760syntheticspectratakingintoaccountthehyperfinestructure s−1.ExceptfortheSH+componentsat-126kms−1observedto- of13CH+(linestrengthandvelocitystructure,Amano2010) wardsSgrA*+50theseshiftsinthecentralpositionsareatleast 4 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. fourtimessmallerthanthecorrespondingGaussianlinewidths. componentsofagivenlineofsight.Inaddition,sincethemost Moreover, many of the U-components have corresponding C- intenseSH+ componentsaresaturatedinCH+,andbecausethe componentsinotherspecies,indicatingthatthefittingprocessis moderateS/Nratioofthe13CH+ andSH+datapreventsusfrom robustandthattheselectionmethodissevere. observingthe low-opacitystructuresdetectedin theCH+ spec- Theseconcordancescombinedwiththestrictselectiononthe tra, the respective distributions do not correspond to the same GaussianparameterssuggestthatallC-componentsarerealde- velocitycomponents.Itisthereforeremarkablethatthedistribu- tectionsandnotartefactscausedbynoiseorthestandingwaves tionsoftheCH+,13CH+,andSH+widthsoftheGaussianveloc- removingprocedure. itycomponentsaresosimilar,evenidenticalwithinthestatistical uncertainty. They exhibit a common pattern: a peak (hereafter called P1),observedtowardsallthe sources, definedbya first- 3.3.ComparisonoftheGaussianlinewidths (mean) and a second- (standard deviation) order moments6 of 4.2 0.2kms 1 and1.5 0.1kms 1,respectively,andanex- In Fig. 5, we display the distributions of linewidths associated − − ± ± with the C-components extracted from the CH+, 13CH+, and tendedtail (hereaftercalled P2), observedonly on the Galactic SH+ spectra. To emphasize the differences observed along the centresightlines(leftpanels),with∆υ-valuesupto20kms−1. Galactic centre sightlines (l 0), these distributionsare com- Becausethe linesofsightsample kiloparsecsofinterstellar putedforallsightlines(leftpa∼nels),andforthel,0sightlines material in the Galaxy, the patterns P1 and P2 result from the only(rightpanels).Asacomparison,thelinewidthdistributions small-scale dynamics of the production processes of CH+ and of the HCO+ groundstate radio transition observedby Godard SH+,theturbulentdynamicsofthediffuseISM,andtheGalactic et al. (2010) towards W31C, W49N, W51, and G34.6 are dis- dynamics.Thecomparisonbetweentheleftandright(d)and(e) playedinpanels(a),andthoseofCHandCH+visibletransitions panelsofFig.5showsthatthefirst-andsecond-ordermoments observedathighspectralresolution( 0.3kms 1)in thelocal of the ∆υ distributions are the same for the componentsof the diffuse medium by Crane et al. (1995∼)are show−n in panels (c) Galactic ISM along the l , 0 sight lines and the visible CH+ of Fig. 5. Lastly, panels (d) and (e) of Fig. 5 display the first- lines sampling the solar neighbourhood (defined by first- and and second-ordermomentsof the ∆υ-distributionsissued from second-ordermoments of 4.3 0.4 km s−1 and 1.85 0.3 km thecombinedCH+,13CH+,andSH+data(redsquares)andfrom s−1,respectively).Becausethel±atterisunaffectedbythe±Galactic theCH+dataobservedinthesolarneighbourhood(bluecircles). dynamics,thissimilaritysuggeststhatthepeakP1resultsfrom Inpanels(a),thehistogramofHCO+linewidthsisnarrowerand thedynamicsoftheformationprocessesofCH+ andSH+ con- peaks at lower values than those of the submillimetre lines of volvedwiththatoftheturbulenceofthediffusegas.Becausethe CH+,13CH+,andSH+.Conversely,thehistogramofthevisible tailofthe∆υdistributionsisobservedonlyontheGalacticcen- CH+ data, characterisingthe local diffuse interstellar matter, is tresightlines,andbecausethehighabsorptiondips(∆υ>8km very similar to that of the submillimetre data. We discuss the s−1) observedon the l , 0 sight lines can be decomposedinto validityandthesignificanceofthesecomparisonsbelow. manynarrowcomponents(asperformedbyGodardetal.2010 with the HCO+ spectra), we conclude that P2 is caused by the To demonstratethattheabsenceofnarrowvelocitycompo- nentsintheCH+,13CH+,andSH+spectraisrealandnotduetoa Galacticdynamicsonly. Lastly we note that while the first- and second-order mo- limitationofourextractionalgorithm,wehavederivedthemini- ments of peak P1 both agree with those of the ∆υ distribution mumwidthofaGaussiancomponentofopticaldepthτ thatcan 0 beextractedfromagivenprofilecharacterisedbyanoiseσ at obtainedby Crane et al. (1995)within the statistical uncertain- thevelocityresolutionδυ.Becauseσ scalesinverselywithτthe ties,theyalsosubstantiallydifferfromthoseoftheCH+ ∆υdis- τ tributionderivedinthesolarneighbourhoodbyPanetal.(2004), squarerootofthevelocityresolution,acomponentdetectedata 3στlevelnecessarilyverifies awnhdo0fi.4ndfi0r.s0t3-aknmdsse1c.oAnds-oprrdoepromseodmbeynPtsanofe3t.a3l.±(200.0045)k,mthes−se1 − ± ∆υ>δυ[3σ /τ ]2. (3) differences may originate from their profile fitting method: (1) τ 0 the number of CH+ components and their position were con- While the noise level of the SH+ spectra towards SgrA*+50, strainedbytheobservationsofotherspecies,possiblyunrelated DR21(OH),G34.3+0.1,andW33Aforbidsustoextractcompo- chemically(e.g.CN,CO,Ca),and(2)amaximalvalueof∆υof nentswithlinewidthsmallerthan1kms 1,thatofalltheother 5.8kms 1 wasset. − − spectra is small enough to allow us to detect narrow velocity structuresdowntotwovelocitychannels(0.72kms 1 forCH+ − and13CH+,and1.14kms 1 forSH+).Thereforethescarcityof 4. Analysisoftheintegratedopacities − componentsin the first bin [0 ; 2 km s−1] of the CH+, 13CH+, Since the multi-Gaussian decomposition of CH+, 13CH+, and andSH+ histogramsisnotanoiseartefact. SH+ absorptionprofilesprovidessets of C-componentsthatdo Now, can we compare these linewidth distributions with not always strictly coincide in velocity and width, and sets of one another? Because the S/N ratios of HCO+ (see Table. 1 of U-componentsthatsometimesclearlycorrespondtorealabsorp- Godardetal.2010)andCH+(seeTable.2)profilesarehighand tionbutwithwidthanddepthpoorlyconstrained,oursubsequent comparable,thosetwosetsofspectraaredecomposedwiththe analysisandcomparisonofthecolumndensitiesandabundances samelevelofdetection.Thenoisethereforeaffectsthestatistics ofthesespeciesisbasedonintegralsofopacitiescomputedover ofthecomponentlinewidthsatthesamelevel.Thesameistrue broadvelocityintervalscorrespondingtomarkedabsorptionfea- forthelinesofSH+and13CH+,whichhavecomparable,though turescommonto alllines. Thesebroadintervals(typically5 to poorer,S/Nratios.Finally,becauseCH+ and13CH+ necessarily 20kms 1)aregiveninthetwofirstcolumnsofTable3.Thecol- − bear the same dynamical signatures, all distributions displayed inFig.5canbecomparedwithoneanother. 6 Theuncertaintiesonthemomentsofthedistributionsarethestatis- Werecallthatallabsorptionspectrahavebeendecomposed ticalstandarderrorscomputedforthefirst-andsecond-ordermoments intoGaussiansindependentlyfromoneanother,withoutimpos- asσ/√N andσ/√2N,respectively,whereσisthestandarddeviation ingthesamevelocitycentroidsorwidthtothedifferentvelocity andNthesizeofthesample. 5 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. umndensitiesgivenincolumns4,5,and6ofTable3arederived and W51 are given in columns 9 and 10 of Table 3. Towards assumingasingleexcitationtemperatureof4.4Kfor12CH+and SgrA*+50 and SgrB2(N), because most of the gas appears to 13CH+, and of 3.0K forSH+ (see AppendixB). Followingthe beassociatedwiththeGalacticcentreenvironment(Rodriguez- method set in Sect. 3.2 to keep only the most reliable absorp- Fernandez et al. 2006), a 13C/12C abundance ratio of 20 is as- tionfeatures,a3σdetectionlevelwasadopted.Throughout,ev- sumed everywhere except for the velocity interval -20 to +30 erymeasurementbelowthislevelisconsideredasalowerlimit. kms 1,avelocitydomainwheretheabsorptionfeaturesarealso − Conversely, we adopt a conservative lower limit of 2.3 on the associatedwithgasintheGalacticplane,andwhereweusetwo opticaldepthfor the saturatedvelocityintervals(Neufeldet al. alternativevalues,20and60,tobrackettheresult. 2010b). Theuncertaintiesgivenin Eq. 4 correspondto the standard deviationofthebestleast-squaresfitperformedbyMilametal. (2005) on the CN, CO, and H CO data. They do not take into 4.1.Variationofthe12C/13CisotopicratioacrosstheGalactic 2 accounttheuncertaintyonR duetotherandommotionofinter- disk G stellarclouds.Todoso,wereliedontheanalysisoftheHIemis- sion in the first Galactic quadrant by Elmegreen & Elmegreen (1987):theyfoundthatalargepartofthemassofthediffusegas is distributedinto 200pc superclouds,separatedalongspiral 114400 arms by 1.5 kpc. ∼Their one-dimensional internal velocity dis- this work persion of 5.3 km s 1 is the main sourceof uncertaintyon R . Milam et al (2005) − G 112200 6.2 R + 18.7 Taking into accountthe (l,v) location of the absorbing gas ob- G servedtowardseachsource(seetheequationofR inthecaption 110000 G ofTable3),weobtainamaximaluncertaintyofabout30%on C)C) 1313N(N( 8800 RtoGta.lWunhceenrtcaoinmtybionfeadbowuitth50th%eoenrrtohres1g2iCve/n13CinrEatqio. 4a,ndwtehefinsudba- C) / C) / 6600 sequentN(12CH+)givenincolumns9and10ofTable3. 22 11 N(N( 4400 4.2.ComparisonofthecolumndensitiesofCH+andSH+ 2200 00 00 22 44 66 88 1100 1122 1144 1166 1188 RR ((kkppcc)) GG GC los other los Figure6. N(12C)/N(13C) column density ratio as a function of the 111eee+++111444 galactocentric distance R . The red squares are from this work, and G thereforeevaluatedwithmeasurementsoftheN(12CH+)/N(13CH+)col- umndensityratio.Thebluecirclesarefrompreviousmeasurementsof -2-2-2m)m)m) tchoeluNm(n12dCeNns)i/tNy(r1a3tCioNs)(,MNi(la12mCOet)/aNl.(2103C05Oa),ndanrdefeNr(eHnc122eCsOth)e/rNei(nH)12w3ChOile) +++) (c) (c) (c 111eee+++111333 HHH thegreencurvecorrespondstoalinearleast-squaresfitappliedtothese SSS N(N(N( data. 111eee+++111222 In Fig. 6, we display the 12C/13C column density ratio de- rivedfromthepresent12CH+and13CH+dataasafunctionofthe 111eee+++111111 111eee+++111222 111eee+++111333 111eee+++111444 Galactocentricdistance RG (givenin columns7 and 8 of Table NNN(((CCCHHH+++))) (((cccmmm---222))) 3)whichwascomputedassumingaflatGalacticrotationcurve. We comparedthese resultsto those deducedfrompreviousob- Figure7.SH+columndensityasafunctionoftheCH+columndensity servationsofCN,CO,H COandtheirrespectiveisotopologues 2 per broad velocity interval (see Table 3). The open squares and open (Milametal.2005).Wefoundthatthefivefirmvalues(indicated circles are from the present analysis and from Menten et al. (2011), in Table 3) derivedfromthe simultaneousdetectionsof 12CH+ respectively. Theblueandpurplepointsarefromtheabsorptionlines and13CH+absorptionlinesoverthesamevelocityrangearecon- observed along the Galacticcentre sight lines(SgrA*+50, SgrB2(N), sistentwiththosederivedfromtheneutralspecies.The25lower andSgrB2(M))andalongtheothersightlines(DR21(OH),G34.3+0.1, limitsinferredfromsaturated12CH+ lines(dashedsymbols)are W31C,W33A,W49N,andW51),respectively.Theblackdashed,dot- alsoconsistentwithMilametal.(2005).Thisresultnotonlysug- ted,anddashed-dottedcurvesindicateN(SH+)/N(CH+)ratiosof0.01, geststhattheisotopicratiosmeasuredwithionsandneutralsare 0.1,and1,respectively. notsubstantiallyinfluencedbychemicalfractionationprocesses, butitalsovalidatestheuseoftheempiricalrelation 12C/13C=6.2( 1.0)R +18.7( 7.4) (4) Fig.7 displaysthe SH+ andCH+ columndensitiesinferred ± G ± foreachbroadvelocityinterval.TheCH+columndensitieswere found by Milam et al. (2005) to infer the 12CH+ column den- derived either from the 12CH+ profile, where unsaturated, or sities from those measured in the 13CH+ spectra. The 12C/13C from13CH+ and the aboveisotopic ratio in the othercase. The ratio and N(12CH+) computed from Eq. 4 for the velocity in- data set includes the results of the present study and those ob- tervalstowardsDR21(OH),G34.3+0.1,W31C,W33A,W49N, tainedbyMentenetal.(2011)towardsSgrB2(M).WhileMenten 6 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. et al. (2011) reported the detection of two absorption compo- 2003). Marshall et al. (2006) have measured the near infrared nents at N(CH+) 3 1012 and N(SH+) 1013 cm 2, we colour excess in large areas of the inner Galaxy (l < 100 , − ◦ removedthose poi∼ntsfr×omFig. 7 because th∼e 13CH+ spectrum b < 10 ) to obtain the visible extinctions (A 1|0|A ), pro- ◦ V K | | ∼ inthecorrespondingvelocityrangeclearlyexhibitscontamina- viding an estimate of the total hydrogencolumn density along tion of the absorption features by a strong and broad emission thelinesofsight.However,becauseofthelowresolutionofthe line.Last,wenotethatthefewpointsat N(CH+) < 1013 cm 2 2MASS extinction analysis ( 15 arcmin), the uncertainty on − correspondtothefaintest12CH+ absorptionfeatures.Sincethey N (computedas the standard∼deviationof the extinctionmea- H arenotdetectedinSH+,thesepointsweaklyconstrainoursub- sured along the four closest lines of sight surrounding a given sequentanalysisoftheSH+/CH+ratio. source)canbeimportant,andisashighas50%forDR21(OH), TakingintoaccounttheupperandlowerlimitsshowninFig. W31C,andW33A.ThelastcolumnsofTable4showthatthese 7,wefindthatN(CH+)andN(SH+)spanmorethantwoorders twoindependentmeasurementsofN differbylessthan25%. H ofmagnitudeandthattheSH+/CH+columndensityratiovaries from less than 0.01 to 1. Interestingly, the N(SH+)/N(CH+) ratios observed towards SgrB2(M), SgrB2(N), and SgrA*+50 5. Resultsanddiscussion are very similar, with a mean value of 0.28 0.02, 9 times higherthanthattowardsDR21(OH),G34.3+0±.1,W31C∼,W33A, 5.1.Chemicalpropertiesofthegasseeninabsorption W49N,andW51, N(SH+)/N(CH+) 0.03 0.007.Theabove differenceinthemheanSH+/CH+ratiio∼ismuc±hlargerthanthe50 %uncertaintyonthecomputed12C/13Cratio.Moreover,weob- tainthesamedifferenceofvaluesifweuseonlythefewpoints detectedin12CH+.Itisthereforeunlikelythatthisdifferencecan be ascribed to an uncertainty on the 12CH+/13CH+ ratio. Last, 111 Daflon&Cunha(2004)foundthatcarbonandsulfurhavesim- ilar abundance gradients across the Galactic disk (with slopes of-0.037and-0.040dexkpc−1,respectively).Consequently,the +++))) differenceobservedintheSH+/CH+columndensityratiosmea- CHCHCH 000...111 sured on the l 0 and l , 0 sight lines is most likely tracing N(N(N( ∼ +++)/)/)/ variations of both the physical and chemical conditions of the HHH SSS diffusegassampledineachcase. N(N(N( 000...000111 Finally, with a correlation coefficient of 0.1, no evident chemicalrelationshipseemstostandoutfromFig.7,asurpris- ing finding in view of the fact that CH+ and SH+ are clearly GC los linked by their dynamics(see Sect. 3.3). However,this lack of other los 000...000000111 correlationappliestothecolumndensities.Inthefollowing,we 111eee---000888 111eee---000777 discussthepropertiesoftheabundancesrelativetohydrogen,a NNN(((CCCHHH+++)))///NNN HHH discussionthatrequirestheknowledgeofN . H Figure8. N(SH+)/N(CH+) column density ratio as a function of the 4.3.Estimationofthehydrogencolumndensitiesinthe CH+ mean abundance. The CH+, SH+, and H column densities are computedfromCH+,13CH+,SH+,HI,HF,andCHopacitiesintegrated broadvelocityintervals over thevelocityintervalsgiveninTables3and4.Theblueandpur- To (1) estimate the mean molecular abundances that are to be ple points are from the absorption lines observed along the Galactic compared with the chemical model predictions (Godard et al., centresightlines(SgrA*+50andSgrB2(N))andalongtheothersight inpreparation),and(2)toestablisha possiblerelationbetween lines (DR21(OH), G34.3+0.1, W31C, W33A, W49N, and W51), re- theCH+ andSH+ abundances,itisessentialtoestimatethehy- spectively. The redline corresponds toa least-squares fit of the latter data. drogen column density N in the broad velocity intervals over H which N(CH+) and N(SH+) are measured.Sincethe molecular fractionofthegaswhereCH+ andSH+ aredetectedislow(0.4 onaverage,seeAppendixC),bothatomicandmolecularhydro- In Fig. 8, we display the N(SH+)/N(CH+) column density genHIandH areneededtoestimateN . ratioasafunctionoftheCH+ meanabundance(withrespectto 2 H The method consists in separately evaluating the column the total hydrogen column density N ) integrated over the ve- H densities of HI and H , using the VLA observations of the locity intervals givenin Table 4. Because Menten et al. (2011) 2 λ21 cm absorption line of H (Koo 1997; Fish et al. 2003; useda differentmethodthanwe didtoestimate theH column 2 Dwarakanathetal.2004;Pandianetal.2008;Langetal.2010) densities7thedataobtainedtowardsSgrB2(M)arenotincluded and a relevant tracer for the molecular hydrogen because H in this plot. We found that both the mean abundances and the 2 is not directly observable. Then, N = N(HI) + 2N(H ). In abundanceratiosvarybytwoordersofmagnitudeinthediffuse H 2 AppendixC we discussthe validity ofusing the HIFI observa- ISMsampledbythoselinesofsight.Inaddition,Fig.8reveals tionsofCHandHFtocomputetheH columndensities.Ifavail- majordifferencesbetweentheresultsobtainedonthel 0and 2 able, HF is preferentiallyused in the followingsection to infer thel , 0sightlines.WhiletheCH+ meanabundancess∼panthe N(H )andtheensuingCH+,13CH+,andSH+meanabundances. same range of values in both cases, the SH+/CH+ ratio mea- 2 If not, N(H ) is derived from CH, assuming a HF/CH mean sured towards SgrA*+50 and SgrB2(N) shows no correlation 2 abundanceratioof0.4(avaluedefinedwithalargestandardde- viationof0.25),deducedfromcolumns5and6ofTable4.Last, 7 InMentenetal.(2011)theH columndensitiesarededucedfrom 2 wale. (c2o0m1p0a),refrtohmesethveaaluneaslyosfisNoHftothteho2sMeAinSfeSrrseudr,vaesyi(nCGuotrdiaertdaelt. 1th9o9s6e).ofHCO+,assumingN(HCO+)/N(H2)=5×10−9(Lucas&Liszt 7 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. with N(CH+)/N . Conversely, the points corresponding to the theirrapiddestruction,theCH+ andSH+ abundancespredicted H observationsperformedonthel,0sightlinesexhibitatrend by UV-dominated chemistry are very low. Fig. 9 displays the CH+ and SH+ relative abundances computed with two mod- N(SH+)/N(CH+) 0.09 108 N(CH+)/N −1.4, (5) els of PhotoDissociation Regions (PDR)9 illuminated on one H ∼ h × i side as functions of the shielding from the ISRF AV. For the with a correlation coefficient of 0.8. These are the results that physicalconditionsofthediffusegas,weobtainN(CH+)/N H have to be compared with the predictions of chemical models 1.8 10 11 and N(SH+)/N 1.6 10 13, two to four order∼s − H − × ∼ × appliedtothediffuseISM. ofmagnitudelowerthantheobservedvalues,andwithacorre- spondingabundancerationeverhigherthan0.01. 5.2.CarbonandsulfurchemistriesinthediffuseISM 5.2.2. Alternativemodels 5.2.1. UV-drivenchemistry In the diffuse interstellar medium sampled by the l , 0 sight lines,theonlyproductionpathwaysefficientenoughtobalance thefastdestructionofCH+ andSH+ are 11ee--1100 C++H CH++H ∆E/k=4640K, and (8) 2 → CCHH++ S++H SH++H ∆E/k=9860K. (9) HH 11ee--1111 2 → nn X)/X)/ Since these reactions are highly endothermic, it has been pro- n(n( e e 11ee--1122 posedthathighCH+ andSH+ abundancesarethesignaturesof cc anan shockwavespropagatingthroughtheISM(Draine1986;Millar dd unun etal.1986).ComparingthepredictionsofHDandMHDshocks abab 11ee--1133 with the CH+ column density observedtowards ζ Oph, Draine e e relativrelativ 11ee--1144 SSHH++ (c1a9se86in) awnhdicPhinCeaHu+daensdFSorHeˆ+tsfeotrmal.m(1a9in8l6y)tfharvoouugrhediothne-nMeuHtrDal n = 50 cm-3 friction.Includingthe sulfurchemistryMillar etal. (1986)and H n =300 cm-3 PineaudesForeˆtsetal.(1986)predictedaSH+/CH+abundance H 11ee--1155 ratio increasing from 0.01 to 0.4 for a shock speed increasing 11ee--0033 11ee--0022 11ee--0011 11ee++0000 from 9 to 16 km s 1, a transverse magnetic field of 5µG and AA − VV a preshockdensityof 20 cm 3. These resultsagreeexcellently − withourobservations. Figure9.PredictionsoftwoPDRmodelsforgasdensitiesnH =50and Anotherscenario,alternativetotheshockwaves,istheTDR 300 cm 3.TheCH+(inred)andSH+(inblue)relativeabundancesare − (turbulentdissipationregions)model.Inthismodeltheturbulent displayedasfunctionsoftheshieldingA fromtheinterstellarradiation V energy is dissipated in many small-scale magnetized vortices fieldforaslabofgasilluminatedononesideonly. inwhichtheionizedandneutralfluidsdecouple.Dissipationis causedbybothion-neutralfrictionandviscousdissipationatthe edgeofthevortices.ComparingthepredictionsofTDRstoob- InachemistryentirelydrivenbytheUV-radiationfieldand servationsofCH,CH+,OH,andHCO+ inthelocaldiffusegas, thecosmicrayparticles,thehydrogenationchainsofcarbonand Godard et al. (2009) also favoured models in which the dissi- sulfur,andthesubsequentproductionsofCH+ andSH+ areini- pation is dominated by the ion-neutral friction and where the tiatedbytheradiativeassociationsofC+ andS+ withmolecular production of CH+ and SH+ via reactions 8 and 9 is triggered hydrogen, by the ambipolar diffusion. An analysis of the SH+/CH+ ratio obtainedintheframeworkoftheTDRmodelwillbepresented C+ + H2 → CH+2 + γ and (6) inaforthcomingpaper(Godardetal.inprep.). S+ + H SH+ + γ, Whilethescenariosofshocksandvorticescouldequallyap- 2 → 2 plytogassampledbythel 0sightlines,analternativechem- ∼ tworeactionswithlongtimescales:2 106yr f 1 50 cm 3/n icalprocessmaybeatworkthere.Largeamountsofthediffuse × H−2 (cid:16) − H(cid:17) gasdetectedalongSgrA*+50,SgrB2(N),andSgrB2(M)belong Hanedrb1st×et1a0l.81y9r8f9H−)2,1w(cid:16)5h0ercemf−3/nisHt(cid:17)h,eremspoelecctiuvlealryfr(aHcteirobnstde1fi9n8e5d; tvoadtheedCbyenatrsatrloMngolXec-rualyarraZdoinaetio(CnMfieZld).,BhiegchaCusHe+thaendCMSHZ+iasbpuenr-- as f = 2n(H )/n . In comHp2arison,CH+ and SH+ are mainly dancescouldbeduetoregionswhereC++ andS++ ionsco-exist H2 2 H destroyedbyhydrogenationanddissociativerecombination8, withH andformCH+ andSH+ bythereactions 2 CH+ + H CH+ + H and C+++H CH++H+, and (10) 2 → 2 (7) 2 → SH+ + e S + H, − → S+++H2 SH++H+, (11) → twoprocesseswithshorttimescales:1yr f 1 50 cm 3/n and 5yr (T/100K)0.72(1.38 10−4/xe )(50 cmH−−23/(cid:16)nH), re−specHti(cid:17)vely. a(1s1p)roobptoasinededbbyyLCahnegneret(1al9.7(82)0.0U3)s,inAgbethleethailg.h(2r0a0te8)offoruenadcttihoant × − Becauseofthelackofefficientproductionpathwaystobalance 9 The Meudon PDR model employs a one-dimensional chemical 8 Because the hydrogenation of SH+ is highly endo-energetic: codeinwhichaslabofgaswithagivendensityprofileisilluminated ∆E/k=6380K. bytheambientinterstellarradiationfield(LePetitetal.2006). 8 B.Godardetal.:ComparativestudyofCH+andSH+absorptionlines. thepredictedSH+columndensityformoleculargassurrounding Board, Stockholm University - Stockholm Observatory; Switzerland : ETH anactivegalacticnucleusistwoordersofmagnitudehigherthan Zurich,FHNW;USA:CalTech,JPL,NHSC.BG,EF,MG,andMDLacknowl- thatpredictedbyUV-dominatedchemistry.Sinceratemeasure- edgethesupportfromtheCentreNationaldeRechercheSpatiale(CNES),and from ANRthrough the SCHISMproject (ANR-09-BLAN-231). BG, JC, and mentsofreaction(10)pointtolowervalues,thischemicalpro- JRGthanktheSpanishMICINNforfundingsupportthroughgrants,AYA2009- cess couldaccountforthe high meanSH+/CH+ abundancera- 07304andCSD2009-00038 tioderivedtowardsSgrA*+50,SgrB2(N),andSgrB2(M)(about nine times higher than that obtained along the other Galactic sightlines,seeSect.4.2). The above results are in line with the detection of large References amounts of warm diffuse gas recently identified with the 3µm Abel,N.P.,Federman,S.R.,&Stancil,P.C.2008,ApJ,675,L81 absorptionlinesofH+(Okaetal.2005;Geballe&Oka2010)in Abia,C.,Cunha,K.,Cristallo,S.,etal.2010,ApJ,715,L94 3 theCMZ.Thetemperature( 200 300K)ofthelow-density Allen,M.M.1994,ApJ,424,754 gas phase is found to be con∼siderab−ly higher than that of typi- Amano,T.2010,ApJ,716,L1 Brown,A.&Balint-Kurti,G.G.2000,J.Chem.Phys.,113,1870 caldiffuseclouds,anduniquetotheGalacticCMZ(Gotoetal. Chen,D.,Gao,H.,&Kwong,V.H.2003,Phys.Rev.A,68,052703 2008). They also corroborate the specific dynamics of molec- Comito,C.&Schilke,P.2002,A&A,395,357 ular clouds associated with the Galactic centre regions (e.g. Crane,P.,Lambert,D.L.,&Sheffer,Y.1995,ApJS,99,107 Rodriguez-Fernandezetal.2006). Crawford,I.A.1995,MNRAS,277,458 Crawford,I.A.&Williams,D.A.1997,MNRAS,291,L53 Cutri,R.M.,Skrutskie,M.F.,vanDyk,S.,etal.2003,2MASSAllSkyCatalog ofpointsources.,ed.Cutri,R.M.,Skrutskie,M.F.,vanDyk,S.,Beichman, 6. Summaryandperspectives C.A.,Carpenter,J.M.,Chester,T.,Cambresy,L.,Evans,T.,Fowler,J.,Gizis, J.,Howard,E.,Huchra,J.,Jarrett,T.,Kopan,E.L.,Kirkpatrick,J.D.,Light, We have presented the analysis of Herschel/HIFI observations R.M.,Marsh,K.A.,McCallon,H.,Schneider,S.,Stiening,R.,Sykes,M., oftheground-statetransitionsofCH+,13CH+,andSH+,allde- Weinberg,M.,Wheaton,W.A.,Wheelock,S.,&Zacarias,N. tected in absorption against the submillimetre dust continuum Daflon,S.&Cunha,K.2004,ApJ,617,1115 of distantstar-formingregionsand the Galactic centre sources, Danks,A.C.,Federman,S.R.,&Lambert,D.L.1984,A&A,130,62 Dowell,C.D.,Lis,D.C.,Serabyn,E.,etal.1999,inAstronomicalSocietyof SgrA*+50andSgrB2(N).Thevelocityrangeoverwhichtheab- thePacificConferenceSeries,Vol.186,TheCentralParsecsoftheGalaxy, sorptionfeaturesaredetectedcorrespondstodiffuseortranslus- ed.H.Falcke,A.Cotera,W.J.Duschl,F.Melia,&M.J.Rieke,453 centenvironments.Thedeconvolutionofthehyperfinestructure Draine,B.T.1986,ApJ,310,408 embedded in the SH+ 1,2 0,1 spectra, and the independent Draine,B.T.&Katz,N.1986,ApJ,310,392 decomposition of the absor−ption domains in Gaussian velocity Dwarakanath,K.S.,Goss,W.M.,Zhao,J.H.,&Lang,C.C.2004,Journalof AstrophysicsandAstronomy,25,129 components allowed us to identify many velocity components Elmegreen,B.G.&Elmegreen,D.M.1987,ApJ,320,182 persightlineandtoperformacrosscomparisonofthedynami- Falgarone,E.,Godard,B.,Cernicharo,J.,etal.2010,A&A,521,L15+ calandchemicalsignaturesofthosethreespecies. Falgarone,E.,PineaudesForeˆts,G.,&Roueff,E.1995,A&A,300,870 This study provides the following main results. (1) The Federman, S.R.,Rawlings, J.M.C.,Taylor,S.D.,&Williams, D.A.1996, linewidth distributions of CH+, 13CH+, and SH+ are found to MNRAS,279,L41 Federman,S.R.,Strom,C.J.,Lambert,D.L.,etal.1994,ApJ,424,772 be similar and likely trace the kinematics of the chemical pro- Fish,V.L.,Reid,M.J.,Wilner,D.J.,&Churchwell,E.2003,ApJ,587,701 duction processes of these species convolved with that of the Geballe,T.R.&Oka,T.2010,ApJ,709,L70 turbulent and Galactic dynamics of the diffuse ISM. (2) These Gerin,M.,deLuca,M.,Black,J.,etal.2010a,A&A,518,L110+ linesarebroad( 4.2kms 1),similartothosefoundinvisible Gerin,M.,deLuca,M.,Goicoechea,J.R.,etal.2010b,A&A,521,L16+ ∼ − Godard,B.,Falgarone,E.,Gerin,M.,Hily-Blant,P.,&deLuca,M.2010,A&A, absorption lines in the solar neighbourhood, and broader than 520,A20+ those of HCO+ and CN along the same lines of sight. (3) The Godard,B.,Falgarone,E.,&PineauDesForeˆts,G.2009,A&A,495,847 SH+/CH+ abundanceratiocoversabroadrangeofvaluesfrom Goto,M.,Usuda,T.,Nagata,T.,etal.2008,ApJ,688,306 0.01 to more than 1, shows higher values in warmer environ- Greaves,J.S.&Williams,P.G.1994,A&A,290,259 Gredel,R.1997,A&A,320,929 ments (such as the Galactic centre clouds), and appears to be Gredel,R.,vanDishoeck,E.F.,&Black,J.H.1993,A&A,269,477 proportionalto (N(CH+)/N ) 1.4 in the diffuse gas sampledby H − Gry,C.,Boulanger,F.,Nehme´,C.,etal.2002,A&A,391,675 thel,0sightlines.(4)AsforCH+,theSH+abundancescannot Hammami,K.,OwonoOwono,L.C.,&Sta¨uber,P.2009,A&A,507,1083 bereproducedbyUV-drivenchemistryinthediffusegas. Haud,U.&Kalberla,P.M.W.2007,A&A,466,555 The unique properties of the carbon and sulfur chemistries Herbst,E.1985,ApJ,291,226 Herbst,E.,Defrees,D.J.,&Koch,W.1989,MNRAS,237,1057 supporttheframeworkofawarmchemistrytriggeredbyturbu- Indriolo,N.,Oka,T.,Geballe,T.R.,&McCall,B.J.2010,ApJ,711,1338 lentdissipation(eitherinshocksorintensevelocityshears)that Jenniskens,P.,Ehrenfreund,P.,&De´sert,F.1992,A&A,265,L1 selectivelyenhancestheproductionofSH+forwhichtheforma- Joulain,K.,Falgarone,E.,PineaudesForets,G.,&Flower,D.1998,A&A,340, tionendothermicityisthehighest.Adetailedcomparisonofthe 241 Kerr,F.J.&Lynden-Bell,D.1986,MNRAS,221,1023 TDRmodelpredictionswiththeseobservationalresultswillbe Koo,B.1997,ApJS,108,489 giveninaforthcomingpaper(Godardetal.inprep.). Lacour,S.,Ziskin,V.,He´brard,G.,etal.2005,ApJ,627,251 Lambert,D.L.,Sheffer,Y.,&Crane,P.1990,ApJ,359,L19 Acknowledgements. Wearemostgratefultotherefereeforprovidingconstruc- Lang,C.C.,Goss,W.M.,Cyganowski,C.,&Clubb,K.I.2010,ApJS,191,275 tivecommentsandhelpinginimprovingthecontentofthispaper.HIFIhasbeen Langer,W.D.1978,ApJ,225,860 designedandbuiltbyaconsortiumofinstitutesanduniversitydepartmentsfrom LePetit,F.,Nehme´,C.,LeBourlot,J.,&Roueff,E.2006,ApJS,164,506 acrossEurope,CanadaandtheUnitedStates(NASA)undertheleadership of Lesaffre,P.,Gerin,M.,&Hennebelle,P.2007,A&A,469,949 SRON,NetherlandsInstituteforSpaceResearch,Groningen,TheNetherlands, Lim,A.J.,Rabada´n,I.,&Tennyson,J.1999,MNRAS,306,473 andwith majorcontributions from Germany,France andthe US.Consortium Liszt,H.&Lucas,R.2002,A&A,391,693 members are : Canada: CSA, U. Waterloo; France : CESR, LAB, LERMA, Liszt,H.S.,Lucas,R.,&Pety,J.2006,A&A,448,253 IRAM; Germany : KOSMA, MPIfR, MPS; Ireland : NUI Maynooth; Italy : Lucas,R.&Liszt,H.1996,A&A,307,237 ASI,IFSI-INAF,OsservatorioAstrofisicodiArcetri-INAF;Netherlands:SRON, Magnani,L.&Salzer,J.J.1989,AJ,98,926 TUD; Poland : CAMK, CBK; Spain : Observatorio Astrono`mico Nacional Magnani,L.&Salzer,J.J.1991,AJ,101,1429 (IGN),CentrodeAstrobiologia;Sweden:ChalmersUniversityofTechnology Maier,J.P.,Lakin,N.M.,Walker,G.A.H.,&Bohlender,D.A.2001,ApJ,553, - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space 267 9

Description:
Weinberg, M., Wheaton, W. A., Wheelock, S., & Zacarias, N. Daflon, S. & Cunha, K. 2004, ApJ, 617, 1115. Danks, A. C., Federman, S. R., & Lambert,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.