ebook img

Comparative application of two vegetation classification approaches to large-scale mapping of bog vegetation PDF

10 Pages·0.432 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparative application of two vegetation classification approaches to large-scale mapping of bog vegetation

© Suoseura — Finnish Peatland Society ISSN 0039-5471 SUO 57(3), 2006 71 Helsinki 2006 Suo 57(3): 71–79 Comparative application of two vegetation classi- fi cation approaches to large-scale mapping of bog vegetation Olga Galanina Olga Galanina, Kainuu Regional Environment Centre, Friendship Park Research Centre, Lentiirantie 342, FIN-88900 Kuhmo, Finland, olga.galanina@ymparisto.fi This article focuses on geobotanical mapping with special emphasis on mire vegeta- tion. A brief review of the history of mire mapping in Russia is given. The purpose of the research reported here is to promote the application of cartographic methods to phytosociological studies as well as to contribute to further development of methods for large-scale mapping of mire vegetation. Kudrovsky mire massif (Leningrad region, NW Russia) was chosen as the study area. Two vegetation maps were prepared on the basis of different vegetation classifi cation approaches, namely the dominant (ecologic- phytocoenotic) and fl oristic (Braun-Blanquet) methods. The same vegetation relevé data were classifi ed using both approaches and the resulting classifi cations were used to construct legends for the maps. The traditions and problems of Russian vegetation cartography are briefl y discussed. Key words: dominant classifi cation, geobotanical map, mire massif, Russian cartog- raphy Introduction primitive, and the mapped patterns were large and monotonous. The scientifi c and practical value of a geobotani- The published literature offers very few map- cal map depends upon the content of its legend, ping schemes for single mire massifs (a synonym which can be based on the principles of vegeta- for Cajander’s mire complexes which is widely tion classifi cation. Thus, although most vegeta- used in Russian mire science) and mire systems tion classifi cations have been developed without that show the distribution of phytocoenoses and consideration of their compatibility with mapping micro complexes. Иванов (1957) gives black- procedures, many of them have later been used and-white schemes for several mire massifs, for mapping purposes (Pedrotti, 2004). among them Lamminsuo mire on the Karelian Russian scientists first attempted to map Isthmus. In these, microlandscapes are used as the mires at the beginning of 20th century (Сукачев, mapping units. Another example is a schematic 1906; Филатов, 1911, 1913; Какс, 1914). Tra- map of the Bor mire massif from the well-known ditionally, the mapping units were vegetation research on the Shirinskaya mire system in Len- formations (for example, Hypnetum, Pinetum, ingrad region by Солоневич (1960). Publications Alnetum). The legends of these maps were rather by Галкина (1962) and Романова (1967) focus 72 Galanina directly on the mapping of mire vegetation, and the medium-scale maps usually list the names of these authors use vegetation associations as well the vegetation orders and unions that have been as mire complex types as mapping units. Some distinguished (higher ranks of classifi cation). This further publications from the 1970s and 1980s approach cannot, however, be applied directly in include illustrations and schematic maps of mire small-scale mapping. For example, the legend of systems (Козлова, 1971; Кирюшкин, 1980; the “Map of the Natural Vegetation of Europe” Елина & Белоусова, 1971; Кузнецов & Елина, mentioned above employs aggregated mapping 1982; Елина et al., 1988). units for vegetation types which are more typical Tatiana Yurkovskaya made an important of the Russian cartographical school. contribution to developing the ideas of large- (Юрковская, 1970, 1983), medium- and small- The ecological-phytocoenotic approach scale mapping of mire vegetation (Юрковская, 1968, 1974, 1988, 1992; Исаченко & Юрковская, Traditional Russian vegetation cartography 1973; Yurkovskaya, 1995). She distinguished the employed the ecological-phytocoenotic ap- regional distribution characteristics of mire mas- proach, i.e. the dominant approach (Грибова & sifs in European Russia and developed a general Самарина, 1963; Крауклис & Медведев, 1966). classifi cation scheme for mapping purposes. This approach, including large-scale mapping, The objective of the study reported here was is still in use today (Холод, 1994; Нешатаев & to compare two different approaches to vegeta- Ухачева, 2000). tion classifi cation in the context of mapping of In the dominant approach the names of the mire vegetation. The methods compared were plant communities usually indicate the plants the traditional ecologic-phytocoenotic approach that provide most of the cover within the differ- (known also as the dominant approach) and the ent vegetation layers (for example, Andromeda fl oristic approach (Braun-Blanquet method). This polifolia-Eriophorum vaginatum-Sphagnum is the fi rst time that the fl oristic approach has been fuscum community) without reference to any used in Russian vegetation mapping. checklists or templates. Very often the results are subjective descriptions of the vegetation. In the fl oristic approach, on the other hand, the Methods syntaxons are given valid names and they can be determined objectively. The fl oristic approach Map legend The Braun-Blanquet floristic classification method has been applied to mapping in many In geobotanical mapping the legend of the map European countries such as Italy (Pedrotti, 1981, should be based on a specifi c classifi cation, but it 1982, 2003), former Czechoslovakia (Mikyška et is not necessary for the legend to repeat the clas- al., 1968–1972; Neuhäuslová & Moravec, 1997), sifi cation (Сочава, 1979). Mapping is a complex Poland (Matuszkiewicz, 1984; Matuszkiewicz et procedure involving a great deal more than simply al., 1995; Herbich, 1992, 1994), Romania (Donitǎ plotting an association’s distribution on a map. & Roman, 1976) and Yugoslavia (Acceto et The step from the practical classifi cation work to al., 1986), as well as in Japan (Miyawaki et al., the legend is an important element of the scientifi c 1969; Miyawaki 1979; Map of actual vegeta- generalization of the environment (Грибова & tion…, 1974). The recently published “Map of Исаченко, 1972). the Natural Vegetation of Europe” (Bohn et al., There is some connection or relationship 2000/2003) was compiled mainly on the basis of between the list of phytosociological syntaxons the Braun-Blanquet method. and the legend, but there are also fundamen- In the fl oristic approach the names of the plant tal differences between them. The dominant communities are given in the legends of the large- method unifi es the associations and their groups scale (association level) maps. The legends of into formations on the basis of indicator species SUO 57(3), 2006 73 Republic Nlake Finland Ladoga laokfeKarelia Kuzhetcshoavnsnkey l OnegaS Kozhinchannel n o i g Saint-Petersburg e Gulf of Finland Lake r Neva Kuznetsovskoe a v d E sto nia Oredezh Tosna Volcho KudrovVsolokgy channel Luga us 0 1Km p Pei Novgorod region ke Pskovregion La Studyarea Fig. 1. General scheme of the Kudrovsky mire massif (Leningrad region, NW Russia). Kuva 1. Kudrovskin suoalueen sijainti ja yleiskuvaus. (for example the formations Pineta, Piceeta, Kudrovsky mire massif Sphagneta). In the Braun-Blanquet approach, the syntaxons are organized in the synoptic tables Kudrovsky mire massif is situated in the Len- of relevés according to the similarity in fl oristic ingrad region of Russia (Fig. 1), on the border composition of the communities, which refl ects between the Tosno and Gatchina administrative similarity in the ecological conditions of the sites districts (59° 33’ N 30° 54’ E). It occupies the or biotopes, whereas the mapping units in the watershed of the Tosna and Oredezh rivers. Its legend are united according to other criteria such northern part belongs to the “Lisinsky” regional as geographical, typological or territorial factors complex nature reserve. The area investigated (at medium and small scales). belongs to the southern subzone of the taiga zone When the dominant approach is applied in (Геоботаническое..., 1989). The zonal vegeta- large-scale mapping, the mapping units are usual- tion is spruce forest represented by Vaccinium ly associations and groups of associations. Within myrtillus and Oxalis acetosella types, sometimes the fl oristic approach, the mapping units can be with broadleaved forest elements such as Tilia not only the associations but also the alliances cordata, Corylus avellana, Pulmonaria obscura and orders, which are the classifi cation units of a and Asarum europaeum (scientifi c names accord- higher hierarchical level. It should also be pointed ing to S.K. Czerepanov,1995). out that the association — the main unit of the The total area of the Kudrovsky mire massif is system — is large and broad (Александрова 2,235 ha. It consists of three parts; the main part 1969). There are also sub-associations and facies is an ombrotrophic bog and the other two are a in this classifi cation. minerotrophic mire and a small raised bog. It is probable that the parts initially developed sepa- rately, but later coalesced to form one massif due 74 Galanina to paludifi cation processes. The average depth of formed into Braun-Blanquet scores for analysis the peat deposit is 3 metres and the deepest peat according to the fl oristic method. Classifi cation (7 metres) is in the southern part of the massif. units (associations and subassociations) were From 1879 to 1900 the Kudrovsky massif distinguished and later used as the mapping units was used as an experimental area for the fi rst listed in the legend of the map. Russian drainage project. It was drained again Thus, the same vegetation relevés were clas- for forestry in 1929 (200 лет ..., 1997). The old sifi ed using both of the approaches under consid- ditch network is still visible in the north-eastern eration, and a vegetation map of the Kudrovsky part of the massif (Fig. 1). massif was prepared for each approach. Most of the mire massif is covered by pine bog and dwarf-shrub bog with pine, and there is a hummock-hollow complex on its eastern slope. In Results and discussion hollows, Scheuchzeria-Sphagnum communities are common (mainly Sphagnum balticum, some- The map based on the dominant approach shows times S. majus or S. cuspidatum). On hummocks, homogeneous patterns characteristic of near-natu- bog dwarf shrub (Empetrum nigrum) cotton grass ral mire vegetation (Fig. 2). The drainage effect (Eriophorum vaginatum) and Sphagnum (Sphag- of the old ditch network seems no longer to have num fuscum) communities occur. any infl uence on the bog vegetation, and there is Lake Kuznetsovskoe is at the centre of the only one plot where the experimental drainage massif. It is surrounded by a narrow strip of pine still functions (Fig. 2, number 12 on the map). bog vegetation. The dwarf shrubs Vaccinium Some diversity in vegetation cover was ob- uliginosum, V. vitis-idaea and Ledum palustre are served along the Kuznetsovsky channel, which typical and Sphagnum angustifolium dominates has been used for transporting timber in the past the moss layer. The eastern shore of the lake is (Fig. 1); and as a result of the fi res that occa- being eroded by wind-driven wave action. sionally originate from carelessly extinguished The vegetation map of the Kudrovsky mire campfi res. massif was compiled from a preliminary inter- The legend to this map includes 15 classes. pretation of black-and-white aerial photographs Bog vegetation is characteristic in Classes 1–12 at scale 1:5,000 (taken in 1992) and fi eld obser- and other mapping categories in Classes 13–15. vations. Russian geobotanical cartographers are criti- The preliminary map derived from the aerial cized by Professor V. Vasilevich (St. Petersburg), photographs was verifi ed in the fi eld in June 2000. who points out the lack of direct results of vegeta- Three transects crossing the mire massif were tion classifi cation in their map legends. Unlike the studied. The main transect started at the northern map of the Kudrovsky mire massif published by margin of the mire, and there were two cross-tran- Галанина et al. (2001), which has a traditional sects. Vegetation relevés were recorded for every descriptive legend, the mapping given here (Fig. distinct surface patch crossed by each transect. 2) attempts to directly apply the dominant vegeta- Recording followed the dominant approach; spe- tion classifi cation by using the names of associa- cies abundance (Drude’s scale) and percentage tions derived from fi eld data together with a few cover on 100 m2 plots were estimated. Hummocks association names previously distinguished by and hollows were described separately. Богдановская-Гиенэф (1928) for the mires of For data analysis the relevés were separated the present Leningrad region. into four groups: 1) hummock vegetation, 2) The most common communities are repre- hollow vegetation, 3) pine bog vegetation and sented by fairly large numbers of relevés so that 4) open bog vegetation. Within these groups, it is easy to classify them. However, unique and the typical communities were distinguished and rare communities tend to be missed in classifi ca- named, and the names were subsequently used tion for mapping purposes. At the same time such in the map legend. communities must be shown on the map because The percentage cover data were readily trans- it cannot have “white spots”. In such cases the SUO 57(3), 2006 75 0 300m 0 300m 1 1 2 14 8 1 2 3 2 12 1 4 10 7 6 13 11 9 4 6 7 2 2 8 5 1 5 3 1 2 2 15 9 8 5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 6 7 8 9 Fig. 3. Vegetation map of the Kudrovsky mire massif (Len- 11 12 13 14 15 ingrad region, NW Russia) based on fl oristic approach. The legend captions:1) Ledo-Sphagnetum magellanici (Sukopp Fig. 2. Vegetation map of the Kudrovsky mire massif 1959 em Neuhäusl 1969); 2) Chamaedaphne-Sphagnetum based on dominant approach. The legend captions: 1) magellanici (Bogdanowskaya-Guiheneuf 1928 em. Boč Chamaedaphne calyculata-Sphagnum angustifolium+S. 1990); 3) Hummock-hollow complex: Ledo-Sphagnetum magellanicum; 2) Pinus sylvestris f. Litwinowii-Eriopho- fusci (Du-Rietz 1921) on bog hummocks and Scheuchzeri- rum vaginatum-Sphagnum angustifolium; 3) Eriophorum etum palustre (Tx. 1937) in bog hollows; 4) Ledo-Sphagne- vaginatum-Sphagnum magellanicum; 4) Eriophorum vagi- tum fusci (Du-Rietz 1921); 5) Vaccinio uliginosi-Pinetum natum-Sphagnum angustifolium (Bogdanowskaya-Guih- (Kleist 1929 em. Matuszkiewicz 1962); 6) Sphagnion fusci eneuf 1928); 5) Hummock-hollow complex: Eriophorum (Br.-Bl. (1915) 1926); 7) non-studied area; 8) spruce and vaginatum-Sphagnum fuscum, Scheuchzeria palustris- mixed southern taiga forests; 9) lake Kuznetsovskoe Sphagnum balticum; 6) Pinus sylvestris f. Litwinowii-Eri- caceae-Sphagnum ssp. (Bogdanowskaya-Guiheneuf 1928); Kuva 3. Kudrovskin suoalueen kasvillisuuskartta perustuen 7) Calluna vulgaris-Sphagnum fuscum; 8) Pinus sylvestris fl oristiseen kasvillisuusluokitukseen. f. uliginosa-Vaccinium ssp.-Sphagnum angustifolium (Bogdanowskaya-Guiheneuf 1928); 9) Calluna vulgaris- comes complicated due to the mosaic character of Sphagnum angustifolium (Bogdanowskaya-Guiheneuf 1928); 10) Pinus sylvestris-Calluna vulgaris-Polytrichum mire communities and the small sizes of patches. strictum; 11) Calluna vulgaris-Polytrichum strictum; 12) A possible solution is to distinguish vegetation Pinus sylvestris f. uliginosa-Ledum palustre-Sphagnum complexes and to map these instead. magellanicum+S. angustifolium; 13) non-studied area; The vegetation map of the Kudrovsky massif 14) spruce and mixed southern taiga forests; 15) lake compiled on the basis of fl oristic classifi cation Kuznetsovskoe (Fig. 3) also employs associations as the mapping Kuva 2. Kudrovskin suoalueen kasvillisuuskartta perustuen units. The pattern of this map is different; the map ekologis-fytokenoottiseen kasvillisuusluokitukseen. based on the Braun-Blanquet approach looks uni- fi ed. This can be explained by the different rank- cartographer is obliged to step out of the theory ing of the classifi cation units, the Braun-Blanquet and use non-rank categories. association being a larger classifi cation unit than The process of mapping mire vegetation be- an association determined using the dominant 76 Galanina classifi cation approach. Conclusions The Braun-Blanquet system does not yet offer any suggestions for mapping anthropogenic mire Table 1 provides a comparative summary of the vegetation, and the problem was overcome here conclusions drawn from the present study regard- by using classifi cation units of higher rank (alli- ing the utility of the two classifi cation approaches ance) for patches with disturbed vegetation. in the context of mire vegetation mapping. The In view of the complex character of the fl oristic approach yielded fewer mapping units vegetation cover, hummocks and hollows were and a simpler legend than the dominant approach. characterized separately when applying the Mapping based on the Braun-Blanquet method Braun-Blanquet approach. This is atypical for captured the universal and formal characteristics European cartography, although Herbich (1994) of bog vegetation, but for information on local mapped overgrowing lakes at large scale using peculiarities and singular features of the fl oristic the Braun-Blanquet system and made an attempt composition of communities it was usually nec- to show the vegetation complexes. It is likely that essary to refer to the synoptic tables of relevés this method has potential for mapping of vegeta- rather than to the legend of the map. In general, tion structure, and this should be tested in the the structure of the vegetation is not conveyed by future. However, we cannot expect that a single maps based on the fl oristic method of vegetation method will perfectly fi t all purposes. classifi cation. Table 1. The strengths and weaknesses of the dominant approach (ecological-phytocoenotic -method) and the fl oristic approach (Braun-Blanquet -method) for vegetation mapping. Taulukko 1. Ekologis-fytokenoottisen ja fl oristisen (Braun-Blanquet) menetelmän vahvuudet ja heikkoudet kasvillisu- uskartoituksessa. –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Evaluation Dominant (ecological-phytocoenotic) Floristic (Braun-Blanquet) –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Positive Suitable for mapping purposes Well organized system Easy to name communities, Widely accepted as names are based on dominant plant species Easy to compare data from different geographical regions, Easy to interpret data peculiarities and common features obvious Objectively shows the natural vegetation in the legend without any explanatory text Negative No general list of communities Data for typical communities, collected in central and northern Sometimes gives excessively detailed Europe, are not entirely appropriate vegetation characteristics and to Russian circumstances, even for produces units that are too small NW Russia Diffi cult to compare the results Procedures for transformed with data from European mire vegetation lacking scientists –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– SUO 57(3), 2006 77 The differences between the results obtained ment of mire massifs near the north-eastern shore of using the two approaches can be explained in Onega Lake]. Очерки по растительному покрову Карельской СССР. Петрозаводск. С. 112–122. terms of the level of generalization of the vegeta- Елина Г.А., Кузнецов О.Л. & Максимов А.И. 1984. tion data and the scale and detail of the patterns Структурно-функциональная организация и ди- on the ground. On this basis, dominant associa- намика болотных экосистем Карелии [Structural- tions are likely to be the most appropriate units functional organization and mire ecosystem dynamics for large-scale mapping of mire vegetation, and in Karelia]. Ленинград. Наука. 128 с. Braun-Blanquet associations more suitable for Галанина О.В., Андреева Е.Н. & Кузьмина Е.О. 2001. Растительный покров охраняемой части Кудровс- medium-scale maps. кого болота (Ленинградская область) [Vegetation of protected part of the Kudrovskoe bog, Leningrad region]. Ботанический журнал. Т. 86. № 11. С. Acknowledgements 109–121. Галкина Е.А. 1962. Особенности картирования рас- This research was supported by research grant № тительного покрова болотных массивов (с приме- нением материалов аэрофотосъемки) [Vegetation 21 32 12 of the Academy of Finland. I am grateful mapping for mire massifs]. Принципы и методы to Dr. Olivia Bragg (UK) for linguistic revision геоботанического картографирования. Москва- of the manuscript and to the referrers for their Ленинград. С. 121–130. useful comments. Геоботаническое районирование Нечерноземья евро- пейской части РСФСР. 1989. [Geobotanical zonation of the Non-Chernozem zone of European part of the References RSFSR]. Ленинград. 64 с. Грибова С.А. & Самарина Г.Д. 1963. Составление детальной крупномасштабной карты с учетом ди- Александрова В.Д. 1969. Классификация раститель- намики растительного покрова [Detailed large-scale ности [Vegetation classifi cation]. Ленинград. Наука. mapping and the vegetation dynamic]. Геоботаничес- 275 с. кое картографирование 1963. Москва-Ленинград. Acceto, M., Džekov S., Jovanović B., Jovanović R. 1986: С. 15–25. Prirodna potencijalna vegetacija Jugoslavije [Natural Грибова С.А. & Исаченко Т.И. 1972. Картирование potentional vegetation of Yugoslavia] (komentar karte растительности в съемочных масштабах [Large- and m. 1: 1 000 000). Ljubljana. 122 pp. medium-scale vegetation mapping]. Полевая геобота- Bohn, U.; Neuhäusl, R., unter Mitarbeit von Gollub, G.; ника IV. Москва-Ленинград. С. 137–286. Hettwer, C.; Neuhäuslová, Z.; Schlüter, H. and Weber, Herbich, J. 1992: Fen vegetation of valleys in young gla- H. (2000/2003): Karte der natürlichen Vegetation cial landscape of the Kashubian Lakeland (Northern Europas / Map of the Natural Vegetation of Europe. Poland). Proceedings of the 9th International Peat So- Maßstab / Scale 1:2.500.000. Teil 1/ Part 1: Erläuter- ciety Congress, Uppsala, Sweden, 22–26 June 1992. ungstext/ Explanatory Text, 655 S./p.; Teil 2/ Part 2: P: 294–309. Legende/ Legend, 153 S./p.; Teil 3/ Part 3: Karten/ Herbich, J. 1994: Przestrzenno-dynamiczne zróznicowanie Maps. Münster (Landwirtschaftsverlag). roślinności dolin w krajobrazie mlodoglacjalnym na Богдановская-Гиенэф И.Д. 1928. Растительный пок- przykladzie Pojezierza Kaszubskiego [Spatial and ров верховых болот русской Прибалтики [Bog dynamic diversity of the vegetation in valleys in a vegetation in Russian Baltic]. Труды Петергофского young-glacial landscape exemplifi ed by the Kashu- естественно-научного ин-та 5: 265–377. bian Lakeland (Northern Poland)]. – Monographiae 200 лет лесному учебному и опытному делу в Лисин- Botanicae 76: 1–175. ском учебно-опытном лесхозе. 1997. [200 years of Иванов К.Е. 1957. Основы гидрологии болот лесной teaching and experimental forestry in Lisino]. Санкт- зоны [Mire hydrology in forest zone]. Ленинград. Петербург. 356 с. Гидрометеоиздат. 500 с. Czerepanov S.K. 1995: Vascular plants of Russia and adja- Исаченко Т.И. & Юрковская Т.К. 1973. Основные типы cent states (the former USSR). Cambridge University сочетаний растительности Мещеры и отражение Press, Cambridge. 516 p. их на карте [Typical vegetation patterns in Meschera Donitǎ, N., Roman N. 1976. Vegetatia [Vegetation] (Harta and mapping]. Геоботаническое картографирование la scara 1: 1000 000). Atlas Respublica Socialistă 1973. Ленинград. С. 3–6. România. Bucureşti, f. VI-2. Какс А.Р. 1914. Болота окрестностей оз. Дулова [Mires Елина Г.А. & Белоусова Н.А. 1971. О развитии болот- in Dulovo Lake vicinities] Материалы по изучению ных массивов озерной равнины в районе северо- Восточного болотного р-на Псковской губернии. восточного побережья Онежского озера [Develop- Псков. 76 с. 78 Galanina Кирюшкин В.Н. 1980. Формирование и развитие бо- 1: 50 000.[Vegetation map of the map sheet ”Trento”]. лотных систем [Formation and mire systems develop- Roma. 38 S. ment]. Ленинград. 88 с. Pedrotti, F. 1982: Carta della vegetazione del folgio Mez- Козлова Р.П. 1971. Растительность и стратиграфия ос- zolombardo, 1: 50 000. [Vegetation map of the map новных типов болот южной Карелии [Vegetation and sheet “Mezzolombardo”]. Roma. 25 S. stratigraphy of main mire types in southern Karelia]. Pedrotti, F. 2003. Vegetation changes in the Laghestel wet- Очерки по растительному покрову Карельской land basin (Trentino, Central Alps) from 1976 to 2001. АССР. Петрозаводск. С. 73–94. – Proceedings 46th Symposium of the IAVS “Water Крауклис А.А. & Медведев Ю.О. 1966. Показ рас- Resources and Vegetation”. Napoli, Italy, 8–14 June тительности в серии крупномасштабных карт в 2003.171 pp. + maps. связи с картографированием динамики природной Pedrotti, F. 2004. Cartografi a Geobotanica. [Geobotanical среды [Vegetation mapping and the nature dynamics]. mapping]. Bologna. 236 pp. Геоботаническое картографирование 1966. Москва- Романова Е.А. 1967. Методика составления типологи- Ленинград. С. 26–35. ческих карт болот с использованием материалов Кузнецов О.Л. & Елина Г.А. 1982. Болота северо-запад- аэрофотосъемки для гидрологического изучения ной Карелии и история их формирования [Mires of болотных ландшафтов [Methods for typological maps North-Western Karelia and the development history]. on the basis of aerial photo interpretation for the hy- Комплексные исследования растительности болот drological studies of mire landscapes]. Тематическое Карелии. Петрозаводск. С. 13–29. картографирование в СССР. Ленинград. Map of actual vegetation of Tokyo Metropolis. 1974. Солоневич Н.Г. 1960. Растительный покров и стро- Tokyo. ение болота “Бор” Ширинской болотной систе- Matuszkiewicz, W. 1984. Die Karte der potentiellen natürli- мы [Vegetation and structure of the Bor mire, the chen Vegetation von Polen (mit einer karte in Maßstab Shirinskaya mire system]. Труды Ботанического 1: 2 000 000). Braun-Blanquetia 1. 99 s. института АН СССР. Серия 3. Геоботаника. Вып. Matuszkiewicz, W., Falinski, J., Kostrowski, A.S., Ma- 12. С. 211–228. tuszkiewicz, J.M., Olaczek, R. & Wojterski, T. (ed.). Сочава В.Б. 1979. Растительный покров на тематичес- 1995. Potencjalna Roślinność naturalna Polski. Mapa ких картах [Vegetation on thematic maps]. Новоси- przegladowa 1: 300 000 [Potential Natural Vegetation бирск. Наука. 187 с. of Poland. General map 1: 300 000]. Warszawa. 12 Сукачев В.Н. 1906. Материалы по изучению болот и sheets. торфяников озерной области [Materials to mires Mikyška, R. a kolektiv. 1968–1972. Geobotanická mapa and peatlands study]. Труды пресноводной биоло- ČSSR. 1. České země. [Geobotanische Karte der гической станции Императорского Спб. Общества Tschechoslowakei, 1. Tschechische, 1: 200 000]. Praha. Естествоиспытателей, т. II. Санкт-Петербург. 21 farb. Karten. Филатов С.М. 1911. Цевельское болото [Tsevelskoe Miyawaki, A., Okuda, S. & Fujiwara, K. 1969. I. Karte mire]. Материалы по изучению восточного болот- der realen Vegetation des Numappara-Moores (Mittel- ного района Псковской губернии. Псков. 46 с. Honshu). II. Karte der realen Vegetation des Numap- Филатов С.М. 1913. Болота между озерами Полисто para-Moor Gebietes (Mittel-Honshu). III. Karte der и Цевло [Mires between Polisto and Tsevlo lakes]. potentiellen natürlichen Vegetation des Numappara- Материалы по изучению восточного болотного Moor Gebietes (Mittel-Honshu). района Псковской губернии. Псков. 99 c. Miyawaki, A. 1979. Vegetation und Vegetationskarten auf Холод С.С. 1994. Структура растительного покрова и den Japanischen Inseln. In: Miyawaki A. & Okuda S., карта растительности окрестностей бухты Сомни- Vegetation und Landschaft Japans, Yokohama, Yoko- тельной. Арктические тундры острова Врангеля. hama Phytosociological Society: 49–70. [Vegetation structure and vegetation map of Somnitel- Нешатаев Ю.Н. & Ухачева В.Н. 2000. Картографи- naya Bay. In: Arctic tundra of Wrangel Island]. Санкт- рование растительности Казацкой степи в целях Петербург. Труды БИН, вып. 6. С. 99–135. мониторинга [Vegetation mapping in Kazatskaya Юрковская Т.К. 1968. О некоторых принципах постро- steppe for monitoring]: Современные проблемы бот. ения карты растительности болот [Some principles географии, картографии, геоботаники, экологии. for mire mapping]. Геоботаническое картографиро- Труды международной конференции к 100-летию вание 1968. Ленинград. С. 44–51. акад. Е.М. Лавренко. Санкт-Петербург. С. 29–31. Юрковская Т.К. 1970. Из опыта крупномасштабного Neuhäuslová, Z. & Moravec, J. (ed.). 1997. Mapa poten- картографирования растительности болот северной ciální přirozene vegetace České republiky [Map of Карелии [Large-scale mapping for mire vegetation potentional natural vegetation of the Czech Republik], in Northern Karelia]. Крупномасштабное карто- 1: 500 000. Praha. In: Neuhäuslová, Z. et al. 2001. графирование растительности. Новосибирск. С. Potential natural vegetation of the Czech Republik. 139–146. Braun-Blanquetia 30: 1–80. Юрковская Т.К. 1974. Типы болотных массивов на об- Pedrotti, F. 1981: Carta della vegetazione del foglio Trento, зорной карте растительного покрова лесной зоны SUO 57(3), 2006 79 европейской части СССР [Mire system types on the mire systems]. Геоботаническое картографирование general vegetation map of the forest zone of the Euro- 1988. Ленинград. С. 13–28. pean part of USSR]. Типы болот СССР и принципы Юрковская Т.К. 1992. География и картография рас- их классификации. Ленинград. С. 57–62. тительности болот Европейской России и сопре- Юрковская Т.К. 1983. Структура и динамика расти- дельных территорий [Geography and cartography of тельного покрова грядово-мочажинных комплексов mires of the European part of Russia and neighbouring некоторых типов болот [Structure and vegetation territories]. Санкт-Петербург. Труды БИН РАН, вып. dynamics of hummock-hollow complexes]. Структура 4. 265 с. растительности и ресурсы болот Карелии. Петро- Yurkovskaya, T. 1995. Mire system typology for use in заводск. С. 38–51. vegetation mapping: Regional variation and conserva- Юрковская Т.К. 1988. Картографирование раститель- tion of mire ecosystems. Gunneria 70: 73–82. ности болотных систем [Vegetation mapping for Tiivistelmä: Kahden kasvupaikkaluokitusmenetelmän vertailu suon kasvillisuuskartoituk- sessa Tutkimuksessa vertailtiin ekologis-fytokenoottista (kasviyhdyskuntien luokitus vallitsevan kasvilajin perusteella) ja perinteistä fl oristista Braun-Blanquet -menetelmää (luokitus kasvilajiston ekologisen samankaltaisuuden perusteella) keidassuon kasvillisuuskartoituksessa Venäjällä. Tutkimus tehtiin Leningradin hallintoalueella sijaitsevalla Kudrovskin suoalueella, jonka kasvillisuus luokitettiin erikseen kummallakin menetelmällä. Menetelmien eri työvaiheet kirjattiin ylös ja luokitusten perus- teella kasvupaikkatyypeistä laadittiin kartat. Kummankin menetelmän eduista ja heikkouksista on tehty tutkimuksessa lyhyt listaus. Floristinen menetelmä näytti tuottavan selkeitä kasvillisuusluokkia. Tämä johtui siitä, että ko. menetelmä tuottaa suurempia luokkayksiköitä maastossa kuin ekologis- fytokenoottinen menetelmä. Toisaalta fl oristisen menetelmän avulla ei ole mahdollista kuvata ihmisen aikaansaamia muutoksia kasvillisuudessa. Ekologis-fytokenoottinen menetelmä näyttäisi soveltuvan soilla parhaiten suuren mittakaavan kasvillisuuskartoitukseen, kun taas fl oristinen menetelmä soveltuu paremmin pienipiirteisempään kasvillisuuskartoitukseen. Received 15.5.2006, Accepted 25.8.2006 80 Galanina

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.