ebook img

comparative anatomy of the anterior cruciate ligament and its associated structures in primates PDF

135 Pages·2017·21.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview comparative anatomy of the anterior cruciate ligament and its associated structures in primates

COMPARATIVE ANATOMY OF THE ANTERIOR CRUCIATE LIGAMENT AND ITS ASSOCIATED STRUCTURES IN PRIMATES: A STUDY OF BODY SIZE, BUNDLE NUMBER, AND BIPEDALITY A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Aidan A. Ruth November, 2016 © Copyright All rights reserved Except for previously published materials Dissertation written by Aidan A. Ruth B.A., The Ohio State University, 2008 M.A., Kent State University, 2010 Ph.D., Kent State University, 2017 Approved by ___________________________________, Chair, Doctoral Dissertation Committee Claude O. Lovejoy, Ph.D. ___________________________________, Members, Doctoral Dissertation Committee Richard S. Meindl, Ph.D. ____________________________________ Mary Ann Raghanti, Ph.D. ____________________________________ Tobin L. Hieronymus, Ph.D. ____________________________________ Ellen L. Glickman, Ph.D. Accepted by ____________________________________, Director, School of Biomedical Sciences Ernest J. Freeman, Ph.D. ____________________________________, Dean, College of Arts and Sciences James L. Blank, Ph.D TABLE OF CONTENTS TABLE OF CONTENTS ..................................................................................................................... iii LIST OF FIGURES ............................................................................................................................ iv LIST OF TABLES .............................................................................................................................. vi ACKNOWLEDGEMENTS ................................................................................................................ vii CHAPTER 1: OVERVIEW .................................................................................................................. 8 CHAPTER 2: COMPARATIVE ANATOMY OF THE ANTERIOR CRUCIATE LIGAMENT ................... 18 Introduction .............................................................................................................................. 18 Research Questions .................................................................................................................. 30 Materials and Methods ............................................................................................................ 32 Results ...................................................................................................................................... 36 Discussion ................................................................................................................................. 46 Conclusion ................................................................................................................................ 49 CHAPTER 3: COMPARATIVE ANATOMY OF THE ACL ENTHESIS .................................................... 52 Introduction .............................................................................................................................. 52 Research Aims .......................................................................................................................... 66 Materials and Methods ............................................................................................................ 67 Results ...................................................................................................................................... 69 Discussion ................................................................................................................................. 76 Conclusion ................................................................................................................................ 79 CHAPTER 4: The Lateral Meniscus ................................................................................................ 80 Introduction .............................................................................................................................. 80 Research Aims ......................................................................................................................... 87 Materials and Methods ............................................................................................................ 88 Results ...................................................................................................................................... 93 Discussion ............................................................................................................................... 100 Conclusion .............................................................................................................................. 101 CHAPTER 5: SUMMARY AND CONCLUSIONS .............................................................................. 103 APPENDIX A ................................................................................................................................ 105 APPENDIX B ................................................................................................................................ 107 APPENDIX C ................................................................................................................................ 109 APPENDIX D ................................................................................................................................ 110 APPENDIX E ................................................................................................................................ 113 REFERENCES ............................................................................................................................... 126 iii List of Figures 1.1 External rotation of the knee upon extension ................................................................ 9 1.2 Anatomical position of the ACL within the knee joint .................................................... 11 1.3 Origin and insertion of the ACL ...................................................................................... 12 2.1 Origin and insertion of the double-bundle ACL .............................................................. 20 2.2 Origin and insertions of the triple-bundle ACL ............................................................... 21 2.3 Anatomy of the ACL in pigs ............................................................................................. 24 2.4 Postures of the hindlimb in different mammals ............................................................. 29 2.5 Lines representing a simple linear regression equation and a logarithmic regression equation of Midsubstance circumference and body size. .................................................... 33 2.6 Relationship between body size and ACL circumference. .............................................. 37 2.7. Relationship between ACL quotient and Femoral Condyle Ratio .................................. 38 2.8. Gross anatomy of the ACL in a comparative sample of digitigrade mammals and palmigrade mammals ............................................................................................................................. 40 2.9. Microscopic anatomy of the ACL .................................................................................. 41 2.10. Mean scores of Mardia’s Spherical Variance ............................................................... 43 2.11. Regression analysis of Mardia’s spherical variance onto Femoral Condyle Ratio. ...... 44 2.12. Overview (summary) images from quantitative polarized light microscopy ............... 45 3.1 Zones of Fibrocartilaginous Ligament attachment ......................................................... 55 3.2. Schematic of Joint formation ........................................................................................ 57 3.3. Schematic of Fibrous enthesis development ................................................................. 59 3.4. Schematic of fibrocartilaginous enthesis development ................................................ 60 3.5 Schematic representing the different pathways taken by fibrous and fibrocartilaginous entheses ............................................................................................................................... 61 3.6 Illustration of Orthogonal Intercepts stereology ............................................................ 68 3.7. Comparative microanatomy of the femoral ACL insertion ............................................ 70 3.8 Sagittal sections from (a) Loris (b) Tamarin and (c) Diana monkey ................................ 73 3.9 Coronal view of the histological sections of the tibia in Deer, Bonobo, and Human ..... 73 3.10. Standard multiple linear regression analysis of femoral fibrocartilage thickness and tibial fibrocartilage thickness on body weight .............................................................................. 75 3.11 ACL insertion site on dry bone ...................................................................................... 77 4.1 Diameter of femoral head vs. femoral length in hominoids .......................................... 90 4.2 Diameter of the femoral head vs. Body mass in hominoids ........................................... 91 4.3 Landmarks used in measurements of the femoral condyles .......................................... 92 4.4 Tibial Lateral Condyle/Femoral Head Diameter in Hominoids ....................................... 94 4.5. Comparison of tibial lateral condyle length divided by the cube root of body mass .... 95 4.6. Femoral Lateral Condyle/Femoral Head Diameter in Hominoids ................................. 97 4.7. Femoral Lateral Condyle/Cube root of Body Mass in hominoids .................................. 98 iv 4.8 External rotation of the tibia on the femur in hominoids .............................................. 99 v List of Tables Table 2.1 Comparison of linear and logarithmic regression models for ACL circumference and body size. ............................................................................................................................. 33 Table 3.1 Enthesis types ....................................................................................................... 56 Table 4.1 Typical Lateral meniscus patterns found in primates ........................................... 86 Table 4.2 Atypical meniscus types found in humans ............................................................ 87 Table 4.3 Measurements used in analysis ............................................................................ 92 Table 4.4. Species and sex means for femoral and tibial lateral condyles divided by the cube root of body mass in kgs ....................................................................................................... 96 Table 4.5 Length of the lateral tibial condyle and lateral femoral condyle divided by the femoral head, and Femoral Condyle Ratio ........................................................................................ 100 vi Acknowledgements This dissertation could not have been completed without the help of many people. First and foremost, Dr. Lovejoy and Dr. Raghanti have given me many opportunities throughout the years, from access to lab space and consumables to pep talks and “go get ‘em!” Dr. Meindl’s always been in my corner, and for that I am very thankful. Dr. Heironymus kindly offered time on his lab equipment and shared with me his knowledge of ligaments and statistics. Dr. Glickman graciously agreed to serve as my graduate representative. Dr. Freddy Fu, Dr. Shiela Ingham, and Monica Linde graciously provided access to specimens and significant funding for supplies, without which none of this research could have taken place. Additionally, Dr. Shiela Ingham provided photographs of her beautiful gross dissections and scientific expertise. Dr. David Waugh offered guidance, technical support, and the opportunity to hold a hummingbird and see phosphorescent squirrel bones. Dr. Jenny Marcinkiewicz opened her laboratory to me so that I could use her tissue processor Lyman Jellema and Dr. Yohannes Haille-Salaisie granted permission and assistance with Osteological data collection at the Cleveland Museum of Natural History, while Bruce Patterson, Anna Goldman, and Rebecca Banasiak granted access to the collections at the Field Museum of Natural History. vii Chapter I: Overview Rupture of the anterior cruciate ligament (ACL) is one of the most common knee injuries in humans. As many as 350,000 ACL tears occur each year, and as many as 175,000 of those tears result in ACL reconstruction surgery. Orthopedic surgeons have begun to perform “anatomic” or “double-bundle” reconstructions of the ACL in an effort to restore its native anatomy with higher fidelity. An assumption that is made in this effort is that the native anatomy has been selected to perform in an “optimal” fashion and that restoring it will result in a return to “optimal” kinematics. The present research is an analysis of the anatomy of the ACL and its proximate structures (the ACL enthesis and the lateral meniscus) in an evolutionary and comparative context with the goal of identifying differences in the ACL that may be the result of selection for different types of locomotion. The Knee Joint While at first glance the knee joint appears to be a simple hinge, it is in reality a complex joint that moves in six degrees of freedom: Anterior-posterior, medial-lateral, and cephalad- caudad translations; and flexion-extension, internal-external, and varus-valgus rotations. Anterior and posterior translations are coupled by internal and external rotation, and flexion and extension are coupled by external and internal rotation of the tibia on the femur. The ACL acts as the primary restraint to anterior translation of the tibia relative to the femur (i.e., prevents anterior "drawer" sign), while the posterior cruciate ligament (PCL) acts as the primary 8 restraint to posterior translation of the tibia (posterior drawer sign). Additionally, the cruciate ligaments guide the tibia along a pathway of external rotation during extension (Figure 1.1). This conjoint axial rotation is often referred to in clinical literature as the “screw home” mechanism (reviewed in Lovejoy, 2007). Bones, the menisci, and articular capsule structures act as static stabilizers of the knee, and the hamstrings and quadriceps act as dynamic muscle stabilizers (Fu et al., 1993; Lovejoy, 2007). Figure 1.1 Upon extension, the knee rotates externally, guided by the cruciate ligaments. The cruciate system has been described as a four bar linkage system: A closed-chain linkage composed of four bars, or rigid links, and four connections among these links. Each 9 cruciate ligament represents a bar, and the remaining two bars are an imaginary line connecting the insertion points of the ACL and PCL on the femur, and one connecting the same imaginary line on the tibia. The pivoting connections are the femoral and tibial insertions of the ACL and PCL. The instant center of rotation lies at the overlap between ACL and PCL. During flexion, the ligaments roll and glide past one another, and this overlapping point moves posteriorly (Fu et al., 1993). In humans, the tibial plateau is perpendicular to the long axis of the tibia and is essentially a flat surface. In quadrupeds, the tibial plateau slopes downward anteriorly. Gravity pulls the femur down this slope, a motion discussed in veterinary literature as “tibial thrust.” The ACL (called the “cranial” cruciate ligament in veterinary literature) is reported to prevent this tibial thrust. In dogs, a steeper tibial plateau is correlated with an increased risk of cranial cruciate ligament rupture (Morris and Lipowitz, 2001). The Anterior Cruciate Ligament The ACL is one of four principal ligaments of the knee, together with the PCL and the lateral and medial collateral ligaments. The cruciates are arranged in a “spiral” arrangement of fibers, so that each fiber twists along its path from femur to tibia and is subsequently taut or lax somewhat independently from the rest of the ligament to which it belongs. The ACL originates along the medial side of the lateral condyle of the femur and inserts just anterior to the intercondyloid eminence of the tibia (Figure 1.2 and 1.3). The anterior-most fibers blend with those of the anterior horn of the medial meniscus and resist anterior translation and medial rotation of the tibia against the femur (Reviewed in Arnoczky, 1983; MS 10

Description:
longer forelimbs (Mollison 1911, Schultz 1930, 1933; Erickson 1963) than . isometric scaling as noted earlier, doubling length of a characteristic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.