APPLIEDANDENVIRONMENTALMICROBIOLOGY,Apr.2001,p.1922–1934 Vol.67,No.4 0099-2240/01/$04.0010 DOI:10.1128/AEM.67.4.1922–1934.2001 Copyright©2001,AmericanSocietyforMicrobiology.AllRightsReserved. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments V.J.ORPHAN,1*K.-U.HINRICHS,2W.USSLERIII,1C.K.PAULL,1L.T.TAYLOR,1 S.P.SYLVA,2J.M.HAYES,2ANDE.F.DELONG1* MontereyBayAquariumResearchInstitute,MossLanding,California95039,1andDepartmentofGeology andGeophysics,WoodsHoleOceanographicInstitution,WoodsHole,Massachusetts025432 Received10October2000/Accepted2February2001 Theoxidationofmethaneinanoxicmarinesedimentsisthoughttobemediatedbyaconsortiumofmeth- ane-consumingarchaeaandsulfate-reducingbacteria.Inthisstudy,wecomparedresultsofrRNAgene(rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several differentsitesontheCaliforniancontinentalmargin.Twodistinctarchaeallineages(ANME-1andANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments.Thesamesedimentscontainedabundant13C-depletedarchaeallipids,indicatingthatoneorboth ofthesearchaealgroupsaremembersofanaerobicmethane-oxidizingconsortia.13C-depletedlipidsandthe signature16SrDNAsforthesearchaealgroupswereabsentinnearbycontrolsediments.Concurrentsurveys ofbacterialrDNAsrevealedapredominanceofd-proteobacteria,inparticular,closerelativesofDesulfosarcina variabilis.Biomarkeranalysesofthesamesedimentsshowedbacterialfattyacidswithstrong13Cdepletionthat arelikelyproductsofthesesulfate-reducingbacteria.Consistentwiththeseobservations,whole-cellfluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the partici- pation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2consortiaappeartoparticipateintheanaerobicoxidationofmethaneinmarinesediments,ourdata suggestthatotherbacteriaandarchaeaarealsoinvolvedinmethaneoxidationintheseenvironments. Microbiallymediatedoxidationofmethaneinanoxicmarine Therecentdiscoveriesofmethane-derived,isotopicallylight systemsisagloballysignificantprocess,withupto90%ofthe archaeal lipids in seep-associated sediments and carbonates oceanicmethaneproductionrecycledinanaerobicmarinesed- provided compelling chemotaxonomic evidence for the direct iments(35).Anaerobicconsumptionofmethaneisgeochemi- involvement of archaea in anaerobic methane utilization (11, callyandbiologicallyimportant,sinceitsignificantlydecreases 18,19,30,42).Hinrichsetal.(18)identifiedisotopiallydepleted thefluxofmethanefrommarinesedimentstotheatmosphere. lipid biomarkers and archaeal 16S rRNA genes (rDNAs) oc- The process transforms terminally reduced carbon into forms curring together in cold seep sediment samples from the Eel thataremorereadilyaccessibletoalargergroupofmicroor- RiverBasin,whereAOMisthoughttoactivelyoccur.Results ganisms in anoxic sediments. Localized chemosynthetic com- of this study corroborated the involvement of methanogenic munitiesbenefitfromlargequantitiesofhydrogensulfide(2), lineages in AOM, identifying two potential archaeal groups generatedasaby-productoftheanaerobicoxidationofmeth- related to the aceticlastic Methanosarcinales (ANME-1 and ane.Geochemicalevidencesupportinganaerobicoxidationof ANME-2) as likely candidates for the methane-oxidizing ar- methane (AOM) is well documented in the literature and is chaeainanoxicmarinesediments. based on stable isotopic signatures (7), pore water chemical Further studies of Eel River Basin seep sediments and ad- profiles (5, 23), inhibitor studies (17, 21), and sample incuba- ditionalseepsitesinSantaBarbaraBasinconfirmedthepres- tionswithradiotracers(21,23).Theresultsofthesestudiesled enceofextremelydepletedarchaeallipids,inadditiontoiden- to the hypothesis that AOM is mediated by a consortium tifying isotopically depleted bacterial fatty acids and glycerol consisting of a methanogen operating in reverse (producing ethers,mostlikelyoriginatingfromtheAOMsyntrophicpart- hydrogenandcarbondioxidefrommethane)andahydrogen- ners (19). Similar 13C-depleted microbial lipids were recently scavenging,sulfate-reducingpartner(21).Despitetheindirect observed in hydrate-associated sediments from the Cascadia evidence supporting microbially mediated AOM, identifying Margin(4,11)andMediterraneanmudvolcanoes(30),aswell theindividualconsortiummembersandtheactualmechanism as in surface sediments and seep carbonates from the Black involvedhasbeendifficult. Sea(41).Theobservationofbotharchaealandbacteriallipids thatarehighly13Cdepletedsuggestsaclosecouplingofanda transfer of carbon between these two groups, providing addi- *Correspondingauthor.MailingaddressforV.J.OrphanandE.F. tional evidence for a syntrophic association of archaea and Delong:MontereyBayAquariumResearchInstitute,7700Sandholdt bacteria(19). Rd.,P.O.Box628,MossLanding,CA95039.Phone,fax,ande-mail In this study, we conducted cultivation-independent 16S forV.J.Orphan:(831)775-1833,(831)775-1645,andorphan@mbari .org,respectively.Phone,fax,ande-mailforE.F.Delong:(831)775- rDNA surveys on a variety of samples from different seep 1843,(831)775-1645,[email protected],respectively. environments,inwhichtheactivitiesofanaerobicmethanotro- 1922 VOL.67,2001 ANAEROBIC METHANE-OXIDIZING CONSORTIA 1923 TABLE 1. SummaryofsamplesusedintheconstructionofSSUrDNAlibrariesandtheirphysicalandchemicaldescriptions Samplea Depth Latitude, Physicalorchemical SO4 H2S rDNAlibrary PCR No.ofclones (cm) longitude(°) description (mM) (mM) designation primers screened Eel-Hpc4 0–4 40.47,2124.35 Bacterialmat NAe NA Eel-TE B27f-U1492r 52 Eel-Hpc4 20–22 40.47,2124.35 Bacterialmat NA NA Eel-BE B27f-U1492r 121 Eel-pc36 4–7 40.48,2124.36 Clampatch,highCH 20 1d Eel-36e B27f-U1492r 18 Eel-pc36 4–7 40.48,2124.36 Clampatch,highCH4 20 1 Eel-36a A20f-U1492r 121 SB-pc24 14–16 34.10,2119.99 Calyptogenaclampat4ch 5.9b 11c SB-24e B27f-U1492r 91 SB-pc24 14–16 34.10,2119.99 Calyptogenaclampatch 5.9 11 SB-24a A20f-U1492r 90 SB-pc17 6–8 34.25,2119.97 Bacterialmat 11.5 10 SB-17a A20f-U1492r 77 SB-pc7 12–14 34.27,2119.96 Referencecore,background 28 0 SB-7a A20f-U1492r 25 aSB,SantaBarbaraBasin;Eel,EelRiverBasin.Waterdepthrangedbetween519and556mforboththeSantaBarbaraandEelRiverbasinsites. bSO22valuesforSantaBarbaraBasinsampleswereprovidedbyJonMartin(personalcommunication). 4 cHSvaluesforSantaBarbaraBasinsampleswereprovidedbyJimBarry(personalcommunication). d12,HSdetectedbutnotquantified. 2 eNA,notavailable. phic microbes are indicated by the presence of 13C-depleted toanHPmodel6890GCandequippedwithacolumnidenticaltothatdescribed biomarkers.Wesurveyedandcomparedbacterialandarchaeal above.ColumntemperaturesofbothGCsystemswereprogrammedfrom40°C (1minunderisothermalconditions)to130°Catarateof20°/minandthento groupspresentatgeographicallydistantmethaneseepsites,as 320°C(60minunderisothermalconditions)at4°C/min.Alcoholswereanalyzed well as in control sediments. Whole-cell fluorescent in situ as their trimethylsilyl ethers after reaction with N,O-bis(trimethylsilyl)- hybridizationexperimentswerealsoconductedtoconfirmthe trifluoroacetamidereagent(plus1%trimethylchlorosilane)inDCM.Reported identitiesofAOMconsortiummembersatthesesites,extend- d-13Cvaluesaremeansofresultsofatleasttwoanalysesandhavebeencorrected ingpreliminaryobservationsofapreviousstudy(4). forthepresenceofcarbonatomsaddedduringderivatization.Differencesbe- tweenindividualanalysesweregenerallylessthan1‰. Nucleic acid extraction. For 16S rDNA analysis, total nucleic acids were MATERIALSANDMETHODS extractedfromsedimentsamples,witheachsampleconsistingofa3-cmdepth interval.CelllysisandDNAextractionfrom0.5g(wetweight)ofsedimentwere Sitedescriptionandsampling.SedimentsampleswereobtainedfromtheEel conductedusingaBio101(Vista,Calif.)Fastprepbeadbeatingmachine(Bio RiverBasinandSantaBarbaraBasinatawaterdepthofapproximately500m 101)andaFastsoilprepkit(MoBioInc.,SanDiego,Calif).Theprotocolforthe bymeansoftheremotelyoperatedvehicleVentana.Sampleswerecollectedwith MoBiokitwasmodifiedbyinitiallybeadbeatingthesampleusingtheFastprep push cores or hydraulic piston cores and subsequently stored in a nitrogen atmosphereat4°Cuntilprocessedonshore;0.5to6haftercollection.Sample, machine(speed4.5for20s),followedbytwo5-minincubationsat70°C.The location,areadescription,andSO22andHSlevelsaresummarizedinTable1. remainderoftheextractionprocedurewascarriedoutaccordingtothemanu- 4 2 facturer’s instructions. This procedure typically produced large-molecular-size Sedimentsamplesfrompushcoreswereextrudedupwardsin3-cm-thicksections DNA(.20kb).Nucleicacidsfromthreeindependentextractionswerepooled underanitrogenatmosphere.Sampleswerethensubdividedforinsituhybrid- andpurifiedusingasmall-scaleCsCldensitygradientaspreviouslydescribed(9). ization(0.5g[wetweight]ofsedimentplus1mlof50%ethanol–2%NaCl[1:1]), 16SrDNAlibraryconstructionandscreening.Small-subunit(SSU)rDNAs lipidandnucleicacidanalyses,(approximately15gofsedimentfrozeninliquid wereamplifiedbyPCRwithpurifiedDNAsamplesfromSantaBarbaraandEel nitrogen),andporewaterchemistry(remainingsedimentsample). River basin cold seep sediments. PCR mixtures (50 ml) contained a 0.2 mM Porewaterchemistry.Porewatersweresqueezedfrom3-cm-thickcoreinter- concentrationofeitherbacterium-specific(27fand1492r)orarchaeon-specific valsusingapressurizedgassedimentsqueezer(34)andcollectedintoattached (20fand1492r)primers.Reactionmixturesalsocontained5mlofPCRbuffer air-tight60-mldisposablesyringes(BectonDickinson,MountainView,Calif.). (containing2mMMgCl),2.5mMeachdeoxynucleotidetriphosphate,and0.025 SulfateconcentrationsinporewaterweremeasuredusingaDIONEXDX-120 2 UofTaqpolymerase(Promega,Madison,Wis.). ionchromatographequippedwithanAS-9HCcolumn.Sulfatewaselutedusing 0.028MNaCO ataflowrateof1.0mlmin21.Sampleswerediluted1:100 PCRconditionsforarchaeallibraries(Eel-36a,SB-24a,SB-17a,andSB-7a). (vol/vol)ind2eion3izedwaterpriortoanalysis.Measuredvalueswerestandardized Archaeal16SrDNAsfromtheCsCl-purifiedDNAswereamplifiedfor30cycles against IAPSO standard seawater (28.9 mM SO22). Dissolved methane was (1.5minofdenaturationat94°C,30sofannealingat55°C,and7minofelon- extractedfromporewatersbyaddinganequalv4olumeofnitrogengastothe gationat72°C)usingarchaeon-specificprimers(A20f,59-TTCCGGTTGATCC syringeandthenshakingfor2minpriortomeasurementwithagaschromato- YGCCRG-39;U1492r,59-GGTTACCTTGTTACGACTT-39).Theexceptionin graph (GC) equipped with a flame ionization detector. Pore waters used for thisprocedurewasarchaeallibraryEel-36a,whichwasconstructedundersimilar analysis of dissolved hydrogen sulfide were obtained by centrifugation under PCRconditionsbutamplifiedforonly20cyclestominimizebiasassociatedwith oxygen-freeconditions(2)andmeasuredusingacolorimetricassay(8). highcyclenumbers(38). Lipid analysis. Sediment samples (;10 g [wet weight]) were sterilized by PCRconditionsforbacteriallibraries(Eel-36e,Eel-TE,Eel-BE,andSB-24e). ultrasonication(ultrasonicbath)in20to40mlofamixtureofdichloromethane Bacterial16SrDNAswerePCRamplifiedforeither30cycles(Eel-TE,Eel-BE, (DCM)andmethane(9:1,vol/vol)for;30min.Afterevaporationoftheresidual andSB-PC24)or20cycles(Eel-PC36)usingabacterium-specificforwardprimer solvent,thesedimentswereovendriedat;50°C.Experimentshaveshownthat (B27f,59-AGAGTTTGATCCTGGCTCAG-39)andauniversalreverseprimer oven drying largely suppresses degradation of analytes by microbial activities (U1492r,59-GGTTACCTTGTTACGACTT-39).PCRconditionswerethesame (K.-U.Hinrichs,unpublisheddata).Freelipidswereextractedfromdriedand asstatedaboveforthearchaeallibraryconstruction. homogenizedsedimentsusingaDIONEXAcceleratedSolventExtraction200 Cloningandsequencing.Ampliconswerepooledfromthreereactionsand system at 100°C and 1,000 lb/in2, with DCM-methanol (90:1, vol/vol) as the cleanedusingaQiaquickPCRpurificationkit(Qiagen,Valencia,Calif.)forall solvent.Extractswereseparatedintofourfractionsofincreasingpolaritiesusing 16SrDNAlibraries.CleanedproductswerethenclonedwithaTAcloningvector SUPELCO LC-NH glass cartridges (500 mg of sorbent) and a sequence of kit according to the instructions of the manufacturer (Invitrogen, Carlsbad, 2 solventmixturesofincreasingpolarities(hydrocarbons24mlofn-hexane,ke- Calif.).Screeningforthelibrarieswasconductedbyrestrictionfragmentlength tonesandesters26mlofn-hexane–DCM[3:1],alcohols25mlofDCM-acetone polymorphism analysis on M13F- and M13R-amplified products using either [9:1],andcarboxylicacids22%formicacidinDCM).Individualcompounds HaeIIIorRsaI(Promega).M13-amplifiedPCRproductswereinitiallydiluted werequantifiedandidentifiedusingaHewlett-Packard(HP)model6890GC 1:20inPCRbuffer.Fivemicrolitersofthedilutedproductwasthenusedinthe equippedwithaJ&WmodelDB-5(60-mlength,0.32-mminnerdiameter,and restrictiondigestcontaining0.5mlofenzymeand2mlofbufferina20-mltotal 0.25-mm film thickness) capillary column and coupled to an HP model 5973 volume,accordingtothemanufacturer’sinstructions.Uniquecloneswereiden- mass-selectivedetector.Stablecarbonisotopiccompositionsofindividualcom- tifiedandplasmidswerepurifiedeitherwithaWizardgenomicDNApurification poundsweredeterminedusingaFinniganDeltaPlusmassspectrometercoupled kit(Promega)orbyelectroelutionbyanautomatedminiprepprotocol(McCon- 1924 ORPHAN ET AL. APPL.ENVIRON.MICROBIOL. FIG. 1. PorewaterprofilesofSO22(})andCH (F)forselectEelRiverBasinseepsamples.(A)Profileforaseepcoreusedinthegeneration 4 4 oftheclonelibrariesEel-36aandEel-36e;(B)chemicalprofileforaseepcoreinwhichANME-2andDesulfosarcinalesaggregatesweredetected byFISH(depth,3to6cm)(Fig.5). nell, La Jolla, Calif.). Cleaned plasmid preparations were quantified and se- aggregateswerephotographedusingaSpotSP100cooleddigitalcolorcharge- quencedusingaThermoSequenaseFluorescentLabeledPrimerCycleSequenc- coupled-devicecamera(DiagnosticInstruments,Inc.,SterlingHeights,Mich.). ingkit(Amersham,Braunschweig,Germany)andanautomatedmodel4000Lor CapturedimageswereoverlaidinAdobePhotoshop4.0. 4200DNAsequencer(LI-CORBioTech,Lincoln,Nebr.).Double-strandedse- Nucleotidesequenceaccessionnumbers.TherDNAsequencesweresubmit- quencingwascompletedusingasuiteofprimerstargeting16SrDNA. ted to GenBank and have been assigned the following accession numbers: Phylogeneticanalysis.SequencesfromclonesweresubmittedtoGenBankfor AF354126toAF354167. preliminary analysis using the BLAST program of the Ribosomal Database Project to identify putative close phylogenetic relatives (27). Sequences were RESULTS alignedtotheirnearestneighborwiththeautomatedalignmenttooloftheARB programpackage(O.StrunkandW.Ludwig[ed.],ARB:asoftwareenvironment Chemicalprofilingofcoldseepsediments.Twoactivemeth- forsequencedata.1999.[http//www.mikro.biologie.tu-muenchen.de]).Phyloge- netictreesweregeneratedusingtheSEQBOOT,DNADIST,andNEIGHBOR ane seep sites within the Eel River Basin were targeted for programsofthePHYLIPversion3.5software(12).TheKimuratwo-parameter extensive chemical and microbial analysis in August 1999. modelwasusedtoestimateevolutionarydistance,and1,000bootstrapanalyses Depthprofilesfor14pushcoreswithanaveragelengthof15 wereperformedtoassignconfidencelevelstothenodesinthetrees. cmwereanalyzedforconcentrationsofSO 22,CH ,andCO . Fluorescentinsituhybridization(FISH).SelectedEelRiverBasinsediments, 4 4 2 Nineofthe14seep-associatedcoreshadprofilescharacteristic displayingchemicalporewaterprofilesdiagnosticofactiveAOM(Fig.1)and containing13C-depletedbiomarkers,werescreenedforthepresenceofarchaeal- of active anaerobic methane oxidization, with shallow sulfate bacterialaggregations.Sedimentsamples(0.5cm3)storedin2%NaCl–ethanol depletiondepthsthatreachedundetectablelevelsofSO 22at 4 (1:1)werediluted(1:10)inphosphate-bufferedsalineandtreatedwith15sof depths of ,15 cm. Pore water chemistry features, typical for mild sonication at 32 A (Sonics and Materials Inc., Danbury, Conn.). (Prior continentalmarginsedimentswithabundantmethane(i.e.,the fixationwithformaldehydewasnotabsolutelyrequiredforsuccessfulhybridiza- tionwiththeoligonucleotideprobes.)Dilutedsampleswerecentrifugedbriefly intersectionofmethaneandsulfateminimainaso-calledtran- for5sat5,000rpmtopelletlargesedimentparticles,and50to70mlofthe sitionzone)(23,28),wererarelyobservedinseepsedimentsin supernatant was filtered onto a 0.2-mm-pore-size GTTP polycarbonate filter. the Eel River Basin. Instead, high concentrations of methane Filters were then treated for 2 min with a phosphate-buffered saline–ethanol andsulfateoftenoccurredtogetherintheupper10cm(Fig.1). (1:1)solutionanddriedbeforehybridization.Hybridizationandwashbuffers Some seep cores contained high concentrations of methane weresynthesizedaccordingtothemethodofGlo¨ckneretal.(15)using30% formamideinthehybridizationbufferand80mMNaClinthewashsolution. (upto6.6mM),butlittletonosulfatedepletionwasobserved. OligonucleotideprobeswerelabeledwitheitherCy3orfluoresceinisothiocya- This is most likely reflective of non-steady-state conditions natefluorochromes(GensetS.A.,Paris,France).Oligonucleotideprobestarget- causedbydynamicfluidandgastransportinactiveseepzones ingthebacterialDesulfosarcinales-Desulfococcusgroup(DSS658,TCCACTTC (43).Independentoftheporewatersulfateconcentration,the CCTCTCCCAT)andtheseep-specificarchaealANME-2group(EelMSMX932, AGCTCCACCCGTTGTAGT)havebeenpreviouslyreported(4,32).General majority of the seep cores profiled (seven out of nine) also archaeal and bacterial probes, AR915 and EUB338, were used as previously contained characteristic archaeal and bacterial lipid biomark- described(1).Hybridizationwasconductedat46°Cfor2handfollowedbya ersindicativeofAOMconsortia(18,19,30). wash at 48°C for 15 min. Washed filters were stained with a dilute 4969-dia- Santa Barbara Basin seep sediments, including seep cores midino-2-phenylindole(DAPI)solution(5mg/ml)for1minandexaminedunder epifluorescencemicroscopywithanAxiophot2microscopeusinga1003Pla- SB-pc24andSB-pc17usedin16SrDNAlibraryconstruction, nAPO objective (Zeiss, Thornwood, N.Y.). Archaeal-bacterial dually stained displayed high hydrogen sulfide concentrations (up to 11.5 VOL.67,2001 ANAEROBIC METHANE-OXIDIZING CONSORTIA 1925 TABLE 2. Concentrationsandd-13Clevelsofarchaealandbacteriallipidsandd-13ClevelsoftotalorganiccarbonandcarbonateofEel-pc36 Depthinterval Archaeol sn-a2r-cHhyaderoolxy- Crocetane cisM-vA7G-1E6:1 d-13C(‰)of d-13C(‰) totalorganic (cm) d-13C(‰) Concn(mg/g) d-13C(‰) Concn(mg/g) d-13C(‰) Concn(mg/g) d-13C(‰) Concn(mg/g) carbon ofCO322 0–3 2101.1 1.3 2105.2 3.8 NDa ND 276.7 1.00 228.8 218.0 3–6 2100.6 1.3 2105.8 2.7 291.6 0.3 277.6 1.16 228.9 224.0 6–9 2102.6 1.5 2105.5 2.3 ND ND 280.8 0.95 229.7 232.5 9–12 2102.1 1.1 2105.7 1.0 ND ND 286.5 1.03 228.5 229.9 aND,notdetermined. mM) and low sulfate concentrations (,5 mM) at 10 cm of also reflected in the isotopic values of authigenic carbonates sediment depth. Nonseep reference cores from both environ- extracted from the same core, with d-13C values being signifi- ments showed minimal sulfate depletion throughout the core cantlylowerinmoredeeplyburiedsamples(Table2). andundetectablelevelsofmethane,hydrogensulfide,andiso- Phylogenetic diversity of archaea. Culture-independent topicallydepletedlipidbiomarkers(Table1;datanotshown). analysis of archaeal assemblages within seep sediments con- Chemotaxonomic analysis of archaeal diversity. Chemot- taining isotopically depleted archaeal lipid biomarkers revealed axonomic analysis of seep-associated sedimentary lipids from five distinct archaeal phylogenetic clades affiliated with both theEelRiverandSantaBarbarabasinsrevealedhighconcen- theEuryarchaeotaandCrenarchaeota(Table3).Ofthese,two trations of diverse, extremely d-13C-depleted archaeal lipids, groupsperipherallyrelatedtotheMethanosarcinales,ANME-2 themostprominentbeingarchaeol,sn-2-hydroxyarchaeol,sat- andANME-1,representedasignificantproportionofthetotal urated and unsaturated 2,6,10,15,19-pentamethylicosane (PMI), rDNAclonesinmethane-ladensediments. andcrocetane.Depthprofilesofsedimentarylipidbiomarkers 16S rDNAs from the ANME-2 clade (85 to 89% similar to in Eel River Basin seep core Eel-pc36 revealed abundant, Methylococcoidesmethylutens)weremostfrequentlyrecovered, 13C-depletedarchaealandbacteriallipidsthroughoutthecore representing21to71%ofthetotalclonesintwoofthethree (Table 2). The archaeal lipids archaeol and sn-2-hydroxy- archaeallibrariespreparedfromEelRiverandSantaBarbara archaeoldisplayedrelativelyconstantd-13Cvaluesoflessthan basin sites (Table 3). Phylotypes grouping within ANME-2 2100‰ at all depths, suggestive of constant fractionation by from the Eel River and Santa Barbara basins formed three archaeal groups under conditions of excess methane avail- distinctclustersofhighlyrelatedsequences(.97%similarity) ability.Incontrasttotheisotopicvaluesofthearchaeallipid (designated subgroups a, b, and c), with maximum overall fraction,profilesofbacteriallipids(fattyacidsandsn-1-mono- sequencesimilarityof87%forthisgroup(Fig.2).Thediversity alkylglycerolethers[sn-1-MAGE])inthecoreweremorevari- of ANME-2 phylotypes detected within single samples was able, showing decreasing d-13C values with increasing depth, high, with representative sequences falling into two or more likely due to the decreasing d-13C of pore water substrates. subgroups. The exception to this was library SB-17a, which Evidence for an isotopically depleted carbon pool at depth is contained phylotypes clustering only within subgroup c. The TABLE 3. Majorarchaeallineagesrepresentedin16SrDNAlibrariesa Presenceinorabsencefromindicatedsample(%oftotalorganisms)in16SrDNAlibrary: Eel-TAb Eel-BAb Eel-36a SB-24a SB-17a SB-7a pISA(39) GBc MT/C(29) APA(46) JTB(26) EelRiverBasin SantaBarbaraBasin Archaea Eel-Hpc4(0–4cm) d(20–22cm)Eel-Hpc4 dEel-pc36(4–7cm) d(13–16cm)SB-pc24 SB-pc17(4–7cm) SB-pc7(4–7cm) Hydrothermalventsedi-mentsfromJapan SeepsedimentsfromGuaymasBasin Coastalsaltmarsh,Essex,UnitedKingdom Deep-seasedimentsfromtheAtlantic ColdseepsedimentsfromtheJapanTrench ANME-1 1(55) 1(84) 1(7.5) 2 1(18) 2 1 1 2 2 2 ANME-2 1 1(16) 1(71) 1(67) 1(22) 2 2 1 1 2 2 Methanosarcinales 2 2 1(6) 1(9) 2 2 2 2 1 2 2 Crenarchaeota 2 2 1(2) 1(2) 1(4) 2 1 2 2 1 1 Thermoplasmales 1 2 1(2) 1(3) 1(41) 1 1 2 1 1 1 a1,sequencetypedetected;2,notdetected.Numbersinparenthesesbeside16SrDNAlibrarydesignations(pISA,GB,MT/C,APA,andJTB)arereference numbers. bDatawerepreviouslyreportedinreference18. cDataarefromAndreasTeske(personalcommunication). dd-13C-depletedarchaeallipidbiomarkersdetectedinmethaneseepsedimentsamplesincludedarchaeol,sn-2-hydroxyarchaeol,dihydrophytol,unsaturatedPMI, andcrocetane.ArchaealbiomarkerswerenotdetectedinsampleSB-17aorinnonseepcontrolsampleSB-7a.CrocetanewasnotdetectedinsampleEel-BA.d-13C valuesoftheselipidsrangedfrom281to2129‰. 1926 ORPHAN ET AL. APPL.ENVIRON.MICROBIOL. FIG. 2. Phylogenetictreeshowingrelationshipsof16SrDNAarchaealclonesequencesfromSantaBarbaraBasinandEelRiverBasinseep sites(inboldface)toselectedculturedandenvironmentaleuryarchaeotalsequencesinthedatabase.BoldfaceEelRiverBasinclonescontaining accessionnumberswerepreviouslyreportedinreference18.Environmentalsequencesincluded2MTand2Cfromanoxicsaltmarshsediments (29),CRAfromdeepseasediments(46),pISAfromhydrothermalventsediments(39).Thetreewasgeneratedbyneighbor-joininganalysisand correctedwithamaskthatincludedonly60%oftheconservedregions.Onethousandbootstrapanalyseswereperformed,andpercentagesgreater than50%arereported.Thebarrepresentsa10%estimatedsequencedivergence.environ.,environmental. SB-17a rDNA clone library was atypical compared to other spectively.LiketheANME-2group,theANME-1groupcon- seep libraries overall, with the majority of phylotypes being tainsasignificantamountofintragroupdiversity,withthemost associatedwithrelativesoftheThermoplasmales(Table3). distant sequences in this clade sharing 90% similarity to each The putative methane-oxidizing archaeal group ANME-1, other. However, in contrast to the greater ANME-1 diversity recently described from Eel River Basin methane seep sedi- previously reported from a single Eel River Basin cold seep, ments, was repeatedly detected at methane seep sites in the fewerANME-1-relatedsequenceswererecoveredinthisstudy Eel River and Santa Barbara basins. ANME-1-related phylo- andtherewaslessdiversitywithinsinglesamples(Fig.2).The types represented 7.5 and 18% of the total archaeal clones ANME-1phylotypesrecentlyreportedfrommethane-rich,hy- screened in the 16S rDNA libraries Eel-36a and SB-17a, re- drothermallyactivesettingsformedaseparateclade(39)and VOL.67,2001 ANAEROBIC METHANE-OXIDIZING CONSORTIA 1927 FIG. 3. ReconstructedionchromatogramofthealcoholfractionfromsampleEel-pc36(6to9cm).Labeledpeaksdesignatecompoundswith isotopiccompositionsindicatingapartialorexclusivederivationfromanaerobicmethanotrophicmicrobes.p,C toC acyclicalcoholsfrom 14 17 bacteria; #, sn-1-MAGE with ether-linked C to C acyclic alcohol moieties from bacteria. The numbers beside “DAGE” designate carbon 14 18 numbersofether-linkedalkylmoietiesexpressedasnumbers,e.g.,DAGE-15/15isdietherwithtwoC -alkylmoieties.phy-gly,sn-1-monophyta- 15 nylglycerolether(archaea);AR,archaeol(archaea);OH-AR,sn-2-hydroxyarchaeol(archaea);STD,standard. weremorecloselyrelatedtoeachotherthantotheANME-1 recovered from other marine sedimentary environments (46, coldseepsequences(.96%)(Fig.2). 47). Two other methanogen-like sequences, closely related to Lipidchemotaxonomyofbacteria.Twoclassesoflipidswith culturedmembersoftheMethanosarcinales,madeuplessthan significant contributions from bacterial, syntrophic partners 10%oftheSB-24aandEEL-36alibraries(Table3).Phylotype participatingintheAOMconsortiumweregenerallypresentat SB-24a1C2, representing 9% of the clones from the Santa seep sites in the Eel River and Santa Barbara basins. These BarbaraBasinlibrary,ishighlysimilar(98.8%similarity)tothe compounds are fatty acids ranging from C to C in carbon 14 18 obligate methylotroph Methanococcoides burtonii, previously number and monoalkylglycerolethers (MAGE) and dialkylg- isolatedfromanantarcticlake(13).EelRiverBasinsequence lycerolethers(DAGE)withnonisoprenoidalalkylmoietiesand types,representedbyEel-36a2H11,werealsocloselyrelatedto chainlengthsfromC toC .Theparticipationoforganisms 14 18 the methylotrophic Methanococcoides spp. (.95% similarity) thatproduceMAGEandDAGEinAOMisindicatedbyd-13C andmadeup6%oftheEel-36alibrary. values that require more or less exclusive utilization of meth- RemainingeuryarchaeotalsequencesweresimilartorDNAs ane-derived carbon for biosynthesis (approximately 2100‰ previouslyrecoveredfrommarinesediments(29)thataredis- for most MAGE and selected fatty acids [19]). In addition to tantlyrelatedtotheThermoplasmales(Fig.2).Relativesofthe the MAGE and fatty acids, the sedimentary alcohols showed Thermoplasmaleswereaminorproportionofthetotalclones, very similar structural and isotopic features, suggesting that representing,3%oforganismsinallseeplibrariesexceptthe certainsyntrophicbacterialmembersoftheAOMconsortium Santa Barbara Basin library SB-17a. 13C-depleted archaeon- synthesizethemaswell.Fattyalcoholsareknownproductsof specific biomarkers were below detection levels in SB-pc17, some bacteria, but no systematic surveys, i.e., comparable to which in addition to the high proportion of Thermoplasmales thoseoffattyacids,havebeenundertakenonalcoholcontents phylotypes may indicate low methane flux at this site. Se- in microorganisms. Very similar relative amounts of MAGE quencesrelatedtotheThermoplasmalesrepresented100%of and fatty alcohols with carbon isotopic compositions ranging the clones analyzed in library SB-7a, constructed from sedi- from2100to260‰occurcommonlyinsedimentswithactive ments from a control site in Santa Barbara Basin, where nei- AOM (e.g., a representative chromatogram is illustrated in therANME-2orANME-1clones,sulfatedepletion,highsul- Fig.3). fidelevels,nor13C-depletedlipidbiomarkerswereobserved. Phylogenetic diversity of d-proteobacteria. Table 4 shows Like the Thermoplasmales-related phylotypes, crenarchaeo- themajord-proteobacteriallineagesdetectedinfourcoldseep tal sequences were present in both Eel River and Santa Bar- sediment samples that contain 13C-depleted bacterial lipids. bara basin sites and comprised a relatively low percentage Analysis of 16S rDNA sequences recovered from the same (,4%)ofclonesinthemethaneseeplibraries(Table3).Cre- sedimentsamplesrevealedapredominanceofd-proteobacte- narchaeotal sequences from both sites were highly similar to rial phylotypes, represented by six distinct lineages. The ma- each other (98.9%) and were most closely related to rDNAs jorityoftheseeplibrariescontainedrepresentativesfromtwo 1928 ORPHAN ET AL. APPL.ENVIRON.MICROBIOL. TABLE 4. Major16SrDNAphylotypesassociatedwithsulfate-reducingbacteria Presenceinorabsencefromindicatedsamplein16SrDNAlibrary(reference): Eel-TE Eel-BE Eel-36ea SB-24ea ODPB(3) GCAb JTB(26) TAYNAYA(6) sva(47) m nts d-Proteobacteria Eel-Hpc4(0–4cm) Eel-Hpc4(22cm) Eel-pc36(4–7cm) SB-pc24(13–16cm) GashydratesedimentfrotheCascadiaMargin Hydrocarbonseepsedime JapanTrenchcoldseepsediments Antarcticfjordsediments ShelfsedimentfromtheArcticOcean Desulfosarcina 1 1 1 1 1 1 1 1 1 SeepEel-1 1 1 2 2 2 1 2 2 2 Desulfobulbus 1 2 1 2 1 2 2 2 1 SeepEel-2 1 1 2 2 1 2 2 2 2 SeepEel-3 1 2 2 1 2 2 2 2 1 Myxobacterium 2 2 1 2 2 2 1 2 1 d-1a3CFaitntysaecdiidmseanstsaorcyiaftaetdtywaicthidssurlafantgee-drefdruocming2b5a2cttoer2ia1(0130‰,40.)Ndoetteecttheadtidn-1m3Cethleavneelssienepphseodtoimsyennthtestaimcaplllyesdienrcivlueddeldipnid-Cs1a4r:0e,anp-Cpr1o6:x1im(va:5t)e,layn2d2150‰Me.-C16:0.Levelsof bDataarefromK.R.O’Neill(GenBankdatabaseaccessionno.AF154080toAF154106). or three major groups within the d-proteobacteria (Table 4). andarecloselyaffiliatedwithenvironmentalclonesrecovered Thesesequenceclusterswereeachrelatedby.81%sequence fromasulfate-reducingbenzene-mineralizingenrichment(;92% similarity and grouped among both cultured sulfate reducers similarity)(Fig.4)(31).Inaddition,Eel-3phylotypes,detected (i.e.,DesulfosarcinalesandDesulfobulbusspp.)andnovelclus- in both the Eel River and Santa Barbara basins were not terssofarrepresentedonlybyenvironmentalsequencesorig- closelyrelatedtoknownd-proteobacteria,withonly76%sim- inating from similar environments (groups Eel-1, Eel-2, and ilarity to Desulfovibrio gabonensis and 80% similarity to an Eel-3)(Fig.4). environmentalclonerecoveredfromcoldseepsinJapan(26). SequencesrelatedtotheDesulfosarcinales(91%similarityto Eel-3phylotypeswerehighlysimilartoeachother(99%)and Desulfosarcina variabilis) were the most common phylotype comprised5ofthe52clonesscreenedfromlibraryEel-TE. recovered, being detected in all four 16S rDNA libraries and Comparisonofbacterial16SrDNAdiversitybetweenSanta representing up to 17.6% of total clones in library SB-24e. BarbaraandEelRiverbasinsites.Fourothermajorlineages These ubiquitous rDNA sequences formed a distinct clade, ofthedomainBacteriawererepresentedin16SrDNAlibrar- morecloselyrelatedtoeachotherthantoknownsequencesin ies from both Santa Barbara Basin (SB-24e) and Eel River thedatabase,withgreaterthan94%similarityovera1,300-bp Basin(Eel-BE)coldseeplibraries,includingg-proteobacteria, region. Although recovered from geographically distant sites, the Flexibacter-Bacteroides-Cytophaga division, candidate divi- somephylotypeswithinthisgroupfrombothEelRiverBasin sion OP-9, and the Acidobacterium-Holophaga group (Table (Eel-36e1h1)andSantaBarbaraBasin(SB-24e1c6)werenear- 5).InboththeSB-24eandEel-BElibraries,d-proteobacteria ly identical, with only a 0.8% sequence difference detected related to sulfate-reducing bacteria were the most abundant (Fig.4). phylotypes recovered, representing 25 and 36.4% of total In addition to phylotypes related to the Desulfosarcinales, clones screened, respectively. In addition to sulfate-reducing 16SrDNAsaffiliatedwiththepropionate-utilizingDesulfobul- phylotypes,librarySB-24ealsocontainedalargepercentageof bus were also recovered from two sites in Eel River Basin. e -proteobacterial phylotypes (26%) related to other sulfide- Desulfobulbus-related clones were closely related to environ- oxidizingchemoautotrophicmicroorganisms(93.5%similarto mentalclonesrecoveredfromarcticsediments(92%similarto Thiomicrospiradenitrificans).Relatede -proteobacterialphylo- environmental clone sva0631) as well as methane hydrate- types were also recovered in one Eel River library, Eel-36e associated sediments from Cascadia Margin (Fig. 4) (3, 33). (;92%similaritytoSB-24ephylotypes),similartothosefound Additionally,phylotypesclusteringwithintheEel-2cladewere in other seep environments, including methane-rich anoxic also peripherally related to Desulfobulbus members (;88% sediments from the Cascadia Margin, the Japan Trench, and similaritytoDesulfobulbuspropionicus).Eel-2phylotypescom- SagamiBay(3,26,44)(Table5). prised a significant percentage of clones recovered from Eel Diversephylotypesrelatedtotheg-proteobacteriawerede- RiverBasinseepsampleEel-Hpc4(17%)andweredetectedin tectedinallfourbacteriallibraries,withmanyphylotypesbe- both shallow (4- to 7-cm) and deep (20- to 22-cm) sediment ingrelatedtosequencesrecoveredfromarcticsediments(85to sections (Table 4). Similar to those within Eel-2 clones, phy- 90%similarity)(33).Similartothee -proteobacterialrepresen- lotypes within the Eel-1 clade were also recovered from both tatives, a number of g-proteobacteria phylotypes recovered depth intervals from seep core Eel-Hpc4. Eel-1 phylotypes fromEelRiverandSantaBarbarabasinsiteswererelatedto represented 12% of the total clones screened from library both free-living and symbiotic sulfide oxidizers (91% similari- Eel-BE(constructedfromthe20-to22-cmsedimentinterval) ty), as well as other environmental sequences recovered from VOL.67,2001 ANAEROBIC METHANE-OXIDIZING CONSORTIA 1929 FIG. 4. Phylogenetictreeshowingrelationshipsof16SrDNAd-proteobacterialclonesequencesfromSantaBarbaraBasinandEelRiverBasin seeps(inboldface)toselectedculturedandenvironmentalproteobacterialsequencesinthedatabase.Environmentalsequencesincludedsvafrom arctic sediment (47) and SB from a benzene-mineralizing enrichment culture (31). The tree was generated by neighbor-joining analysis and correctedwithamaskthatincludedonly60%oftheconservedregions.Onethousandbootstrapanalyseswerepreformed,andpercentagesgreater than50%arereported.Thebarrepresentsa10%estimatedsequencedivergence. similar seep habitats (26). Additional groups represented (96.7% similarity) were also detected in the Santa Barbara withintheg-proteobacteriaincludedSB-24ecloneshighlysim- Basinlibrarybutcomprisedonlyarelativelysmallpercentage ilar to Halomonas variabilis (95.3% similarity) and Eel-TE of the total clones (;3%) (Table 5). Included in the seep- clonesrelatedtotheaerobicmethane-oxidizingMethylobacter associated OP-9 cluster were environmental clones from cold luteus (95.7% similarity) and the psychrophile Colwellia psy- seepsintheJapanTrench(26),hydrocarbon-loadedseepsed- chroerythrus(97.7%similarity). iments (GenBank accession no. AF154106), and a benzene- Relatives of candidate division OP-9, originally described mineralizing consortium clone SB-15 (31). Sequences related fromhotspringenvironments,comprisedasignificantpropor- to the recently described Acidobacterium-Holophaga division tion of the total clones screened in library Eel-BE (21%). werealsodetectedbutinlowabundance(.4%). Sequences highly related to the Eel River OP-9 phylotypes Planctomyces spp. and Cytophagales spp.-related phylotypes 1930 ORPHAN ET AL. APPL.ENVIRON.MICROBIOL. TABLE 5. Majorbacteriallineagesrepresentedin16SrRNAgenelibrariesfrommethaneseeps Presenceinorabsencefromindicatedsample(%oftotalorganisms)in16SrDNAlibrarya: SB-24e Eel-BE Eel-TEc Eel-36ec JTB(26) GCAb TAY-NAYA(6) sva(47) nt e Organisms Closestrelative SantaBarbaraBasinSB-pc24(13–16cm) EelRiverBasinEel-Hpc4(20–22cm) EelRiverBasinEel-pc36(4–7cm) SantaBarbaraBasinSB-pc24(13–16cm) ColdseepsedimentfromJapan Oilseepsediments AntarcticfjordsedimfromTaynayaBay ShelfsedimentsfromtheArcticOcean d-Proteobacteria 1(25) 1(36.4) 1 1 1 1 1 1 e -Proteobacteria S-oxidizingsymbionts 1(26) 2 2 1 1 1 2 2 g-Proteobacteria (S-oxidizingsymbionts1others) 1(4.3) 1(3.3) 1 1 1 1 1 1 a-Proteobacteria Rhizobiumspp. 2 2 2 1 1 2 1 1 Planctomyces Pirellulaspp. 1(3.3) 1(1) 1 2 2 2 2 1 FBCd Cytophagaspp. 1(3.3) 1(6.6) 1 2 1 2 1 1 Graciliutes Haloanaerobiumspp. 2 1(2.5) 2 2 2 1 2 2 Gram-positivebacteria Propionigeniumspp. 2 1(4.1) 1 2 1 1 1 1 Greennonsulfurorganisms 1(5.5) 2 2 2 2 1 2 1 Holophaga Acidobacteriumspp. 1(3.3) 1(2.5) 1 2 2 1 1 1 CandidatedivisionOP-9 1(3.3) 1(21) 2 2 2 1 1 2 CandidatedivisionOP-11 2 1(4.1) 2 2 2 2 2 2 Spirochetes 1(5.5) 2 2 2 2 2 2 2 aNumbersinparenthesesbesidelibrarydesignationsarereferencenumbers. bHydrocarbonseep.DataarefromK.R.O’Neill(GenBankdatabaseaccessionno.AF154080toAF154106). cBasedonapartiallibraryscreeningofEel-TE(52clones)andEel-36e(18clones). dFBC,Flexibacter-Bacteroides-Cytophagadivision. werecommoninSantaBarbaraandEelRiverbasinlibraries, size,rangingbetween5and30mmindiameter,anddisplayed representing3.3and6.6%oftheclones,respectively.Environ- anirregularstainingpatternwithDAPI. mentalsequencesrelatedtotheCytophagalesappeartohavea widespreaddistributioninmarinesediments,detectedinboth DISCUSSION seep-associated and other marine sedimentary environments, including the Arctic Ocean, an antarctic fjord, and the Japan Oneofthemoreimportantbiogeochemicalprocessesinflu- Trench (6, 26, 33). Planctomyces-related sequences were less encingcarbonturnoverincontinentalmarginenvironmentsis frequentlydetectedinmarinesedimentdiversitysurveysthan the anaerobic oxidation of methane. Although there is con- Cytophagales-relatedsequences.Relatedphylotypeswerepre- vincing biogeochemical evidence for archaeon and sulfate re- viouslyreportedinarcticandPugetSoundsediments(16,33). ducer cooperative involvement in AOM, identification of the Although frequently reported in molecular surveys of marine potential organisms involved has been reported only very re- sediments,includingthosefromseepenvironments,sequences cently (4, 18). Combining environmental 16S rDNA surveys clustering within the gram-positive bacteria comprised only a andwhole-cellinsituhybridizationwithchemotaxonomicsur- small percentage (4%) of the total clones screened in this veys of 13C-depleted sedimentary lipids from geographically study. Gram-positive bacterial phylotypes were detected only distant methane seep sites, we confirm and extend previous in16SrDNAlibrariesfromtheEelRiverBasin. observationsofAOMconsortiainmarinesediments.Ourdata Insituwhole-cellhybridization(FISH).Weusedpreviously indicatethewidespreadoccurrenceofspecificgroupsofmeth- designed (4) 16S rDNA-targeted oligonucleotide probes to ane-consumingarchaeaandsulfate-reducingbacteriainvolved visualize microbial groups that are thought to be involved in inAOM.Ourdataalsosupportpreliminaryphylogeneticevi- the anaerobic oxidation of methane. Oligonucleotide probes dence (4, 18) identifying some of the key microbial groups specific for members of the Desulfosarcinales and Desulfococ- mediatingthisspecializedprocessinthemethane-rich,anaer- coides groups (DSS658) and the newly described archaeal obicenvironments. ANME-2 group (EelMSMX932), as well as general archaeal Archaeal diversity within methane seeps. Levels of total and bacterial probes (AR915 and EUB338), were hybridized seep-relatedarchaealSSUrDNAdiversitydetectedfromboth withcellsfrommethaneseepsedimentsamples(4,32).Atotal Eel River Basin and Santa Barbara Basin were very similar. of four cores (Eel-pc6 [4 to 7 cm], Eel-pc36 [4 to 7 cm], Fivemajorphylogeneticgroupswererepresentedandincluded Eel-pc21[1to4cm],andEel-pc54[3to4cm])fromEelRiver sequences highly related to cultured Methanosarcinales, the BasinseepscontainedcellshybridizingwitharchaealANME-2 newly described ANME-2 clade, phylotypes more distantly and sulfate-reducing DSS658 probes. Archaeal and bacterial related to cultured members within the Methanosarcinales cells hybridizing with the EelMSMX932 and DSS658 probes (ANME-1 group), and low-temperature relatives of the Ther- occurred together as structured aggregates, comprised of ir- moplasmales and Crenarchaeota. Comparisons to other 16S regularcoccoidcells1to2mmindiameter(Fig.5).Archaeal rDNAphylogeneticsurveysofsedimentaryarchaearecovered andsulfate-reducingbacterialaggregateswerehighlyvariedin from both seep and nonseep marine habitats suggest that the VOL.67,2001 ANAEROBIC METHANE-OXIDIZING CONSORTIA 1931 FIG. 5. Whole-cellFISHofputativemethane-oxidizingconsortiainmethaneseepsediments.(A)DAPIstainofaggregatesfroma3-to6-cm sediment depth from Eel River Basin cold seeps. Sediment preperations were simultaneously hybridized with a fluoroscein-labeled probe for Desulfosarcina-Desulfococcusmembers(DSS658)(B)andaCy-3labeledarchaealANME-2-groupspecificprobe(EelMSMX932)(C).(D)Overlay ofbothCy-3ANME-2group(red)andfluorosceinDulsulfosarcinales(green)resultstoshowthearchitectureoftheaggregate.Scalebar510mm. ANME-1 and ANME-2 groups are specific to anoxic seep- valuesandlipidconcentrationsinsedimentaryverticalprofiles associated environments but that phylotypes related to the suggest that the composition of methane-consuming archaea Thermoplasmales and low-temperature Crenarchaeota are more doesnotchangesignificantlywithdepth.Similar13C-depleted broadlydistributedinmarinesediments. diphytanylglycerolethers (archaeol and sn-2-hydroxyarchaeol) Coincidingwiththearchaealgenotypesrecovered,sedimen- have been previously detected in other methane-laden sedi- tary biomarkers related to the archaea were also abundant, mentary environments, including seep sediments in the Med- comprised of at least four distinct lipids with extremely low iterranean and at the Cascadia Margin, suggesting that Meth- levelsofd-13C(downto2129‰).Twoofthemostprominent anosarcinales relatives and, more specifically, members of the biomarkers, sn-2-hydroxyarchaeol and PMI, are specifically ANME-2groupmaybeactivemethaneconsumersinhigh-flux abundantinmembersoftheMethanosarcinalesandwerecor- methane-richmarineenvironmentsworldwide(4,19,30).Fur- relatedwiththerecoveryofMethanosarcinales-relatedANME- thermore,ANME-2-relatedphylotypeswerepreviouslyrecov- 2rDNAclonesfromseepsampleswithinSantaBarbaraBasin eredfromhighlyreduced,methane-richsaltmarshsediments, (SB-pc24) and Eel River Basin (Eel-pc36). These findings suggestingthatthisgroup’sinvolvementinAOMmightextend strongly support the hypotheses that ANME-2 members are toshallow,warmerwatercoastalflatsaswell(29).Inaddition onesourceoftheisotopicallylightarchaeallipidsandthatthey tocontainingarchaeolderivatives,selectedsamplesfromboth actively consume methane within a variety of methane-rich the Santa Barbara and Eel River basins contained 13C-de- anaerobic marine environments. Boetius et al. (4) came to pletedcrocetane,previouslyattributedtoanaerobicmethane- similar conclusions based on FISH results in methane-rich utilizingmicroorganisms(11,42).Althoughmicrobialsources sedimentsatHydrateRidgethatalsocontainthesame,isoto- of crocetane are unknown, its structure with the tail-to-tail pically light archaeal lipids. In addition, the uniform isotopic linkageofisopreneunitssuggestsanarchaealorigin,different
Description: