ebook img

Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species PDF

16 Pages·2015·1.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species

Article Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species YongqiangTian1,2,ChunyunZhang1andMingquanGuo1,* Received:8November2015;Accepted:30November2015;Published:7December2015 AcademicEditor:MarcelloIriti 1 Sino-AfricaJointResearchCenter/KeyLaboratoryofPlantGermplasmEnhancementandSpecialty Agriculture,WuhanBotanicalGarden,ChineseAcademyofSciences,Wuhan430074,China; [email protected](Y.T.);[email protected](C.Z.) 2 GraduateUniversityofChineseAcademyofSciences,Beijing100049,China * Correspondence:[email protected];Tel./Fax:+86-27-8751-8018 Abstract: The major active constituents from Amaryllidaceae family were reported to be Amaryllidaceae alkaloids (AAs), which exhibited a wide spectrum of biological activities, such as anti-tumor, anti-viral, andacetyl-cholinesterase-inhibitoryactivities. Inordertobetterunderstand theirpotentialasasourceofbioactiveAAsandthephytochemicalvariationsamongthreedifferent species of Lycoris herbs, the HPLC fingerprint profiles of Lycoris aurea (L. aurea), L. radiata, and L. guangxiensis were firstly determined and compared using LC-UV and LC-MS/MS. As a result, 39 peakswereresolvedandidentifiedasAAs,ofwhichninepeakswerefoundincommonforall these three species, while the other 30 peaks could be revealed as characteristic AAs for L. aurea, L. radiata and L. guangxiensis, respectively. Thus, these AAs can be used as chemical markers for theidentificationandqualitycontroloftheseplantspecies. Tofurtherrevealcorrelationsbetween chemical components and their pharmaceutical activities of these species at the molecular level, thebioactivitiesofthetotalAAsfromthethreeplantspecieswerealsotestedagainstHepG2cells with the inhibitory rate at 78.02%, 84.91% and 66.81% for L. aurea, L. radiata and L. guangxiensis, respectively. Thisstudyfirstlyrevealedthatthethreespeciesunderinvestigationweredifferentnot onlyinthetypesofAAs, butalsointheircontents, andbothcontributedtotheirpharmacological distinctions. To the best of our knowledge, the current research provides the most detailed phytochemicalprofilesofAAsinthesespecies,andoffersvaluableinformationforfuturevaluation andexploitationofthesemedicinalplants. Keywords: Amaryllidaceaealkaloids;chemicalfingerprints;chemicalmarker;anti-HepG2activity 1. Introduction BelongingtotheAmaryllidaceaefamily,plantsofgeneraLycoriswereknownnotonlyfortheir ornamental value, but also for their medicinal value being used as a medicinal herb for thousands of years in China [1,2]. It has been well documented that the Amaryllidaceae alkaloids (AAs) were responsiblefortheirpharmaceuticalactivities,andexhibitedawidespectrumofbiologicalactivities, such as anti-tumor, anti-malarial, and acetylcholinesterase inhibitory activities [3–8]. In turn, there has been growing interest in the search for new AAs with better bioactivities from Amaryllidaceae plants [9]. In the past few years, more and more alkaloids were isolated from the Amaryllidaceae family,andmostofwhichbelongtogalanthaminetype,lycorinetype,homolycorinetype,tazettine type and crinine type in terms of chemical structures [10]. Among them, galanthamine and lycoraminewerereportedtoexhibitgoodactivityagainstAlzheimer’sdisease[7].WhilemoreAAs, such as lycorine, dihydrolycorine, haemanthamine, pretazettine, pseudolycorine, and narciclasine, Molecules2015,20,21854–21869;doi:10.3390/molecules201219806 www.mdpi.com/journal/molecules Molecules2015,20,21854–21869 showed significant activity against a variety of cancer cells either by inhibiting cancer cell growth mainly through cytostatic effects targeting small RHO GTPases or through the inhibition of protein synthesisandthesubsequentdisorganizationoftheactincytoskeleton[11–14].Duetotheremarkable pharmaceutical activities, AAs have led to increasing interest in the search for new resources and new bioactive components from different species in the Amaryllidaceae family. However, most of the current research only focused on certain major species on the market, and little work has been conducted for the comprehensive analysis of AAs from different Lycoris species. Since remarkable chemical differences have often been found in different species of medicinal plants or even from differentgeographicorigins,whichsignificantlyaffectedqualityandbioactivities. Inmostcases,the chemical differences often resulted in pharmacological distinctions. In this context, we set out to investigateandcomparechemicalfingerprintprofilesofthreeLycorisspecies. Duetothecomplexity and variety of components in these plant species, it is of primary importance to develop a tailored analyticalmethodforthecomprehensiveanalysisofAAsfromthesemedicinalplants[15,16]. In the past few decades, a number of analytical methods including GC-MS, LC-MS, and CE-ESI-IT-MShavebeendevelopedfortheanalysisofAAs[17–23], whichcontributedsignificantly to the better understanding of AAs from medicinal plants. Due to the high sensitivity and the accesstotheMSdatabase,GC-MSwasdeemedasaneffectivemethodfortheanalysisofAAsinthe past[19]. However,itwaslimitedtoAAswithrelativelyhighervolatility,whichwasinappropriate to some AAs, especially in this work. Compared to GC-MS, LC-MS has been more widely used in the analysis of alkaloids in various plant sources due to its ability in detecting thermo-unstable and high-molecular-weight alkaloids in recent years [19,21], and it is thus applied in this study. While usedfordifferentresearchpurposes,thoseLC-MSmethodsreportedhavelimitationsinboth theirresolutionandcapacityofprofilingAAs,andcanonlyanalyzeoneoraverylimitednumberof AAs[23–27]. InordertoconductacomprehensiveanalysisofAAs,andovercometheselimitations,a moreeffectivemethodisrequiredtocomparefingerprintprofilesofdifferentLycorisspecies. Thus,a rapid,sensitive,andreliableHPLC-UV/ESI-MS/MSmethodhasbeensuccessfullydevelopedforthe comparative analysis of the AAs from different Lycoris species, which resulted in the simultaneous separation and identification of over 30 AAs from different Lycoris species under the optimized conditions. To the best of our knowledge, the present study is the first report on qualitative and quantitative assessment of AAs from different Lycoris species, and provides an important clue for futurevaluationandexploitationofthesemedicinalplants. 2. ResultsandDiscussion 2.1. OptimizationofChromatographicConditions Previous phytochemical investigations into AAs in Lycoris species revealed its complexity in chemical structure and the diversity in AAs types, e.g., galanthamine, galanthine, lycorine, lycoramine, narwedine, tazettine, and haemanthamine [17,18]. This posed significant challenges to the comprehensive analysis of AAs from different species. Considering the structural differences of AAs and other reported LC methods, chromatographic conditions, such as wavelength of maximum absorption, LC columns, mobile phase and mobile phase additives, were systematically investigated to achieve better separation of AAs. By scanning the samples extracted from different species, the maximum absorption wavelength at 232 nm was selected for LC-UV analysis in this study. Based on the column efficiency, and the resultant chromatograms, Phenomenex ODS column (150ˆ2.00mm, 5 µm, Phenomenex, Torrance, CA, USA) was chosen as a preferred one over the reverse phase C18 column (Sunfire C18, 150 mm ˆ 4.6 mm, 3.5 µm, Waters, Milford, MA, USA). By stepwise investigation of mobile phase and additives, including methanol-water, acetonitrile-water, acetonitrile-0.1% formic acid, acetonitrile-10 mM ammonium acetate, and acetonitrile-40mMammoniumacetate,thecombinationofacetonitrileand40mMammoniumacetate waschosenasthemobilephaseandadditivesaccordingtotheirbetterperformanceandresolution 21855 Molecules2015,20,21854–21869 inthegradientelutionat232nm,respectively. ThefinaloptimizedconditionsfortheanalysisofAAs Molecules 2015, 20, page–page fromdifferentLycorisspeciesaregiveninSection3.3.1. 22..22.. SSaammppllee AAnnaallyyssiiss aanndd AAmmaarryylllliiddaacceeaaee AAllkkaallooiiddss’’ ((AAAAss)) IIddeennttiifificcaattiioonn 22..22..11.. HHPPLLCC FFiinnggeerrpprriinntt PPrroofifilleess TToottaall AAAAss eexxttrraacctteedd ffrroomm tthhee bbuullkkss ooff tthhee tthhrreeee LLyyccoorriiss ssppeecciieess wweerree ffuurrtthheerr eennrriicchheedd bbyy OOaassiiss MMCCXX SSPPEE ccaarrttrriiddggeess,, aanndd ssuubbsseeqquueennttllyy aannaallyyzzeedd iinn ppaarraalllleell oonn aa PPhheennoommeenneexx ccoolluummnn uunnddeerr tthhee ooppttiimmiizzeedd LLCC ccoonnddiittiioonnss.. AAs sshshoowwnn ini nFiFgiugruer e1a1–ac–, ct,hteh HePHLPCL fCinfignergperripnrtiinntgi npgropfriloefis loefs AofAAs Afrsomfr othme tthhereteh srpeeecsiepse wcieersew deetreermdeinteerdm. Iint weda.s oIbtsweravsedo bthseartv 3e9d pethaakts w39erpee wakesll rweesorelvwede lulnrdeesor ltvheed giuvnend eHrPtLhCe gciovnednitHioPnLsC, incodnicdaittiinogn st,hiantd tihcae toinpgtitmhaiztetdh ecoonpdtiimtioiznesd wcoenred iatciohniesvwede rfeoar cthhiee vceodmfpoarrtahtievceo amnpaalyrsaitsi voef aAnAalsy fsriosmof tAheA tshfrreoem Ltyhceortihsr espeeLcyiecso.r isspecies. FFiigguurree 11.. HHPPLLCC pprroofifilleess ooff LL.. rraaddiiaattaa ((aa));; LL.. aauurreeaa ((bb)) aanndd LL.. gguuaannggxxiieennssiiss ((cc)).. 22..22..22.. IIddeennttiifificcaattiioonn ooff AAAAss AAccccoorrddiinngg ttoo tthhee HHPPLLCC pprroofifilleess ((FFiigguurree 11)),, 3399 AAAAss wweerree ddeetteecctteedd ffrroomm tthhee tthhrreeee LLyyccoorriiss ssppeecciieess,, wwhhiicchh wweerree lliisstteedd iinn TTaabbllee 11.. AAmmoonngg tthheemm,, 2299 AAAAss wweerree iiddeennttiififieedd iinn tthhiiss ssttuuddyy bbyy ccoommppaarriinngg tthheeiirr MMSS//MMSS wwiitthh ththee cocorrreressppoonnddiningg auauththenentitci cstsatnadndaradrds soro prupbulbislhisehde dlitleirteartuatruerse ass asshoshwonw inn TinabTlaeb 1le. T1o. Tthoe tbheestb oefs touorf konuorwknleodwglee, dsgeve,ense ovfe tnheo fAtAhes (AlaAbsel(eldab aesl e“da”a isn“ Taa”bilne 1T)a wbleer1e )fiwrsetrlye rfierpsotlryterde pino rgteendeirna gLeynceorrias,L ayncodr fisiv,aen odf tfihveemo (fltahbeemled(l aabs e“lbe”d ians T“abb”lein 1)T wabelree1 f)irwstelyre rfieprsotrlyterde pino trhteed AinmtahreylAlimdaacreyaleli dfaamceialye. fBaamseildy. onB atsheed idoennttihfeicaidtieonntsi,fi tchaeti ocnhse,mtihcealc shtermucitcuarlesst roufc tthuere 2s9o Af Athse w29ereA Asusmwmearerizseudm imn aFriigzuedre i2n. FSiignucere d2if.fSeirnecnet tdyipffeesr eonft AtyApse dsiosfpAlaAyesdd disipfflearyeendt fdriafgfemreenntt fpraagthmweanytsp uasthinwga EySsIu-MsinS/gMESS,I t-hMeS s/trMuSct,uthrael sdtrivuecrtsuirtayl odfi vAerAssit ymoafdAe Athsemira iddeenthtiefiircaidtieonnt ivfiecrayti ocnomveprlyiccaotemdp. lTicoa tseidm.pTloifysi mthpel iifnytethrperienttaetriponre toaft itohne oofbtthaeinoebdt aMinSe/dMMS Sd/aMtaS fdoart aAfAors,A wAes ,cwlaescsliafisesdifi tehdemth eimntion tfoivfiev gergoruopusp sacaccocordrdiningg ttoo tthheeiirr cchheemmiiccaall ssttrruuccttuurreess,, ii..ee..,, ggaallaanntthhaammiinnee ttyyppee,, llyyccoorriinnee ttyyppee,, ccrriinniinnee ttyyppee,, hhoommoollyyccoorriinnee ttyyppee aanndd ttaazzeettttiinnee ttyyppee [[1177,,2244,,2255]].. IInn mmoorree ddeettaaiill,, tthhee rreepprreesseennttaattiivveei inntteerrpprreettaattioionnsso offt htheeM MSS//MMSS ddaattaa ffoorr fifivvee aallkkaallooiidd ttyyppeess wweerree ddiissccuusssseedd aass bbeellooww.. 21856 3 Molecules2015,20,21854–21869 Molecules 2015, 20, page–page FFiigguurree 22.. CChheemmicicaalls tsrtuructcutruerseso fotfh ethAe AAsAidse nidtiefinetdififerdo mfroLm.a uLr.e aa,uLr.eraa, dLia. taraadniadtaL .agnuda nLg.x gieunasnisg(xNieontseis: t(hNeonteu:m thbee nrsucmorbreerssp coonrdretsoptohnedp teoa tkhne upmeabke rnsusmhobwerns sinhoFwignu rine 1F)i.gure 1). TTaabbllee1 1.. PPeeaakkss ddeetteecctteedd aass AAAAss bbyy LLCC--MMSS//MMSS.. Peak Rt PI-MS Alkaloid MS/MS Data Identification NPoNe. aok. (min(m)R itn) [M [+MP HI-+]M+H S]+ MS/MSData Identification AlkaloidTyTyppee/R/Reeff.. 1 3.22 284 266, 256, 249, 241, 237, 226, 213, 199 1,11-didehydrogalanthamine b GA [17] 2 1 3.613 .22 304 284 2662,8265,6 2,62849, ,225401,, 222377,, 222161,,2 1135,01 99 1,111-1d-idheyhdyrdorxoygavliatntathtianmei nNe-boxide a GACR[1 7[2]7,33] 2 3.61 304 286,268,250,227,211,150 11-hydroxyvittatineN-oxidea CR[27,33] 3 3 3.933 .93 290 290 2722,7 222,252, 52,1271,7 2,21111, ,220011,, 119999,,1 1881,11, 2142,41,1 1919 3-hy3d-hroyxdyrlaotxifyalliautmifainliCumbin C b TAT[3A3] [33] 4 4 4.974 .97 276 276 25285, 82,1291,9 2,21155, ,220011,, 118899,,1 1775,51, 51353 DihDydihroy-ldartiofa-llaiutmifainliCuma inC a TAT[3A3] [33] 5 5 5.715 .71 274 274 25265, 62,2252,5 2,21177, ,220077,, 119999,,1 1997,71, 81181 LatifLaalituimfailniuCmain C a TAT[3A3] [33] 6 5.76 350 332,281,267,255,223,193,180 Unidentified 6 5.76 350 332, 281, 267, 255, 223, 193, 180 2α-HydroxUy-n3-ihdyednrtoif-6ie-Od- 7 6.54 334 316,298,270,267,255,238,173 HO[36] 2αm-eHthyydlordouxlyin-3e-bhydro-6-O- 7 6.54 334 316, 298, 270, 267, 255, 238, 173 HO [36] 8 7.17 274 231,225,213,198,183 N-demethmyle-tghaylalnotdhuamlininee b GA[26,27] 9 9.48 290 272,254,226,149,136,112,68 Dihydrolycorine LY[29–31] 8 10 7.171 0.05 274 306 231,2 2882,52, 7201,32,2 91,9188,9 183 N-Cdreimnaemthabyiln-egaalanthamine CGRA[3 5[]26,27] 9 11 9.481 2.90 290 288 27227, 02,5245,2 ,222262,, 114797,, 114376,,1 1119,29, 568 LDyichoyridnreolycorine LYL[Y1, 1[72]9–31] 101 2 10.0154 .08 306 286 282850, ,227400,, 222269,, 114879 (+)-5,6-deChryidnraomlyacobriinnee a LYC[5R] [35] 13 14.79 290 272,233,215,189 lycoramine GA[1] 11 12.90 288 270, 252, 222, 177, 147, 119, 95 Lycorine LY [1,17] 14 17.40 288 270,231,225,213,198,181 Galanthamine GA[17] 121 5 14.0188 .24 286 306 288,224570,2, 3234,02,2 29,2261, 51,4270 1,189 ly(c+o)r-a5m,6i-ndeeNh-yodxirdoelycorine GA[1L5,Y25 []5] 131 6 14.7292 .04 290 264 2472,71289, ,213636,, 214195,, 113839, 116 Hipplyacdoinreamine LY[G32A] [1] 17 23.23 288 270,255,239,193,162,151,121,108,94 Pluviine LY[16,19] 14 17.40 288 270, 231, 225, 213, 198, 181 Galanthamine GA [17] 18 24.20 262 244,228,219,205,179,165,147,123,98,91 Unidentified 151 9 18.2246 .58 306 302 228884,, 226467,, 225353,,1 9232,91,7 251,514, 52,0110,8 1,8949 lyOcodrualmineine N-oxide HGOA[3 6[]15,25] 162 0 22.0246 .74 264 332 3002,4278,2 1,82964, ,126364,, 124259,, 211333,,1 9191,61 69 AmbHelliipnepaadine CR[1L7Y,3 4[]32] 17 23.23 288 270,255,239, 193,1 62, 151,121, 108, 94 Pluviine LY [16,19] 18 24.20 262 244, 228, 219, 205, 179, 165, 147, 123, 98, 91 Unidentified 19 26.58 302 284, 266, 255, 193, 175, 145, 108, 94 Oduline HO [36] 20 26.74 332 300, 282, 264, 234, 225, 213, 199, 169 Ambelline a CR [17,34] 21857 4 Molecules2015,20,21854–21869 Table1.Cont. PNeaok. (mRitn) [MPI-+MHS]+ MS/MSData Identification AlkaloidType/Ref. 21 27.33 272 254,242,226,149,136,108 Vittatine CR[17] 22 27.88 318 300,286,268,250,227,209,199,149 Crinamidinea CR[17,33] 23 29.08 332 300,282,275,267,255,243,223,195,124 HippeastrineN-oxide HO[37] 24 29.15 286 255,229,225,197,179,168,58 Narwedinea GA[28] 25 29.64 302 270,259,226,211,196,181,168 Haemanthamine CR[17] 26 30.96 316 298,280,273,239,222,191,126,96,83 hippeastrine HO[36] 27 31.86 332 314,282,253,239,211,223,175,96 2α-Hydroxy-6-O-methyloduline HO[36] (+)-8,9-methylenedioxylhomolycorine 28 32.82 316 298,280,267,239,207,191,176,160,108,94 HO[5] N-oxide 29 33.15 318 286,271,267,177 Unidentified 30 33.38 332 300,282,257,251,243,191,163,94, 2-methoxyodulineb HO[36] 31 34.49 334 302,270,259,245,231,217,213,199 3,11-dimethoxy-lycoramineb GA[17] 285,267,256,239,228, 32 35.58 316 Unidentified 207,175,157,129,118 33 36.19 332 300,284,271,251,239,219,191,94,81 Unidentified 34 36.19 266 250,236,222,208,109 Unidentified 314,300,282,271,264,240, 35 36.84 332 Unidentified 224,211,181,153,120,107 36 37.56 346 314,282,253,239,225,211,175,147,96 2α-Methoxy-6-O-methyloduline HO[36] 37 40.20 344 312,280,266,252,195,89 Unidentified 38 41.15 298 270,248,238,212,180 Unidentified 39 44.57 346 288,241,239,211,209,183,168,140,116,94 Unidentified Abbreviations: GA, galanthamine type; CR, crinine type; TA, tazettine type; HO, homolycorine type; LY, lycorinetype;a:firstlyreportedinlycorisgenera;b:firstlyreportedinAmaryllidaceaefamily. 2.2.3. IdentificationofGalanthamineTypeAlkaloids For the identification of galanthamine type alkaloids, the loss of N-methyl and vicinal carbon atoms was the typically characteristic fragmentation pathways in the MS analysis among AAs. AccordingtotheMS/MSspectra,sevenpeaks,numberedas1,8,13,14,15,24,and31,wereidentified andclassifiedintothisgroup. By comparing the MS/MS data with the authentic standard, peaks 13 and 14 were definitely identified as lycoramine and galanthamine, respectively [1,17]. For lycoramine (peak 13), several abundant fragment ions at m/z 272 [M + H ´ H O]+, 233 [M + H ´ C H N]+, and 215 2 3 7 [M+H´H O´C H N]+wereobserved,andanotherfragmentionatm/z189wasattributedtothe 2 3 7 further loss C H (26 Da) from fragment ion at m/z 215. For galanthamine (peak 14), the fragment 2 2 ionatm/z270wasformedbytheneutrallossofH O.ThefurtherlossoftheNvicinalmoietyfrom 2 fragment ion at m/z 270 produced fragment ions at m/z 231, 225, 213 and 198. The fragment ion at m/z181wasobservedduetothefurtherneutrallossofCH OH(32Da)fromionatm/z213. 3 Figure 3 showed the MS/MS spectrum and the fragmentation pathways of peak 31, in which several abundant fragments at m/z 231, 213 and 198 were found very similar to galanthamine. Since peak31showedamolecularionatm/z334([M+H]+)andtwosubsequentfragmentionsat m/z302([M+H´CH OH]+)andatm/z270([M+H´2CH OH]+),suggestingthepresenceoftwo 3 3 methoxygroups, thusitcanbetentativelyidentifiedas3, 11-dimethoxy-lycoramine[17]. Similarto MS/MSofgalanthamine,severaltypicalfragmentionsatm/z231,213and198werealsoobservedfor peak8. Consideringthemolecularionofpeak8atm/z274[M+H]+ (C H NO ),peak8wasthus 16 19 3 tentatively identified as N-demethyl-galanthamine [26,27]. In this way, peak 1 could be tentatively identifiedas1,11-didehydrogalanthamine,sinceitsmolecularionatm/z284[M+H]+(C H NO ), 19 27 4 andsimilarfragmentionsatm/z213and198tothoseofgalanthaminewereobservedalongwithan abundantfragmentionatm/z266[17]. In addition, peak 15 was also tentatively identified as lycoramine N-oxide based on the characteristic fragment ions at m/z 233, 215 and 189 similar to galanthamine and its molecular ion observed at m/z 306 ([M + H]+), along with some weak fragment ions at m/z 288 and 247 by the successivelossofH O(18Da)andC H N(53Da)[15,25,26].Asforpeak24,aneutrallossofCH NH 2 3 3 3 2 (31 Da) from the molecular ion at m/z 286 [M + H]+ resulted in a fragment ion at m/z 255, and the fragment ions at m/z 225, 197 and 179 could be attributed to the successive loss of CH O, CO and 2 H O from fragment ion at m/z 255. Another abundant fragment ion at m/z 229[M+H´C H N]+ 2 3 7 21858 Molecules2015,20,21854–21869 Molecules 2015, 20, page–page wobasse rpvreodbawbalys pprroodbaubcleyd pbryo dtuhcee dlosbsy otfh Ne lomsosieotfy NC3mHo7Nie ty(58C 3DHa7).NTh(u5s8, pDeaak). T2h4u sw,apse taeknt2a4tivwealys itdenentattiifvieedly aisd neanrtwifieeddinase n[2a8r]w. edine[28]. FFiigguurree 33.. TThhee MMSS//MMSS ssppeeccttrruumm ooff ppeeaakk 3311 ((aa)) aanndd tthhee pprrooppoosseedd ffrraaggmmeennttaattiioonn ppaatthhwwaayyss ((bb)).. 2.2.4. Identification of Lycorine Type Alkaloids 2.2.4. IdentificationofLycorineTypeAlkaloids Through the investigation on fragment pathways of lycorine type alkaloids, the unique Through the investigation on fragment pathways of lycorine type alkaloids, the unique structures of this type typically produced characteristic fragment ions via Retro-Diels-Alder (RDA) structures of this type typically produced characteristic fragment ions via Retro-Diels-Alder (RDA) cleavages. Based on their MS/MS data, peaks 9, 11, 12, 16, and 17 were identified and classified into cleavages. BasedontheirMS/MSdata,peaks9,11,12,16,and17wereidentifiedandclassifiedinto lycorine type alkaloids. lycorinetypealkaloids. Among the lycorine type alkaloids identified, both peak 11 and peak 17 exhibited a [M + H]+ ion at m/z 288. For peak 11, in addition to the RDA cleavages of B and C rings produced two characteristic fragment ions at m/z 177 [M + H − C6H9NO]+ and 147 [M + H − C7H11NO2]+, the successive loss of H2O, 21859 6 Molecules2015,20,21854–21869 Amongthelycorinetypealkaloidsidentified,bothpeak11andpeak17exhibiteda[M+H]+ion atm/z288.Forpeak11,inadditiontotheRDAcleavagesofBandCringsproducedtwocharacteristic fragment ions at m/z 177 [M + H ´ C H NO]+ and 147 [M + H ´ C H NO ]+, the successive 6 9 7 11 2 loss of H O, 2H O and CH O from the parent ion at m/z 288 yielded three fragment ions at m/z 2 2 2 270, 252 and 222, respectively. In reference to the MS/MS data from the authentic standard [1,17], peak 11 was identified as lycorine. As for peak 17, the loss of C H N (95) and C H O (194) 6 9 11 14 3 from [M + H]+ led to the characteristic fragment ions at m/z 193 and 94 by RDA cleavages and the fragment ion at m/z 270 was observed due to the loss of H O (18 Da). The further RDA cleavage 2 of fragment at m/z 270 yielded two fragment ions at m/z 255 [M + H ´ H O ´ NH]+ and m/z 239 2 [M+H´H O´CH N]+. Thus,peak17wasfinallyidentifiedaspluviine[16,29]. Inthisway,peak 2 5 9 was also identified based on the typical fragment ions at m/z 272, 254 and 149, which were 2 Da more than those corresponding ions at m/z 270, 252 and 147 for lycorine. Therefore, peak 9 was identifiedasdihydrolycorine[26,29–31]. Forpeak12,thelossofH OandC H Ofromthemolecular 2 2 2 ion at m/z 286 [M + H]+ produced abundant fragment ions at m/z 250 [M + H ´ 2H O]+ and 226 2 [M+H´H O´C H O]+ bysuccessiveneutrallosses. Meanwhile,thefragmentionatm/z147was 2 2 2 alsoobservedbythelossofC H NO(121Da)duetoRDAcleavages. Thus,peak12wastentatively 7 7 identifiedas(+)-5,6-dehydrolycorine[5].Inrespecttopeak16,severalabundantfragmentionsatm/z 247,149and166wereproducedmainlyviaRDAcleavages. Asaresult,itwastentativelyidentified as(+)-5,6-dehydrolycorinebasedonthefragmentpathwaysabove[32]. 2.2.5. IdentificationofCrinineTypeAlkaloids In terms of MS fragmentation pathways of crinine type alkaloids, the abundant fragment ions observed in the MS/MS spectrum were produced due to both RDA and α-cleavages. As shown in Table 1, peaks 2, 10, 20, 21, 22 and 25 were classified into crinine type group based on their characteristicfragmentions. ComparedtheMS/MSdatawiththosefromauthenticstandards,peak21and25wereidentified as vittatine and haemanthamine [17]. For peak 21, except for the most intensive and characteristic fragmention at m/z 136 produced due to the RDA and α-cleavages, the fragment ions at m/z 254, 240,and226wereobservedbysuccessiveneutrallossesfromthemolecularionatm/z272[M+H]+. Asforpeak25,thecharacteristicfragmentionatm/z259[M+H´43]+ wasproducedbyRDAand α-cleavages, and the fragment ion at m/z 226 was observed due to the neutral loss of CH OH and 3 furtherdissociationofanHradicalfromthefragmentionatm/z259. Fragmentionsatm/z270,252, 211and181weregeneratedbythesuccessiveneutrallossofCH OH(32Da),H O(18Da),aswellas 3 2 RDAcleavageradicaleliminatingC H N(41Da)andCH O(30Da)fromthemolecularionatm/z 2 3 2 302[M+H]+. Inregardstopeaks2and22, thesimilarfragmentionsat286, 268, 250and227wereobserved. Peak2showedamolecularionatm/z304[M+H]+,andadifferentialfragmentionatm/z150was probablygeneratedbythelossofC H O fromthefragmentionatm/z268. Forpeak22,thelossof 7 2 2 H Ofromthemolecularion[M+H]+ atm/z318producedthefragmentionatm/z300,andthena 2 further loss of H O and CO from fragment ion at m/z 227 resulted in the fragment ions at m/z 209 2 and199,respectively. Basedoninterpretationsofthesefragmentionsabove,peaks2and22couldbe tentatively identified as 11-hydroxyvittatine N-oxide and crinamidine, respectively [17,27,33]. With the molecular ion at m/z 332 ([M + H]+), peak 20 exhibited the similar MS/MS spectrum as that of peak 22 and was identified as ambelline [3,17]. As for peak 10, with the molecular ion at m/z 306 ([M + H]+), its four major fragment ions at m/z 288, 270, 229 and 152 were 2 Da more than thosecorrespondingfragmentionsatm/z286,268,227and150frompeak2,respectively,alongwith anothertwodifferentialfragmentionsatm/z215and189probablyproducedduetothecleavageof Bring. BasedontheseMS/MSdata,peak10wasidentifiedascrinamabinewhichwasreportedfrom otherplantsinthepast[34]. 21860 Molecules2015,20,21854–21869 2.2.6. IdentificationofHomolycorineTypeAlkaloids As for MS/MS data derived from homolycorine type alkaloids, major fragment ions were oMbosleecruvlees d201d5u, 2e0,t poagReD–pAagec leavage and the losses of some substituents. Peaks 7, 19, 23, 26, 27, 28, 30 and36wereclassifiedintohomolycorinetypegroupandidentifiedbasedontheirMS/MSdata. TThhee MMSS//MMSS spspeectcrturumm ofo fpepaeka k7 7wiwthit thheth [eM[ M+ H+]+H io]+n iaot nma/zt 3m3/4z w3a3s4 swhoawsnsh ionw FniguinreF 4igau, arend4 ait, aconudldit bceo utelndtabteivteelnyt iadtievnetliyfieidd eanst 2ifiαe-dHyadsr2oαx-yH-3y-dhryodxryo--36--hOy-dmreot-h6y-Olo-dmuelitnhey l[o3d5]u blianseed[3 o5n] bthaes epdroopnosthede pfrraogpmoseendt pfraatghmweanyts pinat Fhiwguayres 4inb.F igure4b. FFiigguurree 44.. TThhee MMSS//MMSS ssppeeccttrruumm ooff ppeeaakk 77 ((aa)) aanndd tthhee pprrooppoosseedd ffrraaggmmeennttaattiioonn ppaatthhwwaayyss ((bb)).. Peaks 19, 26, 27 and 36, which showed the corresponding [M + H]+ ions at m/z 302, 316, 332 and Peaks19,26,27and36,whichshowedthecorresponding[M+H]+ionsat m/z302,316,332and 346, respectively, were identified as oduline, hippeastrine and 2α-Hydroxy-6-O-methyloduline, 346, respectively, were identified as oduline, hippeastrine and 2α-Hydroxy-6-O-methyloduline, 2α-Methoxy-6-O-methyloduline by comparing their MS/MS spectra with those reported standards [35]. 2α-Methoxy-6-O-methyloduline by comparing their MS/MS spectra with those reported In the MS/MS spectrum of peak 23, fragment ions at m/z 275, 267, 255, 243 and 223 were produced standards [35]. In the MS/MS spectrum of peak 23, fragment ions at m/z 275, 267, 255, 243 mainly due to the loss of N vicinal moiety, the fragment ion at m/z 195 was observed because of the and223wereproducedmainlyduetothelossofNvicinalmoiety,thefragmentionatm/z195was further loss of CO from the fragment ion at m/z 223, and another fragment ion at m/z 124 was produced observedbecauseofthefurtherlossofCOfromthefragmentionatm/z223,andanotherfragment by RDA cleavage. Thus, peak 23 was identified as hippeastrine N-oxide [36]. In regard to peak 28, the abundant fragment ion at m/z 207 was produced by RDA cleavage from its [M + H]+ ion at m/z 316. Comparing the MS/M21S8 d6a1ta with those of peak 26, the fragment ion at m/z 126 was not observed, suggesting the lack of a hydroxyl at C-2. Thus, peak 28 was tentatively identified as (+)-8,9-methylenedioxyl-homolycorine N-oxide [5]. For peak 30, the fragment ion at m/z 300 corresponding to the loss of methyl group from its parent ion at m/z 316 [M + H]+ , and another 8 Molecules2015,20,21854–21869 ion at m/z 124 was produced by RDA cleavage. Thus, peak 23 was identified as hippeastrine N-oxide[36]. Inregardtopeak28,theabundantfragmentionatm/z207wasproducedbyRDAcleavagefrom its[M+H]+ ionatm/z316. ComparingtheMS/MSdatawiththoseofpeak26,thefragmentionat m/z 126 was not observed, suggesting the lack of a hydroxyl at C-2. Thus, peak 28 was tentatively identified as (+)-8,9-methylenedioxyl-homolycorine N-oxide [5]. For peak 30, the fragment ion at m/z 300 corresponding to the loss of methyl group from its parent ion at m/z 316 [M + H]+ , and anothMeorlecfurlaesg 2m01e5,n 2t0, ipoange–aptagme /z 191 was observed due to the loss of C H NO (141 Da) produced by 8 15 RDAcleavage. Therefore,peak30wastentativelyidentifiedas2-methoxyoduline[35]. fragment ion at m/z 191 was observed due to the loss of C8H15NO (141 Da) produced by RDA cleavage. Therefore, peak 30 was tentatively identified as 2-methoxyoduline [35]. 2.2.7. IdentificationofTazettineTypeAlkaloids A2.c2c.7o. rIddienngtifticoattihonei orf MTaSz/eMttinSe dTaytpae aAnlkdaltohiedsp roposed fragmentation patterns, peaks 3, 4 and 5 could be classified as tazettine type alkaloids. The MS/MS spectrum and the proposed fragment According to their MS/MS data and the proposed fragmentation patterns, peaks 3, 4 and 5 could pathwbea yclaosfsipfieeadk a5s twazeertetinseh otywpne ainlkaFliogidusr.e T5h.e IMnSt/hMeSM spSe/cMtruSmsp aencdt rtaheo pfrpoepaokse3d afrnadgm5,entht epastahmweays eries of fraogfm peeankt 5i ownesrea sthmow/zn i2n2 F5i,g2u1re7 ,5.1 I9n9 thaen MdS1/8M1Sw speercetrdae otfe pcteeadk, 3a anndd t5h, ethen esaumtrea lselroiesss eosf forfagHm2eOnt from thecoiornres sapt omn/zd 2in25g, [2M17,+ 19H9 ]a+ndio 1n8s1 awtemre/ dzet2e9c0teadn, adn2d7 t4hep nreoudturacle ldosfsreasg omf Hen2Ot iforonms athtem c/orzre2s7p2onfodrinpge ak3 andm[M/z +2 H56]+ fioonrsp aeta mk/5z ,2r9e0s panedct 2iv7e4 lpy.roBdyucceodm fpraagrminegntt hioenirs Mat Sm//zM 2S72s pfoerc ptreaakw 3i tahndth mos/ze 2o5f6 tfhoer paueatkh entic stand5a, rrdesspreecptiovretleyd. ,Bpy ecaokmp3arwinags tihdeeirn MtifiSe/MdSa ssp3e-chtryad wroitxhy ltahtoisfea loiuf mthien auCt,hwenhtiicl estpaenadkar5dsw reapsoirdteedn,t ified peak 3 was identified as 3-hydroxylatifaliumin C, while peak 5 was identified as Latifaliumin C [33]. as Latifaliumin C [33]. For peak 4, the major fragment ions at m/z 258, 219, 201 and 173 were 2 Da For peak 4, the major fragment ions at m/z 258, 219, 201 and 173 were 2 Da more than those morethanthosecorrespondingfragmentionsatm/z256,217,199and171ofpeak5. Inaddition,the corresponding fragment ions at m/z 256, 217, 199 and 171 of peak 5. In addition, the molecular ion at molecular ion at m/z 276 of peak 4 also showed 2 Da more than that of peak 5 and was tentatively m/z 276 of peak 4 also showed 2 Da more than that of peak 5 and was tentatively identified as dihydro- identifiedasdihydro-latifaliuminC[33]. latifaliumin C [33]. FigurFeig5u.rTe h5e. TMheS /MMS/SMsSp sepcetcrturummo offp peeaakk 55 ((aa)) aanndd ththee pprorpoopsoesde fdrafgramgemnteantitoant ipoanthpwaathyws (aby).s (b). 2.3. Comparison of AAs among the Three Lycoris Species Based on the identification of AAs from the three Lycoris species above, a comparison of AAs 21862 among different species was conducted, which was depicted in Figure 6a. It can be summarized that 19 alkaloids were found in the sample of L. aurea, while 28 and 18 in L. radiata and L. guangxiensis, respectively. Of these, nine AAs (peaks numbered with 4, 8, 11, 13, 14, 17, 19, 21 and 22) are the common components existing in all three species, and some components were found only in two of 9 Molecules2015,20,21854–21869 2.3. ComparisonofAAsamongtheThreeLycorisSpecies Based on the identification of AAs from the three Lycoris species above, a comparison of AAs amongdifferentspecieswasconducted,whichwasdepictedinFigure6a. Itcanbesummarizedthat 19 alkaloids were found in the sample of L. aurea, while 28 and 18 in L. radiata and L. guangxiensis, respectively. Of these, nine AAs (peaks numbered with 4, 8, 11, 13, 14, 17, 19, 21 and 22) are the Molecules 2015, 20, page–page commoncomponentsexistinginallthreespecies,andsomecomponentswerefoundonlyintwoof tthheemm,, wwhhiicchh aarree ffoouurr AAAAss ((ppeeaakkss nnuummbbeerreedd aass 22,, 1155,, 2255,, aanndd 2266)) iinn LL.. rraaddiiaattaa aanndd LL.. aauurreeaa,, ttwwoo AAAAss ((ppeeaakkss nnuummbbeerreedd aass 33 aanndd1 100))i innL L..r raaddiaiattaaa anndd LL.. gguuaannggxxiieennssiiss,, aanndd ttwwoo AAAAss ((ppeeaakkss nnuummbbeerreedd aass 99 aanndd 2244)) iinn LL.. aauurreeaa aanndd LL.. gguuaannggxxiieennssiiss, ,rreessppeecctitviveelyly. .TToo fifinndd ppotoetnentitaila AlAAAs smmarakrekresr fsofro trhteh iedeidnetinfitcifiatciaotnio onr oqruqaulitayli tcyoncotrnotlr oolf odfidffieffreernetn stpsepceiceise sfrformom ggenenuus sLLyyccoorirsi,s ,uunniqiquuee ppeeaakkss ooff tthheessee tthhrreeee ssppeecciieess wweerree ssuucccceessssffuullllyy ppiicckkeedd oouutt,, wwhhiicchh aarree ffoouurr AAAAss ((ppeeaakkss nnuummbbeerreedd wwiitthh 55,, 3333,, 3377,, aanndd3388 )) iinn LL.. aauurreeaa,, 1144 AAAAss ((ppeeaakkss nnuummbbeerreedd aass 11,, 66,, 77, ,1122, ,2200, ,232,3 2,72,7 2,82, 82,92,390,,3 302,, 3324,, 3345,, 3a5n,da 3n9d) i3n9 )L.i nraLd.iartaad, iaantad, faonudr fAoAurs A(pAesak(ps enaukmsnbuemrebde aresd 1a6s, 1168,, 1381,, 3a1n,dan 3d6)3 6in) ingugaunagnxgixeniesniss,i sr,ersepsepcetcitvievleyl.y .BBrireieflflyy, ,tthhee ccrroossssccuuttttiinngg aanndd iinncclluussiioonn rreellaattiioonnsshhiippss ooff AAAAss ffoouunndd iinn tthheessee tthhrreeee LLyyccoorriiss ssppeecciieess ccaann pprroovviiddee ggrreeaatt kknnoowwlleeddggee oonn bbootthh qquuaalliittyy ccoonnttrrooll ffoorr tthheessee ssppeecciieess aanndd bbeetttteerr uunnddeerrssttaannddiinngg ooff tthhee ccoorrrreellaattiioonn bbeettwweeeenn AAAAss aanndd tthheeiirr aassssoocciiaatteedd aaccttiivviittiieess.. Figure 6. The number of AAs (a) and relative contents of five types of AAs (b) detected from L. radiata, Figure6.ThenumberofAAs(a)andrelativecontentsoffivetypesofAAs(b)detectedfromL.radiata, L. aurea and L. guangxiensis. L.aureaandL.guangxiensis. Since the evaluation of bioactivity of AAs in one plant species depends on both the qualitative and quantitative knowledge, the quantitative information of the five types of AAs in the three Lycoris species was then investigated based on their LC2 c1h8r6o3matograms, which was shown in Figure 6b. It can be seen that galanthamine and lycorine type alkaloids were the two major types of AAs accounting for 55.3% and 19.1% of galanthamine and lycorine type in L. aurea, 40.1% and 26.9% of galanthamine and lycorine type in L. radiate and 64.4% and 25.6% of galanthamine and lycorine type in L. guangxiensis, respectively. However, the discrepancies were mainly found in the contents of the other three types among the three species. In L. aurea, those three types account for about 25.6% from the total AAs, which are 1.8%, 14.6%, and 9.2% for homolylcorine, crinine, and tazettine types of alkaloids, respectively. 10

Description:
these three species, while the other 30 peaks could be revealed as characteristic AAs for L. aurea, . Chemical structures of the AAs identified from L. aurea, L. radiata and L. guangxiensis (Note: .. methanol with 1% formic acid solution were loaded to the cartridges, and methanol was used as wash.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.