Astronomy&Astrophysicsmanuscriptno.lf˙v6 c ESO2016 (cid:13) May18,2016 Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud NLS1s M.Berton1⋆,A.Caccianiga2,L.Foschini2,B.M.Peterson3,S.Mathur3,G.Terreran4,5, S.Ciroi1,E.Congiu1,V.Cracco1,M.Frezzato1,G.LaMura1,andP.Rafanelli1 1DipartimentodiFisicaeAstronomia”G.Galilei”,Universita`diPadova,Vicolodell’Osservatorio3,35122Padova,Italy; 2INAF-OsservatorioAstronomicodiBrera,viaE.Bianchi46,23807Merate(LC),Italy; 6 3DepartmentofAstronomyandCenterforCosmologyandAstroParticlePhysics,TheOhioStateUniversity,140West18thAvenue, 1 Columbus,OH43210,USA; 0 4AstrophysicsResearchCentre,SchoolofMathematicsandPhysics,Queen’sUniversityBelfast,BelfastBT71NN,UK; 2 5INAF-OsservatorioAstronomicodiPadova,Vicolodell’Osservatorio5,35122Padova,Italy. y a M Preprintonlineversion:May18,2016 7 ABSTRACT 1 Narrow-lineSeyfert1galaxies(NLS1s)areaninterestingsubclassofactivegalacticnuclei(AGN),whichtipicallydoesnotexhibit anystrongradioemission.Sevenpercentofthem,though,areradio-loudandoftenshowaflatradio-spectrum(F-NLS1s).This,along ] A tothedetectionofγ-rayemissioncomingfromthem,isusuallyinterpretedasasignofarelativisticbeamedjetorientedalongtheline ofsight.AnimportantaspectoftheseAGNthatmustbeunderstoodisthenatureoftheirparentpopulation,inotherwordshowdo G theyappearwhenobservedunderdifferentangles.Intherecentliteratureithasbeenproposedthataspecificclassofradio-galaxies, . compact-steepsources(CSS)classifiedashighexcitationradiogalaxies(HERG),canrepresenttheparentpopulationofF-NLS1s. h Totestthishypothesisinaquantitativeway,inthispaperweanalyzedtheonlytwostatisticallycompletesamplesofCSS/HERGsand p F-NLS1savailableintheliterature.WederivedtheblackholemassandEddingtonratiodistributions,andwebuiltforthefirsttimethe - o radioluminosityfunctionofF-NLS1s.Finally,weappliedarelativisticbeamingmodeltotheluminosityfunctionofCSS/HERGs, r and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent st candidatesandthatF-NLS1s,whenobservedwithadifferentinclination,mightactuallyappearasCSS/HERGs. a Key words. Galaxies: Seyfert; galaxies: jets; galaxies: luminosity function; quasars: emission lines; quasars: supermassive black [ holes 3 v 5 1. Introduction (Yuanetal. 2008). After the discovery of γ-ray emission com- 6 ing fromthese sourcesanddetectionby the FermiGamma-ray 1 Since their first designationas a subclass of active galactic nu- Space Telescope (Abdoetal. 2009a,b,c; Foschinietal. 2010), 6 clei (AGN) in 1985 (Osterbrock&Pogge 1985), narrow-line NLS1sbecamethethirdclassofγ-rayemittingAGNwitharel- 0 Seyfert1galaxies(NLS1s)representedasourceofnewinsights. ativistic beamed jet, in addition to BL Lacs and flat spectrum 1. By definition these AGN have a relatively low full width at radioquasars(FSRQs). 0 half maximum (FWHM) of the permitted lines, specifically a Accordingtotheunifiedmodelofradio-loudAGN,foreach 6 FWHM(Hβ) < 2000 km s 1 and a flux ratio of [O III]/Hβ < − highlybeamedsourcethereareabout2Γ2misalignedsources(Γ 1 3 (Osterbrock&Pogge 1987; Goodrich 1989). Moreover, the is the bulk Lorentz factor of the jet), also known as the parent : presenceintheopticalspectrumofstrongFeIImultipletsshows v population.Inparticular,theparentpopulationsofBLLacsand i that the broad-line region (BLR) of these AGN is directly vis- X ible. Thenarrownessof the permittedlinescannotthereforebe FSRQs are thoughtto be FRI and FRII radio galaxies, respec- tively(Urry&Padovani1995),eventhoughsomeexceptionsare r interpretedasduetoobscuration,butinsteadtoalowrotational a velocityarounda relativelylow mass centralblack hole(106 8 known (Kollgaardetal. 1992; Antonucci 2002). In a more re- − centandlessbiasedpicture,thereviewedassociationwithparent M , Mathur 2000). This low black hole mass, along with the hig⊙hEddingtonratio(Boroson&Green1992),issometimesin- sources is between BL Lacs and low excitation radio-galaxies (LERG),andbetweenFSRQsandhighexcitationradiogalaxies terpreted as a consequence of the young age of these sources (HERG;Giommietal.2012).Anakinpictureforflat-spectrum (Grupe2000;Mathur 2000). Therefore,NLS1s maybe rapidly radio-loudNLS1s(F-NLS1s)isnotyetwellestablished. growingAGNand,ifso,theyareanexcellentproxytotestthe Anitialhintregardingtheparentpopulationwasprovidedby evolutionofgalaxiesatlowredshifts. Foschini(2011,2012),whofirstproposedsteep-spectrumradio- Althoughtheyaretypicallyradio-quiet,afractionofNLS1s loud NLS1s(S-NLS1s) as parentsources. Thishypothesiswas are actually radio loud (7%) or even very radio loud (2.5%, further supported by Bertonetal. (2015b), although a possible Komossaetal.2006).Fewoftheseexhibitsomeextremeprop- problem of numerical consistency was also pointed out, since erties similar to those of blazars, such as flat radio spectra (αν 0.5, with Fν ν−αν) and high brightness temperatures the knownS-NLS1sseem tobe too fewto representthewhole ≤ ∝ parentpopulation.Itishoweverpossiblethatthereisnoneedto ⋆ [email protected] includeanythingelse intheparentpopulationbesideS-NLS1s. 1 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s AGHzselectedsamplemightshowalackofmisalignedsources bepartoftheirparentpopulationundertheassumptionthatradio because the relativistic beaming increases the luminosity, and lobesarealreadydevelopedinRLNLS1s. hence the visibility, of beamedsources. An example for this is TheaimofthepresentworkistostudywhetherCSS/HERGs shown by Urry&Padovani (1995). In their study on the radio aresuitabletobetheparentpopulationofF-NLS1sornot.The luminosityfunctions(LFs),theobserveddensitiesofFSRQsand paper is organized as follows: in Sect. 2 we present the sam- steep-spectrum radio-quasars(SSRQs) at 2.7 GHz are roughly ples selection; in Sect. 3 we describe the black hole mass and the same, so one couldexpectthe numberof observedbeamed Eddingtonratio analysis; in Sect. 4 we presentthe V/V test max andmisalignedsourcestobethesameforNLS1saswell. forthesamples;inSect.5webuildtheluminosityfunctionsand Alternativelythelackofsourcesmightberealandcouldbe study the incidence of relativistic beaming; in Sect. 6 we dis- explained with two different hypotheses (Foschinietal. 2010; cussourresults;and,finally,inSect.7webrieflysummarizeour Foschini2011).Thefirsthypothesisisbasedonthefactthatthe work. Throughoutthis work we adopt a standard ΛCDM cos- radio morphologyof F-NLS1s is extremely compact on a par- mologywith H0 = 70kms−1 Mpc−1, ΩM = 0.3andΩΛ = 0.7 secscale(e.g.,Doietal.2011).Youngsources,suchasNLS1s, (Komatsuetal.2011). might have not developed radio lobes yet. The radio emission might be then strongly collimated and, when observedat large 2. Samples angles, the source would be invisible for present day observa- tories, appearing as a radio-quiet NLS1s (RQNLS1s). Another 2.1.NLS1s hypothesisisinsteadbasedonadifferentassumptiononthena- tureofNLS1s.Someauthorssuggestthatthenarrownessofthe Complete samples are required to carry out a reliable compar- permitted lines might be only an apparent effect (Decarlietal. ison betweenF-NLS1s andthe putativeparentpopulation.The 2008;Shen&Ho2014).IftheBLRhasadisk-likeshape,when NLS1ssamplemustalsohavemeasuredspectralindices,tose- observed pole-on the permitted lines would show little rota- lectonlyflat-spectrumsourceswithoutincludinganyS-NLS1s. tional Doppler broadening,and would appear narrower than at Thelargestsampleintheliteraturethatmeetsourrequirements higher inclination. The NLS1s would then be nearly pole-on is that of Yuanetal. (2008). It includes 23 very radio-loud AGN.Increasintheirobservingangleinstead,thepermittedlines NLS1s,and21outof23spectralindicesareknown.Theirsam- wouldbecomebroader,andthesourcemightappearasabroad- plewasselectedfromSDSSDR5,lookingonlyforthosesources lineora narrow-lineradio-galaxy(BLRG/NLRG),whetherthe whoseradioloudness,calculatedusingthe1.4GHzfluxdensity, line of sight intercepts the torus or not. Typically, NLS1s are is above 100 at z < 0.8. The sample includes 15 flat-spectrum hosted in disk-like galaxies (Crenshawetal. 2003). If the host sourcesand2withunknownspectralindex. galaxyisalsothesameforF-NLS1s,theparentsourcewouldbe The Yuan sample should be statistically complete, because disk-hostedBL/NLRG.Thesehypotheseswerealsoinvestigated it is drawn from the already complete sample of Zhouetal. byBertonetal.(2015b),whosuggestedthatdiskRGswithhigh (2006). In any case, we independently tested its completeness. Eddingtonratioandlowblackholemassmaybeparentsources, WefirstnoticethatFoschinietal.(2015),whosesamplewasse- whileRQNLS1sarenotverygoodcandidates. lectedwithanaccuratesearchintheliterature,foundallthevery There is, in any case, another possibility that must be con- radio-loudobjectsinDR5alreadyincludedintheYuansample. sidered.Ifradiolobesarelacking,RQNLS1sbelongtothepar- Thecumulativedistributionofsourcesasa functionofredshift ent population, but lobes might instead only be developed on nevertheless shows a flattening close to the upper z limit. This small scale. In this case, the source could appear as a compact flatteninginthedistributionislikelycausedbythelackofclas- steep spectrum object (CSS). The CSS represent an important sification. The signal to noise ratio (S/N) of the optical spec- portion of radio sources, showing a radio spectrum peaked at traworsenwithincreasingdistance,andevenifveryradio-loud 100 MHz and radio-jets entirely within the host galaxy (see sourcestypically have brightopticallines (such as [O III], e.g. ∼thereviewbyO’Dea1998).Oftentheyarethoughttobeclosely deBruyn&Wilson 1978), a correct classification is very diffi- connectedwith Gigahertzpeaked-spectrumsources(GPS),and cult. awidelyusedtheorytoexplaintheirnatureistheyouthscenario We tried to avoid this problemconsideringthatthe quasars (Fantietal. 1995). Their age was determined in several ways, distributioninSDSS appearsto becompleteupat94.6%upto andfoundtobelessthan105years(Owsianik&Conway1998; magnitudei<19.1(Richardsetal.2002).IntheYuansample,all Murgiaetal. 1999). Their jets already developed radio lobes, theflat-spectrumsourcesbutonematchthismagnitudecriterium andaretypicallystillcrossingtheinterstellarmediumandinter- whenz < 0.6.We thereforedecidedtousethisthresholdasthe actingwithit(e.g.,Morgantietal.2015,andreferencestherein). upperredshiftlimitforoursample.Thisallowsustohaveagood Asradiogalaxies,theycanbeclassifiedasHERGorLERGac- degreeofcompletenessinoursample.Usingthesecriteria,13F- cording,forexample,totheratio[OIII]/Hα(Laingetal.1994). NLS1sremain.Wealsoconsideronemoresourcewithundeter- Themaindifferencebetweentheseclassesislikelytheaccretion minedspectralindex,whichmeetstheredshiftcriterion,totest mechanismontotheblackhole,withHERGsshowingtypically thestabilityofourresults. amoreefficientaccretionprocess(Hardcastleetal.2007). A link between NLS1s and CSS was suggested by many 2.2.Highexcitationradiogalaxies authors (Oshlacketal. 2001; Komossaetal. 2006; Galloetal. 2006; Yuanetal. 2008; Caccianigaetal. 2014; Guetal. 2015; Our aim was to find CSS sources classified as HERGs, so we Schulzetal. 2015). All the characteristics of NLS1s indeed searched again in the literature for a suitable sample. We de- closely recall those of CSS. As previously mentioned they cidedtouse thatofKunert-Bajraszewskaetal. (2010), whose- are often considered young sources and at the same time lected a sample of 44 low-luminosity compact objects with a their jet, when present, appears to interact with the medium radioluminosityat1.4GHzlowerthan1026 WHz 1 (inacos- − (Marzianietal. 2003; Komossaetal. 2006). RLNLS1s can be mology with H = 100 km s 1 Mpc 1 and q = 0.5). In addi- 0 − − 0 classified as HERG, having an efficient accretion mechanism tion to this criterion, these sources have a flux density 70 mJy and strong high-ionizationlines. ThereforeCSS/HERGs might S 1 Jy and a radio spectralindexα > 0.7 between 1.4GHz ν ≤ ≤ 2 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s Table1.HERGsparameters. metricluminosity,weusedEq.7ofBertonetal.(2015b),i.e., L L SDSSName logMBH logLbol logEdd log bol =(7.54 9.07)+(0.88 0.22)log [OIII] . (1) SDSSJ002833.42+005510.9 8.94 44.1 -2.96 ergs 1! ± ± ergs 1! − − SDSSJ075756.71+395936.0 7.13 43.77 -1.52 SDSSJ084856.57+013647.8 7.05 44.41 -0.74 TheresultsareshowninTab.1.Thelogarithmicmeanmass SDSSJ092607.99+074526.6 7.28 44.93 -0.47 valueforHERGsis7.78withastandarddeviationof0.66,while SDSSJ094525.90+352103.5 7.23 44.48 -0.85 forF-NLS1sis7.68withastandarddeviationof0.44.Theme- SDSSJ114311.01+053516.1 8.84 45.08 -2.0 dianvaluesare7.84and7.73,respectively.Itisevidentthatthe SDSSJ115727.61+431806.3 7.68 44.67 -1.1 twodistributionsareverysimilar.Wecomparedthembymeans SDSSJ140416.35+411748.7 7.96 43.88 -2.22 of the Kolmogorov-Smirnovtest (K-S). The null hypothesis is SDSSJ140942.44+360415.8 8.24 43.82 -2.52 that the two distributionsare originatedfromthe same popula- SDSSJ164311.34+315618.4 7.44 45.39 -0.17 tion.TherejectionthresholdfortheK-Sthroughoutthisworkis ap-valuelowerthan0.05.InthecaseofHERGsandF-NLS1s, Notes.Columns:(1)objectSDSSname;(2)logarithmoftheblackhole massin M ;(3)logarithmofthebolometricluminosityinergs 1;(4) we found a p-value of 0.95, thereby not allowing us to reject − logarithmo⊙ftheEddingtonratio. the null hypothesis. To directly compare this result with those found for other parent candidates by Bertonetal. (2015b), we alsoevaluatedtheproduct 1.4and4.85GHz.Theirradio-selectedsamplewaslatercross- matchedwith the SDSS DR7 spectroscopicarchive,finding29 nm = D , (2) sourcesatz<0.9(Kunert-Bajraszewska&Labiano2010).Ten P nrn+m of these sources were classified as LERG, 12 as HERG, and 7 remained unclassified because they had a S/N . 3. We tested where Dn is the deviationbetweenthe cumulativedistributions the completeness of this sample as before. As in the F-NLS1s and n and m are the number of elements in each sample. This sample, the cumulative distribution finds a drop in the source value is usefulto test the distance between the samples. A low countsabove z 0.6. Below this threshold,only one source is value indicates that the null hypothesis can be rejected in the abovetheSDSS∼completenesslimitof19.1mag.Thereforewe two samples. In our case this value is equal to 0.52, and the decidedtousethesamelimitsagain,thistimeconsideringonly CSS/HERGs sample appears to be the closest to F-NLS1s and tensources.Sincebothsampleshavethesameredshiftlimitand evencloserthanS-NLS1s. they both have a lower limit in flux, including only bright ra- The Eddingtonratio distributionsare also fairly close (K-S dio sources,the comparisonbetweenthem shouldbe relatively p-value 0.17, the null hypothesis is again the two distributions unbiased. originated from the same population).The logarithmic median Eddingtonratiois-1.31forCSS/HERGsand-1.05forF-NLS1s with a standarddeviation of 0.89and 0.23,respectively.These 2.3.Controlsample values are comparable to those of other NLS1s classes, but it is worth noting that the CSS/HERGs sample shows some out- As a controlsample forthe luminosityfunction,we decidedto liers with lower accretionluminosities, hence a largerstandard use the sample of 50 FSRQs used by Padovani&Urry (1992), deviation. All these values are shown in Fig. 1 along with two which in turn are drawn from the work of Wall&Peacock moreclassesofsourcesalreadystudiedbyBertonetal.(2015b), (1985).Thesourceshaveafluxdensityabove2Jyat2.7GHz, namely,disk-hostedandelliptical-hostedradio-galaxies. andGalacticlatitude b > 10 .Theyalso haveaspectralindex | | ◦ The good overlap in mass between F-NLS1s and α 0.5between2.7and5GHz,andtheywerenotclassifiedas ν ≤ CSS/HERGs is visible and we also point out that disk BLLacsbyStickeletal.(1991).Padovani&Urry(1992)added RGs have a similar mass distribution to CSS/HERGs (K-S onemoresourcetotheWall&Peacock(1985)sample,because p-value0.15).Onthecontrary,theblackholemassofelliptical ofitshighopticalpolarization. radio-galaxiesismuchlarger.TheK-Sconfirmsthisdifference providingap-valueof3 10 3,whichallowsustorejectthenull − × 3. Blackholemass hypothesis of the two distributions originated from the same population. An important step to understand the relation between CSS/HERGsandF-NLS1sistocomparetheirblackholemasses and Eddington ratio. Both these values were recently calcu- 4. V/Vmax test lated for all our F-NLS1s by Foschinietal. (2015), therefore Anothersteptounderstandtherelationbetweenthesesourcesis we adopt their values for our study. For CSS/HERGs we ob- tocheckwhetherevolutionispresentinoursamplesornot.An tainedtheopticalspectrafromSDSSDR12.Allofthesesources usefultooltotestevolutionistheso-calledV/V test(Schmidt were of type 2 or intermediate type AGN, therefore we could max 1968).Bydefinition,V isthevolumewithinwhichasource not use permitted lines to derive the black hole mass because max ofluminosityLcanbedetected,whileV isthesphericalvolume theBLRisobscured.Wethenfollowedtheproceduredescribed associated with each source.The luminosityof a source of de- byBertonetal.(2015b)fortype2andintermediatesources,de- tectedfluxF is L = 4πd2F,whered istheluminositydistance. riving the stellar velocity dispersion σ from the width of the IfthefluxdetectionlimitisF ,thesourcecanbedetectedup [O III] lines core component. Once the∗blue wing is removed, min to thecorecomponentof[OIII]shouldindeedbelessaffectedby L the jets/ISM interaction and typically dominated by the gravi- d = (3) max r4πF tational potential of the bulge stars (Greene&Ho 2005). This min methodprovidedgoodapproximationsforblackholemassboth which correspondsto a redshift z . For a nonevolving popu- max inelliptical-anddisk-hostedradiogalaxies.Toobtainthebolo- lation,theratiobetweenthesphericalvolumeV,corresponding 3 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s 0 −51 FSRQs −1 −52 ] 1− L) −2 (∆ −53 3− c d p d M g E−3 Φ) [−54 lo og( l −4 −55 −5 −56 42.0 42.5 43.0 43.5 44.0 log(L) [erg s−1] −6 Fig.2.MonochromaticradioluminosityfunctionofFSRQscon- 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 trol sample at 1.4 GHz. The dashed line is the best fit with a logMBH (M ) ⊙ brokenpowerlaw. Fig.1.LogarithmoftheBHmassvs.logarithmoftheEddington ratio. Black squares indicate F-NLS1s, red circles indicate Table2.ResultsoftheV/V test.TheresultsforF-NLS1sare max CSS/HERGs, blue trianglesindicate disk-hostedradio-galaxies showedintwodifferentways:withorwithout1sourcewithun- and green stars indicate elliptical-hosted radio galaxies. The knownspectralindex.Theformerareindicatedwithanasterisk. points of these last two samples are derived from Bertonetal. (2015b). Sample N V/V σ d K-S max F-NLS1 13 0.55 0.08 0.63 0.52 F-NLS1* 14 0.58 0.08 1.00 0.26 totheobjectredshiftandV ,isexpectedtobeuniformlydis- max HERG 10 0.54 0.09 0.44 0.72 WtribhuetnedVb/eVtween>00a.5n,dth1ewpiothpualnataiovneriasgpeovsaitliuveelhyVe/vVomlavxiing=w0i.t5h. FSRQ 50 0.70 0.04 5.00 2×10−9 max more(hormoreiluminous)sourceslocatedatlargerdistances.If Notes. Columns: (1) sample; (2) number of sources; (3) result of the conversely V/V <0.5,thesampleisnegativelyevolving. test;(4)associatederrorwiththetest;(5)distancefromuniformdistri- max To evalhuate Vi for each object, we used as d the butioninσunits;(6)K-Stestp-valueagainstuniformdistribution. max max smaller value between those derived from the radio detection limit(1mJyforF-NLS1s,70mJyforCSS/HERGs,and2Jyfor WeperformedaK-StestbetweentheobservedV/V dis- FRSQs),thespectroscopiclimitforquasarsinSDSSDR7(19.1 max tributions in our sample and the theoretical uniform distribu- mag)and the redshiftupperlimit of each sample, z = 0.6.The tion. The null hypothesis is that the observed distribution is CSS/HERGs sample has also an upper flux limit, which trans- drawn from a uniform distribution. As reported in Tab. 2, the lates into a lower redshift limit z . Therefore in this case we min testconfirmsallthepreviousresults,showingthattheonlysam- usedthemodifiedversionofthetestovertheaccessiblevolume ple where the null hypothesis is rejected is the FSRQs sam- V (Avni&Bahcall1980),whichisdefinedas a ple. Therefore,while the luminosity functionof FSRQs is cor- V V V rectedforevolutionandreportedtoz=0,thoseofF-NLS1sand = − min , (4) CSS/HERGsarenot. V V V a max min − whereV istheinaccessibleinnerpartofthecomovingvolume min 5. Luminosityfunctions due to z and V is the comovingvolumeof each source.The min associated error in the V/Vmax test is σ = 1/√12N, where N 5.1.Method is the numberof sourcesin each sample. To calculate both the Theluminosityfunction(LF)describesthevolumetricdensityof luminositydistancefromredshiftandthecomovingvolume,we usedtheCosmolopytooldevelopedforPython1. sourcesas a functionof their luminosity.For flux-limitedsam- plestheLFiscomputedasinPeterson(1997) The results are summarized in Tab. 2. The control sample of FSRQs shows a strong positive evolution at 5σ. This re- 1 4π 1 sultisinagreementwiththatfoundbyPadovani&Urry(1992) Φ(L)= , (5) ∆L A V (L) aansdtrmonagnyevootlhuetrioanutwhoitrhs.tiImndee.eCdo,nFvSeRrsQeslya,rteheknVo/wVn forrehsauvltinigs Li∈(LX±∆L/2) max max consistentwiththeuniformdistributionat1σforbothF-NLS1s where ∆L is the width of the luminosity bin, and A is the area andCSS/HERGs. InparticulartheresultforF-NLS1sdoesnot of sky covered by the samples. In our cases, the area covered changewhetherthetwosourceswithundeterminedspectralin- bothbytheDR5andFIRSTis 1/7ofthewholesky,whilethe ∼ dexareincludedornot.Thisisanindicationthat,atleastupto commonareabetweenDR7andFIRSTis 1/6. ∼ z=0.6,thesesourcesdonothaveastrongevolution. To computethe LFwe dividedthe sourcesin binsoflumi- nosity (L ∆L/2, L+∆L/2). In those samples that have a lower − 1 http://roban.github.com/CosmoloPy/ redshift limit, instead of Vmax we used the accessible volume 4 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s Table3.Parametersoftheluminosityfunctions.TheLFofF-NLS1sisshowedintwodifferentways:withorwithout1sourcewith unknownspectralindex.Theformerisindicatedwithanasterisk. Sample Mod. logL logL logL logΦ logK α β 1 2 b b F-NLS1 PL 40.25 42.75 -1.91 5.90 -1.17 0.14 0.48 − − ± ± ± − F-NLS1* PL 40.25 42.75 -1.60 5.90 -1.18 0.14 0.48 − − ± ± ± − HERG PL 39.75 42.25 20.96 5.68 -1.71 0.14 0.41 − − ± ± ± − FSRQ BPL 42.25 43.75 43.32 0.47 -53.10 1.34 1.61 0.98 4.33 2.00 ± ± − ± ± Notes.Columns:(1)sample;(2)functionusedforthebest-fit.PLforpowerlaw,BPLforbrokenpowerlaw;(3)logarithmofminimumluminosity bin (ergs 1);(4) logarithmof maximum luminosity bin(ergs 1); (5) logarithm of luminosity break (ergs 1); (6) logarithm of the luminosity − − − functionatthebreak(Mpc 3);(7)coefficient ofthepower law;(8) slopeofthepowerlaw(slopebelowthebreakforbroken power law).The − seconderroristhatevaluatedviaMonteCarlomethod;(9)slopeabovethebreak(forbrokenpowerlawonly). thepeakfluxoftheFIRSTsurvey.WeperformedaK-correction, usingallthespectralindiceswe foundinthe literature.Forthe −46 only F-NLS1 with unknown spectral index, we assumed a flat −47 spectrum(αν = 0).We dividedthe luminositiesinbinsof0.25 F-NLS1 dexforthe controlsample,since therewere enoughdatato fill −48 eachbin.Intheothertwocases,weusedabinningof0.5dexfor F-NLS1sandof0.75dexforHERGs.TheLFswerefittedwith −49 asinglepowerlaw Φ(L)= KLα , (6) −50 where K is a constantand α the slope of the power law. In the −51 case of FSRQs, following Padovani&Urry (1992), we used a −52 brokenpowerlawintheform −53 Φ(L)= Φb , (7) (L/L )α+(L/L )β −54 b b 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 where Φ is the normalization factor, L is the break luminos- b b ity, and α and β are the two slopes. In the FSRQs sample we alsoappliedacorrectionforluminosityevolutiontobringeach −46 sourcetoz=0.Forthispurpose,weassumedthesamecosmo- −47 logicalevolutionfoundbyPadovani&Urry(1992),exp( T/τ), − HERG where T is the lookbacktime and τ = 0.23is the timescale of −48 evolutioninunitsofHubbletime.Usingthespectralindiceswe 1]− alsoderivedthe1.4GHzfluxforeachFSRQ toenableadirect ∆L)−49 comparisonwiththeothersamples.Allfitswereperformedus- 3(c −−50 ingthegeneralizedleastsquaresmethod.Theresultsareshown Mp inFig.2and3andsummarizedinTab.3. Φ) [−51 TotakeintoaccountthesmallsizeofF-NLS1sandHERGs og( samples, we decidedto providea furtherestimate of the errors l −52 using a Monte Carlo method.Starting fromthe observedlumi- nosity functions, we generated two large samples of 3 105 −53 simulated F-NLS1s and of 2 106 simulated HERGs, us∼ing×the × same selection criteria of our samples. From these larger sam- −54 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 ples, we extracted a random number of F-NLS1s between 10 log(L) [erg s−1] and16,andarandomnumberofHERGsbetween7and13.We Fig.3. Monochromatic radio luminosity functions at 1.4 GHz. then evaluated on these new samples the luminosity function. Toppanel:F-NLS1s;bottompanel:HERGs.Dashedlinesindi- This operation was repeated 1000 times. The simulated lumi- cate the single power law that is best fit. The light gray lines nosityfunctionsareplottedinlightgrayinFig.3.Thespreadin indicatethesimulatedluminosityfunctionsobtainedviaMonte slopesobtainedisalsoreportedinTab.3. Carlomethod,asdescribedinthetext. Our FSRQs LF is in agreement with that obtained by Padovani&Urry (1992) when the cosmology they adopted is used. In F-NLS1s, the inclusion in the LF of the two sources V . We assume that the only source of uncertainty in the LF withundeterminedspectralindexhasanegligibleimpact,since a is the error on the number counts per bin, hence we assumed neither the slope nor the coefficient of the LF are significantly aPoissonianstatistics. ThePoissonianstatisticsisnotsymmet- affected(Tab. 3). In bothcases, the scatter is fairly high,likely ric for small values (N . 10);to evaluatethe errorsin the low becauseofthelowstatistic.TheslopeofHERGsissteeperthan statisticlimitweusedthevaluesfromGehrels(1986). thatofF-NLS1s, whichindeedhavea nearlyflat LF. In partic- OuraimwastodeterminetheradioLFforeachsample.We ular, the slope of F-NLS1s is close to that of FSRQs for lumi- thencalculatedtheluminosityat1.4GHzforeachsourcefrom nositiesbelowthebreak,eveniftheerroronthisslopeislarge. 5 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s −47 −49 −50 −48 13(∆L)Mpc ]−−−−−555312 13(∆L)Mpc ]−−−−4590 Φlog() [−54 Φlog() [−51 −55 −52 −56 −57 −53 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 40.5 41.0 41.5 42.0 42.5 log(L) [erg s−1] log(L) [erg s−1] Fig.4. Monochromatic radio luminosity functions of F-NLS1s Fig.5. HERGs LF with relativistic beaming added for bulk andFSRQsat1.4GHz.TheblacksquaresindicatetheF-NLS1s LorentzfactorΓ=10andratio f =1.Blacksolidlineindicates data points, the blue triangles indicate the FSRQs data points. themodel;redsolid linesindicatethemaximumandminimum Thebluedashedlinerepresentsthebrokenpowerlawbestfitfor values for the model. Black circles show F-NLS1s data, black FSRQs,andtheblacksolidlinerepresentsthesinglepowerlaw dashed line shows the F-NLS1s LF best-fit, and blue dashed thatisbestfitforF-NLS1s. lines indicate the maximum and minimumvalues for F-NLS1s LF.ThelightgraylinesdenotethesimulatedLFsforF-NLS1s. ThisresultbecomesmoreevidentwhentheLFsofF-NLS1sand FSRQs are shown together,as in Fig. 4. The two LFs are very close in the region of 1043 erg s 1 and the LF of F-NLS1s ap- − elsofbeamedLFareevaluatedbyrefittingsuchmaximumand pearstobeanextensionofthatofFSRQsatlowerluminosities. minimumvalues.Thesenewfitswereperformedusingthesame functions adopted for the previous fitting of the data. We then addedtherelativisticbeamingbothtothebestfit,theminimum, 5.2.Relativisticbeaming andmaximumfit.Theresultingparent+beamingmodelisshown inFig.5. In order to compare the beamed sources with their parent Weevaluatedthedistancebetweenthemodelandourdataby population, we have to take into account the effect of beam- meansofthereducedchi-squared,χ2 totestourresults.There- ing on the LF shape. We then added the relativistic beaming sultsareshowninTab.4.Wereportνtheχ2 ofthemodelandthe to the CSS/HERGs luminosity function. This cannot be car- lowest χ2 also considering the maximumνand minimum curve. riedoutanalytically,asexplainedbyUrry&Shafer(1984)and ν We also evaluatedthemodelforseveralvaluesofbulkLorentz Urry&Padovani(1991). We followed the proceduredescribed factor,tounderstanduptowhichvaluesthemodelwasstillac- byUrry&Shafer(1984)forasinglepowerlaw.Inanalogywith ceptable.WemustunderlinethatourhypothesisofconstantΓin that work, we defined as the intrinsic luminosity, where L allsourcesislikelyunrealistic,andthataapowerlawdistribu- L isthe observedluminosity.These twoquantitiesarerelatedvia tionofΓvaluesisprobablyclosertoreality(Lister&Marscher L = δp ,whereδ = [Γ(1 βcosθ)] 1 isthekinematicDoppler − 1997;Liodakis&Pavlidou2015).Theinclusionofanadditional L − factor of the jet and the exponentis p = 3+α, where α is the parameter in the analysis is not statistically justified, however, intrinsicslopeofthejetemission.Thetotalfluxemittedbythe giventhelargeuncertaintiesontheobservedLFs. sourceisgivenbyL=(1+ fδp) ,where istheunbeamed Lu Lu AsshowninFig.5,thebest-fitpowerlawforF-NLS1sand luminosityand f istheratiobetweenthejetluminosityandun- themodelpredictionareingoodagreement,butthereisadevi- beamedluminosity.Themodelisthenevaluatednumericallyvia ationatlowerluminosities.Inparticular,theslopeofthemodel K L (p+1)/p in the regionoccupiedby F-NLS1sis -1.52,while the slopeof Φ(L)=Z βγpf1/pLα−1(cid:18)L −1(cid:19)− dL. (8) ttohe1m, leaarsguerleydbLecFauisse-1o.1f7t.hiTshdeevvaialutieosn.ofWχe2νtahrienknothtavtetrhyiscldoisse- We used p = 3.7 because the typical slope of a synchrotron crepancy is due to a selection effect. Our F-NLS1s sample in- spectrum is α = 0.7. We also performed our calculations for cludesonlyveryradio-loudNLS1s,thereforetheresultinglumi- different values of f (0.01 f 1) and bulk Lorentz fac- nosity function might be underestimated in the low-luminosity tor, 8 Γ 15, which are≤value≤s already observed in γ-ray region.Nevertheless,thebeamingmodelanditserrorsarewell emittin≤g NL≤S1s (Abdoetal. 2009c; D’Ammandoetal. 2012). includedintheregionwherethesimulatedluminosityfunctions To evaluate the Doppler factor we assumed the angle to vary lies.Keepingallthisinmind,theoverlappingofthemodelwith between 0 θ θ , where θ is the critical angle for which theobservedfunctionisquitesatisfactory. ◦ c c δ(Γ, f,θ ) =≤1. Th≤ereforeall the sources with inclination θ ap- InTab.4wereportthevaluesofχ2calculatedwiththediffer- c ν pearasF-NLS1s.Inthecaseofasimplepowerlaw,theresulting entvaluesofΓand f. We highlightthattheclosestχ2 between ν beamedLFisabrokenpowerlaw. themodelanddataisobservedinthesamplewhichincludesthe Wederivedthemaximumandminimumvaluesallowablefor two sources with undetermined spectral index, for a ratio f = the data from the analytical error bars. The errors in the mod- 1.0 and Γ = 10, which translates in a slope of the model of - 6 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s Table4.χ2 forthebeamingmodeltestedwithdifferentparam- thatFSRQsandF-NLS1sarestrictlyconnectedtoeachother.F- ν eters.ThestarindicatesthattheF-NLS1ssamplealsoincluded NLS1sweresuggestedtobethelow-masstailofγ-rayemitting thetwosourceswithunknownspectralindex. AGN,andinparticularofFSRQs(Foschinietal.2015,andref- erencestherein).Sincetheblackholemassandthejetpowerare Sample Γ f χ2 χ2(max) χ2(min) connected(Heinz&Sunyaev2003),thelowerradioluminosity ν ν ν HERG 10 1.0 1.95 8.0 3.85 andjetpowerofF-NLS1smightbeaconsequenceofthelower HERG* 10 1.0 1.53 7.79 3.89 blackholemass.ThereforeitisexpectedthatF-NLS1swouldbe HERG 8 1.0 1.97 8.77 3.49 thelow-luminositytailofFSRQsLF,asweindeedobserve.Of HERG* 8 1.0 1.55 8.61 3.53 course,theremightbesomelow-luminosityFSRQsthatcannot HERG 15 1.0 2.67 7.45 5.35 be classified as NLS1s. The criteria for NLS1sclassification is HERG* 15 1.0 2.25 7.19 5.38 indeedbasedmainlyontheHβwidth,whichisnotjustafunc- HERG 10 0.5 2.36 7.59 4.82 tionoftheblackholemass.ThereforenotalllowmassFSRQs HERG* 10 0.5 1.94 7.35 4.86 can be classified as NLS1s, even if their black hole mass and HERG 10 0.1 4.12 8.72 6.39 radioemissionarecomparable. HERG* 10 0.1 3.69 8.51 6.28 HERG 10 0.01 20.02 29.51 15.16 An explanation for the low mass is the young scenario of HERG* 10 0.01 20.42 30.84 14.89 NLS1s. If this is true, F-NLS1s might be the young coun- terpart of FSRQs in which the nuclear activity started only Notes. Columns: (1) sample; (2) bulk Lorentz factor of the jet; (3) recently and in which the black hole (and possibly the host ratio between beamed and diffuse emission from the jet f; (4) χ2 of ν galaxy) is still (co-)evolving. A similar picture was already themodel;(5)χ2 ofthemaximummodel;and(6)χ2 oftheminimum ν ν suggested for CSS sources years ago (Readheadetal. 1996; model. Fantietal.1995;O’Dea&Baum1997).Theselikelyyoungra- dio sources are thought to be an evolutionary phase that is 1.52.Thisvalueof f issignificantlyhigherthanthatobservedin going to evolve into the giant double sources. In particular, FSRQs,whichisbetween10 3 10 2(Padovani&Urry1992). Kunert-Bajraszewska&Labiano (2010) also took into account − − − the optical division into HERG and LERG, finding that the CSS/HERGs sources are likely going to evolve into FR . HERG 6. Discussion Recently, Giommietal. (2012) suggested that the two blazar classes,andhencetheirparentpopulation,shouldbedividedac- 6.1.Blackholemass cording to their low or high ionization, and that all the other The first result that must be highlighted is that the black hole classifications are physically irrelevant. If this is true, FSRQs massdistributionof CSS/HERGs is similar to thatof F-NLS1s canbeidentifiedasbeamedHERGs,andF-NLS1s,whichmight withtypicalvaluesbetween107and108M .AlsotheEddington be young FSRQs, should be the beamed version of young ratio is high, comparable to that of typica⊙l NLS1s, both radio HERGs, so CSS/HERGs. In summary,the evolutionarypicture loudandquiet.ThisresultisexpectedifNLS1sandCSS/HERGs forbeamedsourcesmightbesimplyF-NLS1 FSRQ,andfor both have a radiatively efficient accretion mechanism, that is theirparentpopulationCSS/HERGs FR →.Anevolution- HERG → similartothatofFSRQs. ary connection between F-NLS1s and FSRQs is then possible, The K-S test revealed that the distributions of these wheretheformerarestillgrowingtobecomethelatter.Thishy- quantities, both mass and Eddington ratio, in F-NLS1s and pothesisfindsfurthersupportinourFig.5.Whentherelativistic CSS/HERGs might be drawn from the same population. The beamingisaddedusingthetypicalbulkLorentzfactorofγ-ray most obvious interpretation of this result is that CSS/HERGs emittingNLS1s,CSS/HERGsLFreproduceswellthedata.Even mightactually be misaligned F-NLS1s. Of coursethis result is if at low luminositiesthe modelpredictsa larger numberof F- obtainedforverysmallsamples,soitmustbetakenwithsome NLS1s that we do not observe, we think that this discrepancy caution.InparticularthemassesofCSS/HERGs,astheyarede- mightonlybeduetotheselectioncriterionofourNLS1ssam- rived using forbidden lines, must be considered only an upper ple. Keeping this caveat in mind, the model seems to indicate limit. If the narrow-lineregionis perturbedbecause of interac- thatCSS/HERGsmightbegoodparentcandidates. tion with the relativistic jet, the FWHM is indeed higher and In young radio sources such as CSS, the jet activity might leadsto anoverestimateofthe mass. Neverthelessourfindings beintermittent,andseveraloutburstepisodesmightbeinduced areingoodagreementwiththoseofpreviousworks,wherethe by pressure radiation instabilities in the accretion disk, with similaritybetweenCSS/HERGsandNLS1swasalreadypointed a timescale of 102-105 years (Czernyetal. 2009; Wu 2009a). out. For example Wu (2009b) found that a large number of A similar, strong variability is also observed in RLNLS1s CSS/GPS have a black hole mass between 107.5 and 108 M , (Foschinietal. 2012, 2015), providingfurther confirmationfor andthesameconclusionwasobtainedbySonetal.(2012)agai⊙n this unified model. If CSS/HERGs are parent sources, the ori- onCSS,bothforHERGsandLERGs.Moreoverthesampleby gin for these activity/inactivity phases in F-NLS1s might be Foschinietal.(2015),ofwhichoursisasubset,revealedthaton the same. The radiation pressure instability is indeed one of average F-NLS1s also have black hole mass between 107 and the hypotheses that can account for the nonthermal emission 108M .Alltheseresultsseemtosupportourhypothesis. and extended structures observed in some radio-quiet NLS1s ⊙ (Doietal.2012),wherethejetactivityphasemighthavelasted for only a few years thereby leaving the observed structures 6.2.Evolutionarypicture (Ghisellinietal.2004). TheV/V testshowsthatbothF-NLS1sandCSS/HERGshave TheinclusionofCSS/HERGsintheparentpopulationofF- max nosignificantluminosityand/ordensityevolutionuptoz=0.6. NLS1smightmoreoverruleoutthevastmajorityofRQNLS1s Instead,FSRQsinsteadshowastrongluminosityevolution,but as parent candidates. In fact, since CSS/HERGs display lobes the sample is extended to much larger distances. An interest- that are already developed (Orienti 2015), this means that the ing result we found is shown in Fig. 4, and it might point out extendedradioemissionformeveninveryyoungages,whichin 7 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s turnimpliestherejectionoftheradio-quiethypothesis.Thiscon- 2000).Soinprinciplearelativelylowmassblackholeshouldbe clusionisinagreementwiththeresultsofBertonetal.(2015a), hostedinthesmallbulgeofadiskgalaxy,ratherthaninamore wheretheobserveddifferencesinnarrow-lineregionproperties massiveelliptical.ThereforeitispossiblethatCSS/HERGsare pointsinthesamedirection. also hosted in disk galaxies, as NLS1s. An example of a disk AnotheraspecttoconsideristherolethatS-NLS1scanplay host for a powerful CSS was found by Morgantietal. (2011). in this scenario. These sources are likely misaligned F-NLS1s Moreover in a very large sample of AGN, Best&Heckman (Bertonetal. 2015b), therefore for this picture to be coherent (2012) found that HERGs host galaxies have different proper- theyshouldalsobepartofthelargerclassofCSS/HERGs.The tiesthanthoseofLERGsand,inparticular,theseauthorsfound sampleweusedinthisworkunfortunatelydoesnotincludeany thattheyarebluerwithlowermass,lower4000Åbreak,anda type1AGN,soourdatacanrevealnothingonthisissue,butthis higher star formationrate. Such characteristics are reminiscent topichasalreadybeeninvestigatedintheliterature,particularly ofthoseofadiskorstar-forminggalaxy. inrecentyears.SeveralauthorsfoundthatatleastsomeS-NLS1s Finally, we must underline that not much is known even canindeedbeclassifiedasCSS/HERGs(Caccianigaetal.2014; aboutthehostgalaxiesofF-NLS1s,mainlybecauseoftheirhigh Komossaetal. 2015; Schulzetal. 2015). In particular the ex- redshift.FewstudieswereperformedontheclosestF-NLS1,1H tended survey by Guetal. (2015) showed that the radio mor- 0323+342,andseemtosuggestthepresenceofadiskandpos- phologyofalmosteachoneoftheirS-NLS1scloselyrecallsthat siblyofapseudobulge(Anto´netal.2008;Hamilton&Foschini of CSS. These results are therefore in agreement with our hy- 2012; Leo´nTavaresetal. 2014). The WISE colorsof F-NLS1s pothesis,and seem to favor the scenarioin which CSS/HERGs suggest that their host galaxyhas a higher rate of ongoingstar arethelargestclassofF-NLS1sparentsources.Itisalsoreason- formation(Caccianigaetal.2015),afeaturethatalsorevealsan able that S-NLS1s are objects observed at intermediate angles “active” host and is likely different from giant “passive” ellip- betweenF-NLS1sandobscured(type2)CSS/HERGs. ticalgalaxies.However,furtherstudiesonthehostgalaxymor- Still, it is not clear whether all type 1 CSS/HERGs are phologyarenecessarytocharacterizeF-NLS1sasapopulation. NLS1s.FewCSS/HERGshavelineswithaFWHM(Hβ)>2000 km s 1, and cannot be classified as NLS1s. It is then possible − thattheunificationbetweenCSS/HERGsandNLS1sisonlyin 7. Summary astatisticalsense,thatisCSS/HERGsandNLS1sareonaverage thesamepopulation,butwithfewexceptionslikelyconnectedto InthispaperweinvestigatedtherelationthatexistsbetweenCSS theNLS1sdefinition.Ifamorephysicalclassificationwasused, sourceswithanHERGopticalspectrumandF-NLS1s.Ouraim such as black hole mass or Eddingtonratio, the unificationbe- wastounderstandwhethertheCSS/HERGsclasscanbepartof tweenthesesourceswouldshowfeweroutliers. the parentpopulationof F-NLS1s. To do this, we analyzedthe In any case, it is also possible that the BLR geometry has only two statistically complete samples of CSS/HERG and F- some impact on these outliers. If a flattened component in the NLS1 available so far. First we calculated the black hole mass BLRispresent,sourceswithalargeinclinationshouldappearas andEddingtonratiobymeansoftheopticalspectrum,andthen broad-lineAGNandnotclassifiableasNLS1s.Thepresenceof westudiedtheirradioluminosityfunctionsalongwiththatofa somerelativelyhighmasstype1sourcesinaCSS/HERGssam- controlsampleofFSRQs. plemightthenprovideacluetotheBLRgeometry.Anywayitis The black hole masses are tipically between 107.5 and 108 worthnotingthatinthesampleofCSSbySonetal.(2012),the M inbothsamples,andtheEddingtonratioisaround 0.1.We type1AGNhaveaBHmassalwaysbelow5 108M ,andanav- pe⊙rformeda Kolmogorov-Smirnovtest on the samples∼to com- eragevalueof8.9 107M .Ifthesesources×hadafla⊙ttenedBLR pare their black hole mass distributions. Our results, in agree- andwererandoml×yorient⊙ed,someofthesesourceswouldshow ment with previous studies in the literature, seem to confirm amuchlargermass.Insteadallthevaluesareingoodagreement thatthetwodistributionsmightbedrawnfromthesamepopula- withthoseofF-NLS1s,sotheydonotseemtohaveaflattened tionand,hence,thatCSS/HERGsaregoodcandidatesforparent componentin the BLR. Inanycase, a deeperstudy ona larger sources. sampleisnecessarytobetteraddressthisproblem. Theluminosityfunctionsseemtosupportthesamescenario. AfirstresultisthatF-NLS1smightbethelow-luminosity(and low-mass) tail of FSRQs, confirming the results of Abdoetal. 6.3.Hostgalaxy (2009a) and Foschinietal. (2015). The addition of relativis- ApossibleobjectiontotheidentificationofCSS/HERGsasthe tic beaming to CSS/HERGs luminosity function revealed that parent population of F-NLS1s is that their host galaxy might CSS/HERGs might actually be F-NLS1s with the jet viewed be different.In particular CSS, like manyradio-loudAGN, are at large angle, and thus belonging to the parent population. usually thought to be hosted by elliptical galaxies (Bestetal. In this framework, RLNLS1s with a steep radio spectrum are 2005; Orienti 2015) and triggered by merging activity (Holt sources observed at intermediate angle between F-NLS1s and 2009).Instead,NLS1saregenerallybelievedtobehostedbyspi- CSS/HERGswithatype2(absorbed)opticalspectrum. ral galaxies (Crenshawetal. 2003) with a pseudobulgeformed Our results also seem to be consistent with an evolution- via secular evolution (OrbandeXivryetal. 2011; Mathuretal. ary picture in which F-NLS1s and CSS/HERGs are the young 2012).Nevertheless,theK-Stestweperformed,alongwithother andstillgrowingphasesofFSRQsandFRHERG,respectively.A studies,seemstodrawamorecomplicatedpicture. more detailed study is required on a larger sample of sources. CSS/HERGs have a black hole mass distribution closer to In particular, new spectral indices are necessary to effectively that of disk RGs than to that of elliptical RGs, typically show- compare CSS/HERGs and F-NLS1s. New large surveysat dif- inglowerblackholemass.Thismightbebecauseoftheyoung ferentfrequencies,suchasVLASS,mightbehelpfultoimprove ageofthesesources,soperhapstheblackholeisstillgrowingto ourknowledgeaboutthesesources.AlsoSKA,withitsunprece- reachthemassvalueoftypicalelliptical.Nevertheless,theblack dented sensitivity, will likely provide an incredible amount of hole mass is directly connected with the bulge dynamics, par- information to greatly deepen our understanding of RLNLS1s ticularlywithitsstellarvelocitydispersion(Ferrarese&Merritt (Bertonetal.2016). 8 M.Bertonetal.:CSSsourcesastheparentpopulationofF-NLS1s Acknowledgements. WethankM.L.ListerandR.Antonucciforhelpfulsug- Heinz,S.&Sunyaev,R.A.2003,MNRAS,343,L59 gestions and discussions. We thank our referee Vasiliki Pavlidou for help- Holt,J.2009,AstronomischeNachrichten,330,226 ful comments that improved the quality of the paper. GT is partially sup- Kollgaard,R.I.,Wardle,J.F.C.,Roberts,D.H.,&Gabuzda,D.C.1992,AJ, ported by the PRIN-INAF 2014 with the project Transient Universe: un- 104,1687 veiling new types of stellar explosions with PESSTO. The research leading Komatsu,E.,Smith,K.M.,Dunkley,J.,etal.2011,ApJS,192,18 to these results has received funding from the European Research Council Komossa,S.,Voges,W.,Xu,D.,etal.2006,AJ,132,531 under the European Union’s Seventh Framework Programme (FP7/2007- Komossa,S.,Xu,D.,Fuhrmann,L.,etal.2015,A&A,574,A121 2013)/ERCGrantagreement no [291222](PI:S.J.Smartt)andSTFCgrants Kunert-Bajraszewska,M.,Gawron´ski,M.P.,Labiano,A.,&Siemiginowska,A. ST/L000709/1. This research has made use of the NASA/IPAC Extragalactic 2010,MNRAS,408,2261 Database(NED),whichisoperatedbytheJetPropulsionLaboratory,California Kunert-Bajraszewska,M.&Labiano,A.2010,MNRAS,408,2279 Institute of Technology, under contract with the National Aeronautics and Laing,R.A.,Jenkins,C.R.,Wall,J.V.,&Unger,S.W.1994,inAstronomical SpaceAdministration.FundingfortheSloanDigitalSkySurveyhasbeenpro- Society of the Pacific Conference Series, Vol. 54, The Physics of Active vided bythe Alfred P.Sloan Foundation and the U.S. Department of Energy Galaxies,ed.G.V.Bicknell,M.A.Dopita,&P.J.Quinn,201 Office of Science. The SDSS web site is http://www.sdss.org.SDSS-III Leo´nTavares,J.,Kotilainen,J.,Chavushyan,V.,etal.2014,ApJ,795,58 is managed by the Astrophysical Research Consortium for the Participating Liodakis,I.&Pavlidou,V.2015,MNRAS,454,1767 InstitutionsoftheSDSS-IIICollaborationincludingtheUniversityofArizona, Lister,M.L.&Marscher,A.P.1997,ApJ,476,572 the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Marziani, P.,Zamanov,R.K.,Sulentic, J.W.,&Calvani, M.2003,MNRAS, Mellon University, University ofFlorida, the French Participation Group, the 345,1133 German Participation Group, Harvard University, the Instituto de Astrofisica Mathur,S.2000,MNRAS,314,L17 deCanarias, theMichiganState/Notre Dame/JINAParticipation Group,Johns Mathur,S.,Fields,D.,Peterson,B.M.,&Grupe,D.2012,ApJ,754,146 Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Morganti,R.,Holt,J.,Tadhunter,C.,etal.2011,A&A,535,A97 Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, Morganti,R.,Oosterloo,T.,Oonk,J.B.R.,Frieswijk,W.,&Tadhunter,C.2015, NewMexicoStateUniversity,UniversityofPortsmouth,PrincetonUniversity, A&A,580,A1 the Spanish Participation Group, University of Tokyo, University of Utah, Murgia,M.,Fanti,C.,Fanti,R.,etal.1999,A&A,345,769 Vanderbilt University, University of Virginia, University of Washington, and O’Dea,C.P.1998,PASP,110,493 YaleUniversity. O’Dea,C.P.&Baum,S.A.1997,AJ,113,148 OrbandeXivry,G.,Davies,R.,Schartmann,M.,etal.2011,MNRAS,417,2721 Orienti,M.2015,ArXive-prints[arXiv:1511.00436] References Oshlack,A.Y.K.N.,Webster,R.L.,&Whiting,M.T.2001,ApJ,558,578 Osterbrock,D.E.&Pogge,R.W.1985,ApJ,297,166 Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009a,ApJ,699,976 Osterbrock,D.E.&Pogge,R.W.1987,ApJ,323,108 Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009b,ApJ,707,727 Owsianik,I.&Conway,J.E.1998,A&A,337,69 Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009c,ApJ,707,L142 Padovani,P.&Urry,C.M.1992,ApJ,387,449 Anto´n,S.,Browne,I.W.A.,&Marcha˜,M.J.2008,A&A,490,583 Peterson,B.M.1997,AnIntroductiontoActiveGalacticNuclei Antonucci,R.2002,inAstrophysicalSpectropolarimetry,ed.J.Trujillo-Bueno, Readhead,A.C.S.,Taylor,G.B.,Pearson,T.J.,&Wilkinson,P.N.1996,ApJ, F.Moreno-Insertis,&F.Sa´nchez,151–175 460,634 Avni,Y.&Bahcall,J.N.1980,ApJ,235,694 Richards,G.T.,Fan,X.,Newberg,H.J.,etal.2002,AJ,123,2945 Berton, M., Foschini, L., Caccianiga, A., et al. 2016, ArXiv e-prints Schmidt,M.1968,ApJ,151,393 [arXiv:1601.05791] Schulz, R., Kreikenbohm, A., Kadler, M., et al. 2015, ArXiv e-prints Berton, M., Foschini, L., Ciroi, S., et al. 2015a, ArXiv e-prints [arXiv:1511.02631] [arXiv:1506.05800] Shen,Y.&Ho,L.C.2014,Nature,513,210 Berton,M.,Foschini,L.,Ciroi,S.,etal.2015b,A&A,578,A28 Son,D.,Woo,J.-H.,Kim,S.C.,etal.2012,ApJ,757,140 Best,P.N.&Heckman,T.M.2012,MNRAS,421,1569 Stickel,M.,Padovani,P.,Urry,C.M.,Fried,J.W.,&Kuehr,H.1991,ApJ,374, Best,P.N.,Kauffmann,G.,Heckman,T.M.,etal.2005,MNRAS,362,25 431 Boroson,T.A.&Green,R.F.1992,ApJS,80,109 Urry,C.M.&Padovani,P.1991,ApJ,371,60 Caccianiga,A.,Anto´n,S.,Ballo,L.,etal.2014,MNRAS,441,172 Urry,C.M.&Padovani,P.1995,PASP,107,803 Caccianiga,A.,Anto´n,S.,Ballo,L.,etal.2015,MNRAS,451,1795 Urry,C.M.&Shafer,R.A.1984,ApJ,280,569 Crenshaw,D.M.,Kraemer,S.B.,&Gabel,J.R.2003,AJ,126,1690 Wall,J.V.&Peacock,J.A.1985,MNRAS,216,173 Czerny,B.,Siemiginowska,A.,Janiuk,A.,Nikiel-Wroczyn´ski,B.,&Stawarz, Wu,Q.2009a,ApJ,701,L95 Ł.2009,ApJ,698,840 Wu,Q.2009b,MNRAS,398,1905 D’Ammando,F.,Orienti,M.,Finke,J.,etal.2012,MNRAS,426,317 Yuan,W.,Zhou,H.Y.,Komossa,S.,etal.2008,ApJ,685,801 deBruyn,A.G.&Wilson,A.S.1978,A&A,64,433 Zhou,H.,Wang,T.,Yuan,W.,etal.2006,ApJS,166,128 Decarli,R.,Dotti,M.,Fontana,M.,&Haardt,F.2008,MNRAS,386,L15 Doi,A.,Asada,K.,&Nagai,H.2011,ApJ,738,126 Doi,A.,Nagira,H.,Kawakatu,N.,etal.2012,ApJ,760,41 Fanti,C.,Fanti,R.,Dallacasa,D.,etal.1995,A&A,302,317 Ferrarese,L.&Merritt,D.2000,ApJ,539,L9 Foschini, L. 2011, in Narrow-Line Seyfert 1 Galaxies and their Place in the Universe,Proc.ofScience,Vol.NLS1,id.24 Foschini, L. 2012, in Proceedings of Nuclei of Seyfert galaxies and QSOs - Centralengine&conditionsofstarformation,Proc.ofScience,Vol.Seyfert 2012,id.10 Foschini,L.,Angelakis,E.,Fuhrmann,L.,etal.2012,A&A,548,A106 Foschini,L.,Berton,M.,Caccianiga,A.,etal.2015,A&A,575,A13 Foschini, L., Fermi/Lat Collaboration, Ghisellini, G., et al. 2010, in AstronomicalSocietyofthePacificConferenceSeries,Vol.427,Accretion andEjectioninAGN:aGlobalView,ed.L.Maraschi,G.Ghisellini,R.Della Ceca,&F.Tavecchio,243–248 Gallo,L.C.,Edwards,P.G.,Ferrero,E.,etal.2006,MNRAS,370,245 Gehrels,N.1986,ApJ,303,336 Ghisellini,G.,Haardt,F.,&Matt,G.2004,A&A,413,535 Giommi,P.,Padovani,P.,Polenta,G.,etal.2012,MNRAS,420,2899 Goodrich,R.W.1989,ApJ,342,224 Greene,J.E.&Ho,L.C.2005,ApJ,627,721 Grupe,D.2000,NewAstron.Rev.,44,455 Gu,M.,Chen,Y.,Komossa,S.,etal.2015,ApJS,221,3 Hamilton,T.S.&Foschini,L.2012,AAS,220 Hardcastle,M.J.,Evans,D.A.,&Croston,J.H.2007,MNRAS,376,1849 9