Compact Power Amplifiers Using Circuit Level and Spatial Power Combining Techniques By Waleed Abdulaziz Alomar A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2014 Doctoral Committee Professor Amir Mortazawi, Chair Associate Professor Jerome P. Lynch Professor Eric Michielssen Professor Kamal Sarabandi © Waleed Abdulaziz Alomar 2014 All Rights Reserved i To my Parents and my Wife ii ACKNOWLEDGEMENTS I would like to thank God for his unlimited support and success that he provided me during my entire life. Moreover, he guided to meet many people whom have a valuable impact in my personal and academic life. Therefore, I would like to express my deepest gratitude to those people. First of all, I would like to thank my research advisor Professor Amir Mortazawi for his academic and technical supports that he gave me during my graduate study. I also would like to thank my other committee members, Professor Kamal Sarabandi, Professor Eric Michielssen, and Professor Jerome Lynch for their valuable time, and effort in reading and advising my dissertation work. Most importantly, I would like to thank my parents for their countless efforts and supports that they provided me with since the first day of my life. They are my first and most important teacher in my life. Furthermore, I would like to thank my wife for the continuous love and support that she gives me. I had a privilege of meeting nice and talented people in the Radiation Laboratory, which facilitated my PhD study and made it more enjoyable. I would also like to thank Dr. Adib Nashashibi for his valuable supports and discussions. Also, I would like to thanks all of my colleagues in the Radiation Laboratory. I would like to thank Victor Lee, Seyit Sis, Carl Pfeiffer, Meng-Hung Chen, Morteza Nick, Danial Ehyaie, Jia-Shiang Fu, Xinen Zhu, Seungku Lee, Amr Alaa, Hatim Bukhari, Gurkan Gok, Luis Gomez, Mehrnoosh iii Vahidpour, Xueyang Duan, Fikadu Dagefu, Scott Rudolph, Amit Patel, Meysam Moallem, Mohammadreza Imani, Erin Thomas, Michael Thiel, Yuriy Goykhman, Alireza Tabatabaeenejad, Farhad Bayatpur, Adel Elsherbini, Mark Haynes, Abdulkadir Yucel, Jungsuek Oh, Young Jun Song, Juseop Lee, Onur Bakir, Michael Benson, Mariko Burgin, Noyan Akbar, and Elham Mohammadi. iv TABLE OF CONTENTS DEDICATION ........................................................................................................ ii ACKNOWLEDGEMENTS ................................................................................... iii LIST OF FIGURES ............................................................................................. viii ABSTRACT ......................................................................................................... xiv Chapter 1 Introduction ......................................................................................... 1 1.1 Motivation ................................................................................................. 1 1.2 Basic Classes of RF Power Amplifiers ..................................................... 2 1.2.1 Class-A Power Amplifiers .................................................................. 4 1.2.2 Class-B Power Amplifiers ................................................................... 5 1.2.3 Class-AB Power Amplifiers ................................................................ 7 1.2.4 Class-C Power Amplifiers ................................................................... 8 1.2.5 Class-D Power Amplifiers .................................................................. 9 1.2.6 Class-F Power Amplifiers ................................................................. 10 1.2.7 Class-E Power Amplifiers ................................................................. 13 1.3 Thesis Overview ...................................................................................... 22 Chapter 2 RF Power Combining ........................................................................ 25 v 2.1 Introduction ............................................................................................. 25 2.2 Corporate Power Combining ................................................................... 27 2.3 Chain-Coupled Power Combining .......................................................... 29 2.4 Radial Power Combining ........................................................................ 30 2.5 Spatial Power Combining ........................................................................ 31 2.6 Extended Resonance Power Combining ................................................. 33 Chapter 3 Circuit Level Power Combining Using High Voltage High Power (HiVP) Class-E Amplifiers ............................................................................................... 34 3.1 Introduction ............................................................................................. 34 3.2 HiVP Class-E Power Amplifier Design .................................................. 36 3.3 Prototype HiVP Class-E Power Amplifiers ............................................ 42 3.3.1 Design of a Two-Device HiVP Class-E Power Amplifier ................ 43 3.3.2 Design of a Four-Device HiVP Class-E Power Amplifier ................ 48 3.3.3 Design of a Four-Device HiVP Class-E Power Amplifier with Source- To-Ground Parasitic Capacitance Compensation ..................................................... 53 3.4 Kilowatt-Level HiVP Class-E Power Amplifier Design ......................... 58 3.5 Conclusion ............................................................................................... 62 Chapter 4 Spatial Power Combining Using Squint Free Serially Fed Antenna Arrays 64 4.1 Introduction ............................................................................................. 64 vi 4.2 Spatial Power Combining Using Serially Fed Active Antenna Arrays .. 66 4.3 Beam Squint Elimination Using a Center-Fed Series Antenna Array .... 72 4.4 Elimination of Beam Squint in Series Fed Active Antenna Arrays Using a Lossy NGD Circuit ....................................................................................................... 73 4.5 Elimination of Beam Squint in Series Fed Active Antenna Arrays Using a Shunt Lossless NGD Circuit ......................................................................................... 80 4.6 Elimination of Beam Squint in Series Fed Active Antenna Arrays Using a Series Connected Lossless NGD Circuit ...................................................................... 96 4.7 A Solid State Millimeter Wave High Power Amplifier .......................... 99 4.8 Conclusion ............................................................................................. 101 Chapter 5 Conclusion ....................................................................................... 103 5.1 Summary ............................................................................................... 103 5.2 Future Work .......................................................................................... 105 APPENDIX ......................................................................................................... 108 BIBLOGRAPHY ................................................................................................ 111 vii LIST OF FIGURES Figure 1.1 Conduction angle definition [4]......................................................................... 3 Figure 1.2 Voltage and current waveforms of class-A power amplifier [4] ....................... 5 Figure 1.3 Voltage and current waveforms of class-B power amplifier [4] ....................... 6 Figure 1.4 Push-Pull class-B power amplifier schematic; (a) Basic circuit (B) Current waveforms of class-B power amplifier [5]. ........................................................................ 7 Figure 1.5 Class-D power amplifier schematic; (a) Basic circuit (b) Ideal model (c) Voltage and current waveforms of class-D power amplifier [5] .................................................... 10 Figure 1.6 Class-F power amplifier schematic [4] ............................................................ 11 Figure 1.7 Class-F power amplifier waveforms [4] .......................................................... 12 Figure 1.8 Optimum waveforms for Class-E design. (a) Voltage across the device. (b) Current though the device [6]. .......................................................................................... 14 Figure 1.9 Basic circuit of Class-E power amplifier [4]. .................................................. 15 Figure 1.10 Equivalent circuit of Class-E power amplifier [4] ........................................ 15 Figure 1.11. Equivalent circuit of class-E power amplifier at fundamental frequency. ... 20 Figure 1.12 The frame work of the thesis. ........................................................................ 24 Figure 2.1 Output power as a function of frequency for various power amplifier technologies [28]. .............................................................................................................. 26 Figure 2.2 Output power as a function of frequency for FET power amplifiers [29]. ...... 27 Figure 2.3 Corporate power combiner [26] ...................................................................... 28 viii Figure 2.4 Theoretical combining efficiency of corporate structure. ............................... 28 Figure 2.5 Chain-coupled power combiner [26]. .............................................................. 29 Figure 2.6 Combining efficiency of the chain combining structure [26]. ........................ 30 Figure 2.7 Radial power combiner [30]. ........................................................................... 31 Figure 2.8 Spatial power combining [34] ......................................................................... 32 Figure 2.9 Ka-band quasi-optical amplifier array [33]. .................................................... 32 Figure 2.10 Extended resonance power combining circuit ............................................... 33 Figure 3.1 HiVP class-E power amplifier ......................................................................... 37 Figure 3.2 Multiple packaged cascode connection. .......................................................... 38 Figure 3.3 Circuit model of the nth transistor and parasitic due to alumina and copper foil. ........................................................................................................................................... 39 Figure 3.4 Two-device HiVP class-E power amplifier schematic .................................... 43 Figure 3.5 Drain voltage and current waveforms ............................................................. 44 Figure 3.6 Gats voltage waveforms .................................................................................. 45 Figure 3.7 Fabricated two device HiVP Class-E power amplifier .................................... 46 Figure 3.8 Measured and Simulated output power and PAE of two devices HiVP class-E power amplifier ................................................................................................................. 47 Figure 3.9 circuit schematic of four devices HiVP class-E power amplifier using potentiometer .................................................................................................................... 48 Figure 3.10 Fabricated four devices HiVP Class-E power amplifier using potentiometer. ........................................................................................................................................... 49 Figure 3.11 Simulated drains waveforms. ........................................................................ 50 Figure 3.12 Simulated gates waveforms. .......................................................................... 51 ix
Description: