ebook img

Compact Extended Linear Programming Models PDF

208 Pages·2017·4.017 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compact Extended Linear Programming Models

EURO Advanced Tutorials on Operational Research Series Editors: M. Grazia Speranza · Jose Fernando Oliviera Giuseppe Lancia Paolo Serafini Compact Extended Linear Programming Models EURO Advanced Tutorials on Operational Research Series editors M. Grazia Speranza, Brescia, Italy Jose Fernando Oliviera, Porto, Portugal More information about this series at http://www.springer.com/series/13840 fi Giuseppe Lancia Paolo Sera ni (cid:129) Compact Extended Linear Programming Models 123 Giuseppe Lancia PaoloSerafini Department ofMathematics, Computer Department ofMathematics, Computer Science, andPhysics Science, andPhysics University of Udine University of Udine Udine Udine Italy Italy ISSN 2364-687X ISSN 2364-6888 (electronic) EURO AdvancedTutorials onOperational Research ISBN978-3-319-63975-8 ISBN978-3-319-63976-5 (eBook) DOI 10.1007/978-3-319-63976-5 LibraryofCongressControlNumber:2017948212 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction... .... .... ..... .... .... .... .... .... ..... .... 1 2 Polyhedra. .... .... .... ..... .... .... .... .... .... ..... .... 7 2.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 7 2.2 Convex Hulls of Infinitely Many Points.. .... .... ..... .... 11 2.3 The Slack Matrix .. ..... .... .... .... .... .... ..... .... 12 2.4 Projections of Polyhedra.. .... .... .... .... .... ..... .... 13 2.5 Union of Polyhedra Defined by Inequalities... .... ..... .... 24 2.6 Union of Polyhedra Defined by Vertices and Extreme Rays.... 28 3 Linear Programming.... ..... .... .... .... .... .... ..... .... 33 3.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 33 3.2 Polyhedral Characterization ... .... .... .... .... ..... .... 35 3.3 Duality .. .... .... ..... .... .... .... .... .... ..... .... 36 3.4 Algorithms ... .... ..... .... .... .... .... .... ..... .... 39 4 Integer Linear Programming.. .... .... .... .... .... ..... .... 43 4.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 43 4.2 Modeling .... .... ..... .... .... .... .... .... ..... .... 45 4.3 Formulations with Integral LP-Relaxation. .... .... ..... .... 48 4.4 The Branch-and-Bound Approach... .... .... .... ..... .... 51 4.5 The Cutting-Plane Approach... .... .... .... .... ..... .... 58 4.6 General-Purpose MILP Solvers. .... .... .... .... ..... .... 65 5 Large-Scale Linear Programming .. .... .... .... .... ..... .... 67 5.1 LP with Exponentially Many Columns... .... .... ..... .... 68 5.2 Column Generation and Branch-and-Bound... .... ..... .... 70 5.3 LP with Exponentially Many Rows . .... .... .... ..... .... 71 5.4 LP with Exponentially Many Columns and Rows .. ..... .... 72 v vi Contents 6 General Techniques for Compact Formulations... .... ..... .... 75 6.1 Primal Compact Extended Formulations.. .... .... ..... .... 75 6.2 Two Examples of Compact Extended Formulations. ..... .... 78 6.3 Compact Equivalent Formulations .. .... .... .... ..... .... 81 6.4 A First Example of Compact Equivalent Formulation .... .... 84 6.5 A Second Example of Compact Equivalent Formulation .. .... 86 6.6 A Common Feature for Path Problems... .... .... ..... .... 90 6.7 The Dantzig–Wolfe Decomposition Technique. .... ..... .... 92 6.8 Projections and Slack Matrix Factorization.... .... ..... .... 94 6.9 Union of Polyhedra ..... .... .... .... .... .... ..... .... 99 7 The Permutahedron .... ..... .... .... .... .... .... ..... .... 103 7.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 103 7.2 A Compact Extended Formulation by LP Techniques .... .... 106 7.3 A Direct Compact Extended Formulation. .... .... ..... .... 108 7.4 A Minimal Compact Extended Formulation... .... ..... .... 109 8 The Parity Polytope. .... ..... .... .... .... .... .... ..... .... 113 8.1 External Representation of the Parity Polytope. .... ..... .... 114 8.2 A Compact Extended Formulation by Union of Polyhedra. .... 117 8.3 A Compact Extended Formulation by LP Techniques .... .... 118 9 Trees .... .... .... .... ..... .... .... .... .... .... ..... .... 123 9.1 Steiner and Spanning Trees ... .... .... .... .... ..... .... 123 9.2 Spanning Trees.... ..... .... .... .... .... .... ..... .... 125 9.3 Bounded-Degree Spanning Trees ... .... .... .... ..... .... 131 9.4 Minimum Routing Cost Trees . .... .... .... .... ..... .... 133 10 Cuts and Induced Bipartite Subgraphs.. .... .... .... ..... .... 137 10.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 137 10.2 Max-Cut and Edge-Induced Bipartite Subgraphs ... ..... .... 138 10.3 Compact Versions.. ..... .... .... .... .... .... ..... .... 141 10.4 Model Comparison. ..... .... .... .... .... .... ..... .... 144 10.5 Node-Induced Bipartite Subgraphs.. .... .... .... ..... .... 146 11 Stable Sets .... .... .... ..... .... .... .... .... .... ..... .... 149 11.1 Basic Definitions... ..... .... .... .... .... .... ..... .... 149 11.2 Compact Models... ..... .... .... .... .... .... ..... .... 150 11.3 Comparability Graphs.... .... .... .... .... .... ..... .... 152 12 Traveling Salesman Problems.. .... .... .... .... .... ..... .... 155 12.1 Separation of Subtour Inequalities .. .... .... .... ..... .... 156 12.2 A Column Generation Model for the ATSP... .... ..... .... 157 12.3 ATSP - A Compact Reformulation.. .... .... .... ..... .... 160 12.4 Time-Window ATSP .... .... .... .... .... .... ..... .... 161 Contents vii 13 Packing .. .... .... .... ..... .... .... .... .... .... ..... .... 165 13.1 Bin Packing .. .... ..... .... .... .... .... .... ..... .... 165 13.2 Robust Knapsack .. ..... .... .... .... .... .... ..... .... 169 13.3 Cycle Packing. .... ..... .... .... .... .... .... ..... .... 170 14 Scheduling .... .... .... ..... .... .... .... .... .... ..... .... 173 14.1 The Job-Shop Problem... .... .... .... .... .... ..... .... 173 14.2 The One Machine Problem.... .... .... .... .... ..... .... 178 15 Computational Biology Problems... .... .... .... .... ..... .... 183 15.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 183 15.2 Sorting by Reversals and Alternating Cycles .. .... ..... .... 184 15.3 Alignments and Longest Common Subsequences... ..... .... 190 15.4 Protein Fold Comparison . .... .... .... .... .... ..... .... 193 References.... .... .... .... ..... .... .... .... .... .... ..... .... 197 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 205 Notation sets The set f1;2;...;ng is denoted by ½n(cid:2). Sets are usually named with upper-case letters S, T, etc. We write S(cid:3)T when S is a subset of T, including the case S¼T. A proper subset of T is denoted by ðS(cid:3)T;S6¼TÞ or by S(T. vectors Vectors are denoted by lower-case letters, e.g., a, b, with possible superscripts, e.g., a0, b0. Their entries are denoted by the same letters withasubscriptreferringtothecomponent,e.g.,ai,bi,a0i,b0i.Vectors can be either row vectors or column vectors. The context will always make clear the meaning. For instance, if we say ‘the linear form cx’ and both c and x have been defined as vectors, it is clear that c is row vector and x is a column vector. Similarly, if we say ‘the quadratic formaHb,’whereaandbaredefinedasvectorsandHisamatrix,itis clearthataisrowvectorandbisacolumnvector.Sometimes,avector thatisinitiallydefinedasacolumn(row)vectorneedstobetransposed as a row (column) vector. Again, if the meaning is clear we avoid to use the transposition sign, while otherwise we indicate the transposed vector as aT. The vectors of the canonical basis of Rn are denoted by e1 ¼ð1;0;...;0Þ, …, en ¼ð0;...;0;1Þ. matrices Matrices are denoted by upper-case letters, e.g., A, B, with possible superscripts, e.g., A0, B0. Their entries are denoted by the corre- sponding lower-case letters with subindices referring to the rows and columns,e.g.,aij,bij,a0ij,b0ij.Differentlyfromvectors,ifamatrixhasto be transposed, this will be denoted by the transposition sign. equations A convention we use in this book regards the equation numbering. If we reference an integer linear program as (x), we reference the integrality relaxation of (x) as (x). ix Chapter 1 Introduction Linear Programming (LP) and Integer Linear Programming (ILP) are two of the mostpowerfultoolsevercreatedinmathematics.Theirusefulnesscomesfromthe manyareaswheretheycanprovidesatisfactorymodelingandsolvingtechniquesto real-life problems. Their appeal comes from the rich combinatorial and geometric theorytheyarebasedupon. Solving an LP problem consists in minimizing a linear functional over a poly- hedron, which, inturn,amounts todetecting avertex of thepolyhedron where the linearfunctionalachievestheminimum(ifitexists).Themanytheoreticalaspects ofthestudyoflinearprogramsarenotonlyinterestingperse,butareinstrumental to the most important goal, i.e., the actual possibility of computing the minimum. Therefore,thebasicquestionishowtheinputdatathatdescribethepolyhedronand consistinanexplicitlistofthepolyhedronfacetscanbeturnedintothesolution. Also solving an ILP problem consists in minimizing a linear functional over a polyhedron, only that this time the input data do not describe the polyhedron of interest, but rather a larger, ‘weaker’, polyhedron. This makes the problem much moredifficulttosolve,becausewehavealsoto‘discover’thepolyhedroninside. Inbothcasesthecomputationalperformanceofthesolvingalgorithmsdependson theinputsize,i.e.,onthenumberoffacetsoftheinputpolyhedron.Thevastmajority oftheLP/ILPinstancesofinterestaremadeofpolyhedraandlinearcostfunctions derived,indeed,fromthemodelingofcombinatorialoptimizationproblems,whose instancesarecombinatorialobjectssuchasgraphs,sets,sequences,etc.Therefore, whenwediscussthesizeofanLP/ILPinstanceitisimportanttodoitinrelationto thesizeoftheinstanceoftheunderlyingcombinatorialoptimizationproblem. Itturnsoutthatthemosteffectiveformulationsforsomecombinatorialoptimiza- tion problems (almost invariably NP-hard problems) are polyhedra with an expo- nentialnumberoffacets.Thesetypeoflarge-sizemodelswerefirstpursuedbythe ©SpringerInternationalPublishingAG2018 1 G.LanciaandP.Serafini,CompactExtendedLinearProgrammingModels, EUROAdvancedTutorialsonOperationalResearch, DOI10.1007/978-3-319-63976-5_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.