Commutative Algebra · Marco Fontana Salah-Eddine Kabbaj · Bruce Olberding Irena Swanson Editors Commutative Algebra Noetherian and Non-Noetherian Perspectives ABC Editors MarcoFontana BruceOlberding DipartimentodiMatematica DepartmentofMathematicalSciences Universita`degliStudiRomaTre NewMexicoStateUniversity LargoSanLeonardoMurialdo1 LasCruces,NM88003 00146Roma USA Italy [email protected] [email protected] Salah-EddineKabbaj IrenaSwanson DepartmentofMathematicsandStatistics DepartmentofMathematics KingFahdUniversityofPetroleum ReedCollege &Minerals SoutheastWoodstockBlvd.3203 31261Dhahran Portland,OR97202 SaudiArabia USA [email protected] [email protected] ISBN978-1-4419-6989-7 e-ISBN978-1-4419-6990-3 DOI10.1007/978-1-4419-6990-3 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2010935809 MathematicsSubjectClassification(2010):13-XX,14-XX (cid:2)c SpringerScience+BusinessMedia,LLC2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisvolumecontainsacollectionofinvitedsurveyarticlesbysomeoftheleading experts in commutative algebra carefully selected for their impact on the field. Commutative algebra is growing very rapidly in many directions. The intent of this volume is to feature a wide range of these directions rather than focus on a narrow research trend. The articles represent various significant developments in both Noetherian and non-Noetherian commutative algebra, including such topics as generalizations of cyclic modules, zero divisor graphs, class semigroups, forc- ingalgebras,syzygybundles,tightclosure,Gorensteindimensions,tensorproducts of algebras over fields, v-domains, multiplicative ideal theory, direct-sum decom- positions, defect, almost perfect domains, defects of field extensions, ultrafilters, ultraproducts,Rees valuations, overringsof Noetherian domains, weak normality, andseminormality. Thepapersgivea cross-sectionof whatis happeningand of whatis influential in commutative algebra now. The target audience is the researchers in the area, with the aim that the papers serve both as a reference and as a source for further investigations. Wethankthecontributorsfortheirwonderfulpapers.Wehavelearnedmuchfrom theirexpertise,andwehopethatthesepapersareasinspirationalforthereadersas they have been for us. We also thank the referees for their constructive criticism, andtheSpringereditorialstaff,especiallyElizabethLoewandNathanBrothers,for theirpatienceandassistanceingettingthisvolumeintoprint. Roma,Italy MarcoFontana Dhahran,SaudiArabia Salah-EddineKabbaj LasCruces,NewMexico BruceOlberding Portland,Oregon IrenaSwanson April2010 v Contents Preface............................................................ v Principal-likeidealsandrelatedpolynomialcontentconditions ......... 1 D.D.Anderson Zero-divisorgraphsincommutativerings........................... 23 DavidF.Anderson,MichaelC.Axtell,andJoeA.Stickles,Jr. Classsemigroupsandt-classsemigroupsofintegraldomains........... 47 SilvanaBazzoniandSalah-EddineKabbaj Forcingalgebras,syzygybundles,andtightclosure ................... 77 HolgerBrenner Beyondtotallyreflexivemodulesandback........................... 101 LarsWintherChristensen,Hans-BjørnFoxby,andHenrikHolm Onv-domains:asurvey .......................................... 145 MarcoFontanaandMuhammadZafrullah Tensorproductofalgebrasoverafield.............................. 181 HassanHaghighi,MassoudTousi,andSiamakYassemi Multiplicativeidealtheoryinthecontextofcommutativemonoids ...... 203 FranzHalter-Koch Projectivelyfullidealsandcompositionsofconsistentsystemsofrank onediscretevaluationrings:asurvey............................... 233 WilliamHeinzer,LouisJ.Ratliff,Jr.,andDavidE.Rush Direct-sumbehaviorofmodulesoverone-dimensionalrings............ 251 RyanKarrandRogerWiegand vii viii Contents Thedefect...................................................... 277 Franz-ViktorKuhlmann TheuseofultrafilterstostudythestructureofPru¨ferandPru¨fer-like rings .......................................................... 319 K.AlanLoper Intersectionsof valuationoverringsoftwo-dimensionalNoetherian domains ....................................................... 335 BruceOlberding Almostperfectdomainsandtheirmodules .......................... 363 LuigiSalce Characteristicpmethodsincharacteristiczeroviaultraproducts ....... 387 HansSchoutens Reesvaluations ................................................. 421 IrenaSwanson Weaknormalityandseminormality ................................ 441 MarieA.Vitulli Index .............................................................481 Principal-like ideals and related polynomial ∗ content conditions D.D.Anderson Abstract We discuss several classes of ideals (resp., modules) having properties sharedbyprincipalideals(resp.,cyclicmodules).Theseincludemultiplicationide- alsandmodulesandcancellationidealsandmodules.We also discusspolynomial contentconditionsincludingGaussianidealsandringsandArmendarizrings. 1 Introduction Ofallidealsinacommutativeringcertainlyprincipalidealsarethesimplest.Now, principalidealshavemanyusefulproperties.Weconcentrateonthreeoftheseprop- erties.First,ifRaisaprincipalidealofacommutativeringRandA⊆Raisanideal, then A=BRa for some ideal B of R, namely B=A:Ra. An ideal I of R sharing thispropertythatforanyidealA⊆I,wehaveA=BI forsomeidealBiscalleda multiplicationideal.Second,iffurthera∈Risnotazerodivisor,thenforidealsA andBofR,RaA=RaBimpliesA=B.AnidealIofRwiththepropertythatIA=IB foridealsAandBofRimpliesA=Biscalledacancellationideal.Moregenerally, I isaweakcancellationidealifIA=IBimpliesA+0:I=B+0:I.Anyprincipal idealis a weak cancellationideal. Third,if f =a +a X+···+a Xn ∈R[X]is a 0 1 n polynomialwith contentc(f)=Ra +···+Ra principal,then c(fg)=c(f)c(g) 0 n forallg∈R[X].Apolynomial f ∈R[X]iscalledGaussianifc(fg)=c(f)c(g)for allg∈R[X].AndRissaidtobeGaussian (resp.,Armendariz)ifc(fg)=c(f)c(g) forall f,g∈R[X](resp.,withc(fg)=0). We view a finitely generated locally principalideal as the appropriategeneral- ization of a principal ideal. It turns out that a finitely generated locally principal UniversityofIowa,IowaCity,IA52242,USAe-mail:[email protected] ∗ Dedicated to the memory of my teacher, Irving Kaplansky, who piqued my interest in these topics. M.Fontanaetal.(eds.),CommutativeAlgebra:NoetherianandNon-Noetherian 1 Perspectives,DOI10.1007/978-1-4419-6990-3 1, (cid:2)c SpringerScience+BusinessMedia,LLC2011 2 D.D.Anderson idealI isamultiplicationidealandaweakcancellationidealandifc(f)=I,then f isGaussian.Wewillbeparticularlyinterestedinhowclosetheconversesofthese resultsaretrue. Thepurposeofthispaperisto surveyprincipal-likeideals, especiallymultipli- cationidealsandcancellationideals,andpolynomialcontentconditions,especially Gaussianpolynomialsandrings,andArmendarizrings.Wealsodiscussthenatural extensionoftheseconceptstomodules.Thispaperconsistsoffivesectionsbesides theintroduction.Inthesecondsection,welookatprincipal-likeelementsinamul- tiplicativelatticeandlatticemoduleandwhattheseelementsareinthecaseofthe lattice of ideals of a commutativering or lattice of submodules.The third section surveysmultiplicationidealsandmodulesandmultiplicationrings(ringsinwhich everyidealisamultiplicationideal).Thefourthsectiondiscussescancellationide- alsandmodulesandtheirvariousgeneralizations.InSection5,wesurveytherecent characterizationsofGaussianpolynomialsandGaussianrings.Inthelast(Section6) wecoverArmendarizrings.Twotopicsthatwedonotdiscussareinvertibleideals and ∗-invertibleideals. Excellentsurveysalreadyexist. See for instance[1.2]. We alsogiveanextensive(butnotexhaustive)bibliographyarrangedbysections. Exceptforseveralfleetinginstances,allringswillbecommutativewithidentity andallmodulesunitary.Foranyundefinedtermsornotation,thereaderisreferred to[1.1]. References [1.1] Gilmer, R.: Multiplicative ideal theory, Queen’s Papers Pure Applied Mathematics 90, Queen’sUniversity,Kingston,Ontario,1992 [1.2] Zafrullah, M.: Putting t-invertibility to use. In: Chapman, S.T., Glaz, S. (eds.) Non- noetherian commutative ring theory, pp. 429–457. Kluwer, Dordrecht/Boston/London (2000) 2 Principal elements inmultiplicativelattices Inthissection,wediscussprincipalelementsinmultiplicativelattices.Ibeginwith this section as it was through multiplicative lattices that I became interested in principal-like ideals in commutative rings. By a multiplicative lattice L we mean acompletelatticeLwithgreatestelementIandleastelementOhavingacommuta- tive,associativeproductthatdistributesoverarbitraryjoinsandhasIasamultiplica- tiveidentity.WedonotassumethatLismodular.Ofcourse,herethemostimportant exampleisL=L(R),thelatticeofidealsofacommutativeringRwithidentity.We mentiononlytwootherexamples.IfRisagradedring,thenthesetL (R)ofhomo- h geneousidealsofRisamultiplicativesublatticeofL(R),andifSisacommutative monoidwithzero,thesetL(S)ofidealsofSisaquasilocaldistributivemultiplica- tivelatticewithA∨B=A∪B,A∧B=A∩B,andAB={ab|a∈A,b∈B}.Allthree