ebook img

Commutative Algebra [Lecture notes] PDF

147 Pages·2015·0.894 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Commutative Algebra [Lecture notes]

Commutative Algebra Dr. Thomas Markwig ∗ April 29, 2015 ∗LATEXed by Simon Hampe in 2007/8 Contents 1. Rings and Ideals 3 A). Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B). Prime Ideals and Local Rings . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Modules and linear maps 20 A). Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 B). Finitely generated modules . . . . . . . . . . . . . . . . . . . . . . . . . 24 C). Exact Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 D). Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. Localisation 47 4. Chain conditions 59 A). Noetherian and Artinian rings and modules . . . . . . . . . . . . . . . . 59 B). Noetherian Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 C). Artinian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 D). Modules of finite length . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5. Primary decomposition and Krull’s Principle Ideal Theorem 73 A). Primary decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 B). Krull’s Principal Ideal Theorem . . . . . . . . . . . . . . . . . . . . . . . 85 6. Integral Ring Extensions 92 A). Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 B). Going-Up Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 C). Going-Down Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7. Hilbert’s Nullstellensatz, Noether Normalisation, Krull Dimension 107 A). Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 B). Noether Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8. Valuation Rings and Dedekind Domains 121 A). Valuation Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 B). Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 C). Fractional Ideals, Invertible Ideals, Ideal Class Group. . . . . . . . . . . 138 2 1. Rings and Ideals A). Basics Definition 1.1. A (commutative) ring (with 1) (R,+, ) is a set R with two binary · operations, such that (a) (R,+) is an abelian group (b) (R, ) is associative, commutative and contains a 1 - element. · (c) The distributive laws are satisfied. Note. We will say “ring”, instead of “commutative ring with 1”. • We will usually write “R”, instead of “(R,+, )”. • · Only the multiplicative inverses are missing for a field. • If 0 =1 , then R= 0 R R • { } Proof. Let r R. Then ∈ 0+r =0+1 r =(0+1) r · · =(1+1) r =r+r · = r =0 ⇒ Example 1.2. (a) Fields are rings, e.g. R,Q,C,Z(cid:30)pZ for p prime. (b) Z is a ring 3 1. Rings and Ideals (c) If R is a Ring =⇒ RJxK={ ∞α=0aαxα|aα ∈R}, where: | | P x:=(x ,...,x ) 1 n α:=(α ,...,α ) Nn 1 n ∈ xα :=xα1 ... xαn 1 · · n α :=α +...+α 1 n | | is the ring of formal power series over R in the indeterminance x ,...,x . The 1 n operations are defined as ∞ ∞ ∞ a xα+ b xα = (a +b )xα α α α α |αX|=0 |αX|=0 |αX|=0 ∞ ∞ ∞ a xα b xβ = ( a b )xγ α β α β · |αX|=0 |βX|=0 |γX|=0 α+Xβ=γ Notation: ord( ∞ a xα):= ∞ , if aα =0 ∀α α (min α s.t. aα =0 , otherwise |αX|=0 {| | 6 } (d) R x ,C x are the rings of convergent power series over R and C. { } { } (e) If M is a set and R a ring, then RM := f :M R f is a map is a ring with { → | } respect to : (f +g)(m):=f(m)+g(m) (f g)(m):=f(m)g(m) · (f) IfR ,λ Λisafamilyofrings,then R = (a ) a R ,thedirect prodλuct,∈is a ring with respect to compoλn∈eΛntwλise{opeλraλt∈ioΛn|s.λ ∈ λ} Q Definition 1.3. Let (R,+, ) be a ring, I R · ⊆ (a) I is a subring of R : (I,+, ) is a ring with respect to the same operations ⇐⇒ · restricted to I. (b) I is an ideal of R: ⇐⇒ I = • 6 ∅ a,b I : a+b I • ∀ ∈ ∈ a I,r R: ra I • ∀ ∈ ∈ ∈ Notation: I PR 4 1. Rings and Ideals (c) I := J h i I JPR ⊆\ n = r a n N ,r R,a I i i 0 i i ( | ∈ ∈ ∈ ) i=1 X is the ideal generated by I. (d) If I = a , then a =aR:= ar r R is a principal ideal. { } h i { | ∈ } (e) If I PR, then R (cid:30)I := r+I r R { | ∈ } isthequotient ring andit’saringwithrespecttooperationsviarepresentatives. Example 1.4. (a) Z := a a Z,n N Q for p prime p {pn | ∈ ∈ }≤ (b) Let R be a ring. n R[x]:= a xα a R,n N RJxK α α { | ∈ ∈ }≤ |αX|=0 is called the polynomial ring in the indeterminance (x ,...,x )=x. We define: 1 n n if a =0 α deg( a xα)= −∞ α ∀ α (max α s.t. aα =0 else |αX|=0 {| | 6 } (c) R is a field 0 and R are the only ideals. ⇐⇒ { } Proof. We show two directions: “= ”: ⇒ I PR,I = 0 6 { } = a I :a=0 ⇒∃ ∈ 6 = a 1 R − ⇒∃ ∈ = a 1a=1 I − ⇒ ∈ = r R:r 1=r I ⇒∀ ∈ · ∈ = I =R ⇒ 5 1. Rings and Ideals “ =”: Let 0=r R, then 0= r PR ⇐ 6 ∈ 6 h i = r =R, but 1 R ⇒ h i ∈ = s R:sr =1 ⇒∃ ∈ = R is a field. ⇒ (d) I PZ n Z: n =I. In particular, every ideal in Z is a principal ideal. ⇐⇒ ∃ ∈ h i Proof. “ =” is trivial. ⇐ “= ”: If I = 0 , then I = 0 , so let I = 0 . Choose n I minimal, such ⇒ { } h i 6 { } ∈ that n>0. We want to show that I = n : h i “ ”:X ⊇ “ ”:Let a I ⊆ ∈ d.w.r. = q,r Z:a=qn+r,0 r <n ⇒ ∃ ∈ ≤ = r =a qn I ⇒ − ∈ r<n = r =0 ⇒ = a=qn n ⇒ ∈h i (e) Let K be a field, then I PK[x] f K[x]:I =<f > ⇐⇒ ∃ ∈ Proof. As for the integers, just choose f I 0 of minimal degree ∈ \{ } (f) Let K be a field, then: I PKJxK n 0:I = xn ⇐⇒ ∃ ≥ h i Proof. postponed to 1.8 (c) Definition 1.5 (Operations on ideals). Let I,J,J PR,λ Λ λ ∈ I+J := I J = a+b a I,b J PR is the sum (of ideals). • h ∪ i { | ∈ ∈ } I J := a a I,a J PR is the intersection (of ideals). • ∩ { | ∈ ∈ } I J := ab a I,b J PR is the product (of ideals). • · h{ | ∈ ∈ }i I :J := a R aJ I PR is the quotient (of ideals). • { ∈ | ⊆ } √I :=rad(I):= a R n 0:an I PR is the radical of I. • { ∈ |∃ ≥ ∈ } 6 1. Rings and Ideals Proof. ( that √I PR ) – 01 I = 0 √I = √I = ∈ ⇒ ∈ ⇒ 6 ∅ – a √I,r R = n:an I = (ra)n =rnan I = ra √I ∈ ∈ ⇒ ∃ ∈ ⇒ ∈ ⇒ ∈ – a,b √I = n,m:an,bm I = ∈(a+b)n⇒+m∃= n+m n+∈m akbn+m k I ⇒ k=0 k − ∈ P (cid:0) (cid:1) Note. √I J =√I J • · ∩ Proof. “ ”:X ⊆ “ ”:a √I J = n:an I J = a2n =anan I J = a √I J ⊇ ∈ ∩ ⇒ ∃ ∈ ∩ ⇒ ∈ · ⇒ ∈ · We call • ann (I):=ann(I):= 0 :I = a R aI = 0 = a R ab=0 b I PR R { } { ∈ | { }} { ∈ | ∀ ∈ } the annihilator of I. J := J • λ Λ λ λ Λ λ ∈ ∈ P (cid:10)S (cid:11) = a a J , and only finitely many a are non-zero. λ λ λ λ ( | ∈ ) λ Λ X∈ J PR • λ Λ λ ∈ ITand J are called coprime : I+J =R 1 I +J • ⇐⇒ ⇐⇒ ∈ Example 1.6. Let R=Z,I = n ,J = m for n,m=0 h i h i 6 I+J = n,m = gcd(n,m) • h i h i I J = lcm(n,m) • ∩ h i I J = nm • · h i I :J = n = lcm(n,m) • gcd(n,m) m D E D E √I = p ... p , if n= k pαi is the prime factorization of n. • h 1· · ki i=1 i ann(I)= 0 Q • { } 7 1. Rings and Ideals I,J are coprime Z=I +J = gcd(n,m) gcd(n,m)=1 • ⇐⇒ h i ⇐⇒ Definition 1.7. Let R be a ring, r R ∈ (a) r is a zero-divisor : 0=s R:rs=0 ann(r)= 0 ⇐⇒ ∃ 6 ∈ ⇐⇒ 6 { } Note. If R = 0 , then 0 is a zero-divisor by definition. If r is not a zero- 6 { } divisor, the cancellation laws hold: ar = br = a = b. (short proof: ar = ⇒ br = (a b)r =0 = a b=0) ⇒ − ⇒ − (b) R is an integral domain(I.D.), if 0 is the only zero-divisor. (c) r R is a unit : s R:sr =1 ∈ ⇐⇒ ∃ ∈ Note. R = a R a is a unit is a group with respect to multiplication. ∗ { ∈ | } (d) r is nilpotent : n 1, s.t. rn =0 ⇐⇒ ∃ ≥ Note. If R= 0 , then we have: 6 { } r nilpotent = r is a zero-divisor • ⇒ √0= a R a is nilpotent • { ∈ | } (e) r is idempotent : r2 =r r(1 r)=0 ⇐⇒ ⇐⇒ − Note. If r / 0,1 is idempotent, then r is a zero-divisor. Furthermore, 0 and ∈ { } 1 are always idempotent. Example 1.8. (a) Z is an I.D., Z∗ = 1, 1 { − } (b) If K is a field, then K[x] is an I.D. and K[x] =K =K 0 ∗ ∗ \{ } (c) Consider RJxK,R any ring. (1) RJxK∗ = f RJxK f(0) R∗ { ∈ | ∈ } (2) x is not a zero-divisor (3) f = ∞i=0fixi is nilpotent =⇒ fi are nilpotent ∀i P Proof. Exercise. (4) Proof. ( of 1.4 (f) ) Claim: 0=I PKJxK, K a field n 0:I = xn 6 ⇐⇒ ∃ ≥ h i “ = ”: trivial • ⇐ 8 1. Rings and Ideals • “=⇒”: Choose 06=g ∈I,g = ∞i=0gixi with minimal ord(g)=n P ∞ = g =xn g xi n i − ⇒ i=n X :=h 1.=8(c.1)h KJ|xK∗({szince}h(0)=gn =0) ⇒ ∈ 6 = xn =gh 1 I, since g I − ⇒ ∈ ∈ = xn I ⇒ h i⊆ Now let 0=f I be arbitrary 6 ∈ = ord(f) n, by definition of g ⇒ ≥ ∞ = f =xn f xi n xn i − ⇒ ∈h i i=n X KJxK,i n 0 ∈ − ≥ | {z } (d) R=K[x](cid:30)x2 =⇒ ¯06=x¯ is nilpotent, since x¯2 =¯0 (e) R=K[x,y(cid:10)](cid:30)(cid:11) = ¯0=x¯ is not nilpotent, but a zero-divisor, since x¯y¯=¯0 x y ⇒ 6 h · i (f) R=Z Z = (¯1,¯0) is idempotent. ⊕ ⇒ Definition 1.9. Let R and R be rings. ′ (a) ϕ:R R is a ringhomomorphism (or a ring extension) : ′ −→ ⇐⇒ ϕ(a+b)=ϕ(a)+ϕ(b) • ϕ(ab)=ϕ(a)ϕ(b) • ϕ(1 )=1 R R′ • Notation: Hom(R,R)= ϕ:R R ϕ is a ringhom. ′ ′ { → | } Note. R is an R - module via rr =ϕ(r)r ′ ′ ′ (b) Let ϕ Hom(R,R) ′ ∈ Im(ϕ):=ϕ(R) R is the image of ϕ ′ • ≤ ker(ϕ):=ϕ 1(0)PR is the kernel of ϕ − • ϕisamonomorphism/epimorphism/isomorphism: ϕisinjective/surjective/bijective • ⇐⇒ Note. ϕ is a Monom. ker(ϕ)= 0 ⇐⇒ { } 9 1. Rings and Ideals (c) Let ϕ Hom(R,R),I PR,J PR. Then we define: ′ ′ ∈ Ie := ϕ(I) the extension of I to R • h iR′ ′ Jc :=ϕ 1(J)PR the contraction of J to R − • (d) Let ϕ Hom(R,R), then we call (R,ϕ) an R - algebra. Often we omit ϕ. ′ ′ ∈ Given two R - algebras (R,ϕ) and (R ,ψ) an R - algebra homomorphism is a ′ ′′ map α:R R , which is a ringhom. such that ′ ′′ −→ α R //R OO′ == ′′ ⑤ ⑤ ⑤ ϕ ⑤⑤ ⑤⑤ ψ ⑤ R commutes, i.e.: α ϕ=ψ ◦ Lemma 1.10. Let ϕ Hom(R,R),I PR,J PR. Then: ′ ′ ∈ (a) Iec I ⊇ (b) Jce J ⊆ (c) Iece =Ie (d) Jcec =Jc Proof. (a) a I = a ϕ 1(ϕ(a)) ϕ 1(Ie)=Iec − − ∈ ⇒ ∈ ⊆ (b) Jce = ϕ(ϕ 1(J)) J =J − * + ⊆h i ⊆J R′ (c) | {z } “ ”: 1.10 (a) = Iec I = Iece Ie ⊇ ⇒ ⊇ ⇒ ⊇ “ ”: Apply 1.10 (b) to J :=Ie ⊆ (d) “ ”: Jc PR =1.10Jcec Jc ′ ⊇ ⇒ ⊇ “ ”: 1.10(b) = Jce J = Jcec Jc ⊆ ⇒ ⊆ ⇒ ⊆ Theorem 1.11 (Homomorphism Theorem). Let ϕ Hom(R,R) ′ ∈ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.