FULL PAPER British Journal of Cancer (2013) 108, 1378–1386 | doi: 10.1038/bjc.2013.7 Keywords: common genetic variants; CDKN2A; 9p21.3 Common genetic variants in the 9p21 region and their associations with multiple tumours F Gu1, R M Pfeiffer1, S Bhattacharjee1, S S Han1, P R Taylor1, S Berndt1, H Yang1, A J Sigurdson1, J Toro1, L Mirabello1, M H Greene1, N D Freedman1, C C Abnet1, S M Dawsey1, N Hu1, Y-L Qiao2, T Ding3, AVBrenner1,MGarcia-Closas1,4,RHayes1,LABrinton1,JLissowska5,NWentzensen1,CKratz1,LEMoore1, R G Ziegler1, W-H Chow1, S A Savage1, L Burdette1, M Yeager1, S J Chanock1, N Chatterjee1, M A Tucker1, A M Goldstein1 and X R Yang*,1 1Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20852, USA; 2Cancer Institute and Hospital,ChineseAcademyofMedicalSciences,Beijing100021,China;3ShanxiCancerHospital,Shanxi30013,China;4Divisionof Genetics andEpidemiology, Institute of Cancer Research, SuttonSM2 5NG, UKand 5Department of CancerEpidemiology and Prevention,the M.Sklodowska-Curie Cancer Center andInstitute of Oncology, 02-781Warsaw, Poland Background: The chromosome9p21.3 region hasbeenimplicated inthepathogenesis ofmultiple cancers. Methods:Wesystematicallyexaminedupto203taggingSNPsof22geneson9p21.3(19.9–32.8Mb)ineightcase–controlstudies: thyroid cancer, endometrial cancer (EC), renal cell carcinoma, colorectal cancer (CRC), colorectal adenoma (CA), oesophageal squamouscellcarcinoma(ESCC),gastriccardiaadenocarcinomaandosteosarcoma(OS).Weusedlogisticregressiontoperform singleSNPanalysesforeachstudyseparately,adjustingforstudy-specificcovariates.WecombinedSNPresultsacrossstudiesby fixed-effectmeta-analysesandanewlydevelopedsubset-basedstatisticalapproach(ASSET).Gene-basedP-valueswereobtained bytheminPmethodusingtheAdaptiveRankTruncatedProductprogram.WeadjustedformultiplecomparisonsbyBonferroni correction. Results:Rs3731239incyclin-dependentkinaseinhibitors2A(CDKN2A)wassignificantlyassociatedwithESCC(P¼7(cid:2)10(cid:3)6).The CDKN2A-ESCCassociationwasfurthersupportedbygene-basedanalyses(P ¼0.0001).Inthemeta-analysesbyASSET,four gene SNPs(rs3731239inCDKN2A,rs615552andrs573687inCDKN2Bandrs564398inCDKN2BAS)showedsignificantassociationswith ESCC and EC (Po2.46(cid:2)10(cid:3)4). One SNP in MTAP (methylthioadenosine phosphorylase) (rs7023329) that was previously associatedwithmelanomaandneviinmultiplegenome-wideassociationstudieswasassociatedwithCRC,CAandOSbyASSET (P¼0.007). Conclusion: Our data indicatethat genetic variants in CDKN2A, andpossibly nearby genes, maybe associated withESCC and severalothertumours, further highlighting theimportance of9p21.3 genetic variants incarcinogenesis. The chromosome 9p21.3 region has been identified as a genetic loci are well recognised as tumour-suppressor genes that are susceptibility locus for multiple disease phenotypes including involved in the regulation of cell cycle, aging, senescence and coronaryarterydisease,diabetesandcancer(Pasmantetal,2011). apoptosis (Yang et al, 2010b). CDKN2A confers susceptibility to This region encompasses several tumour suppressor genes familial melanoma and germline mutations in CDKN2A occur in including cyclin-dependent kinase inhibitors 2A (CDKN2A), about20%ofmelanomafamilies(Goldstein,2004).TheCDKN2A CDKN2B, a non-coding RNA (CDKN2BAS, or ANRIL) and encodes both p16 (INK4A), a negative regulator of cyclin- methylthioadenosine phosphorylase (MTAP). The CDKN2A/2B dependant kinases, and p14 (ARF), an activator ofp53. Theexact *Correspondence:DrXRYang;E-mail:[email protected] Received23August2012;revised13December2012;accepted18December2012;publishedonline29January2013 &2013CancerResearchUK.Allrightsreserved0007–0920/13 1378 www.bjcancer.com|DOI:10.1038/bjc.2013.7 Genetic variantsin9p21.3 andmultipletumours BRITISH JOURNALOF CANCER function of CDKN2BAS is unknown, but it has been shown to one benign condition (colorectal adenoma (CA)). Study partici- regulate gene expression of CDKN2A/2B and SNPs in this locus pants were Chinese (for ESCC and GCA studies) or whites havebeenassociatedwithcardiovasculardisease,cancerandother (all other studies). The design of these studies included nested diseases in genome-wide association studies (GWAS) (Yap et al, case–control (RCC (1994); Prorok et al, 2000; Han et al, 2012), 2010; Pasmant et al, 2011). The MTAP, identified by GWAS as a CRC, CA (Gao et al, 2011)), population-based case–control (EC naevus-andmelanoma-associatedgene(Bishopetal,2009;Falchi (Yangetal,2010a)),hospital-basedcase–control(OS(Troisietal, et al, 2009), encodes an enzyme that has a role in polyamine 2006; Mirabello et al, 2011)), and case–control studies of mixed metabolism. Loss of MTAP expression can exert a tumour- design (ThC (Neta et al, 2012), ESCC and GCA (Blot et al, 1993; promoting effect, and has been observed in a variety of other Gao et al, 2009)). After excluding subjects with a low genotyping tumours(Stevensetal,2009),suggestingthatMTAPmayfunction completion rate (o80%), the final analysis for each tumour as a tumour suppressor gene. The 9p21.3 region also includes a outcomeincluded437RCCcasesand1603controls;417ECcases cluster of type I interferon (IFN) genes, which encode pleiotropic and 407 controls; 344 ThC cases and 452 controls; 393 CRC cytokines that exhibit strong antiviral, antiproliferative and cases and 434 controls; 1234 CA cases and 1368 controls; 1027 immunomodulatory effects (Stark et al, 1998). ESCC casesand1452controls; 753GCAcasesand1452controls; In addition to its well established role in melanoma, deletions 96OScasesand1428controls.WepooledcontrolsforESCCand of the 9p21.3 region have been observed in a variety of cancers GCA (1452 controls total), as these cases were drawn from the (van der Riet et al, 1994; Okami et al, 1997; Waber et al, 1997; same underlying studies. The RCC and OS shared a subset (1170 Nakanishi et al, 1999; Perinchery et al, 1999; Schmid et al, 2000; and 1363, respectively) of PLCO controls with CA. Detailed Sanchez-Cespedes et al, 2001; Hu et al, 2004; Hustinx et al, 2005; information for each study is summarised in Table 1 and Bartolettietal,2007;Guetal,2008),andSNPsin9p21.3havebeen Supplementary Table S1. associated with breast cancer, melanoma and glioma by GWAS After correction for multiple testing, ESCC, GCA and CA had (Bishopetal,2009;Sheteetal,2009;Wrenschetal,2009;Turnbull adequate power (94%, 87% and 98%, respectively) to detect an et al, 2010).These findings are consistent with a broad role for association for a SNP with minor allele frequency (MAF)¼0.35 9p21.3 genes in carcinogenesis. However, whether genetic poly- and an odds ratio (OR) of 1.4, while all other studies were morphismsin9p21.3confersusceptibilitytoothercancersremains underpowered (powero80%). However, our aim was to identify unclear.Thegoalofthecurrentstudywastosystematicallyevaluate geneticvariantsinthe9p21regionassociatedwithmultiplecancer/ variants in 9p21.3 with the risk ofmultiple cancers/tumours. tumour outcomes using combined data across studies. SNP selection, genotyping and quality control. SNP selection, MATERIALS AND METHODS genotyping and quality control have been described previously (Yangetal,2010b).Inbrief,252tagSNPsfor22geneslocatedatthe Study population. This study sample included data from eight chromosome 9p21.3 region (19.9–32.8Mb) were genotyped at the studies that participated in iSelect, a jointly conducted project in NCI Core Genotyping Facility (Advanced Technology Center, theDivisionofCancerEpidemiologyandGeneticsoftheNational Gaithersburg, MD; http://snp500cancer.nci.nih.gov) using a cus- Cancer Institute (NCI), with a goal to evaluate common genetic tom-designed iSelectInfinium assay (Illumina, www.illumina.com). variants in selected genes and pathways in multiple tumours, Fromtelomeretocentromere,thesegenesincluded:IFNB1,IFNW1, especiallyrarecancers(Gaoetal,2009;Yangetal,2010a;Gaoetal, IFNA21,10,16,17,14,5, KLHL9, IFNA6, 2, 8, 1, IFNE1, MTAP, 2011;Mirabelloetal,2011;Hanetal,2012;Netaetal,2012).The CDKN2A, CDKN2B, CDKN2BAS, TUSC1, PLAA, IFNK, ACO1. study samples comprised seven cancers (renal cell carcinoma For each gene, SNPs spanned 20kb 50 of the transcription start (RCC), endometrial cancer (EC), thyroid cancer (ThC), colorectal point(exon1)to10kb30 ofthelastexon.TagSNPswereselected cancer (CRC), oesophageal squamous cell carcinoma (ESCC), using a MAF criterion of MAF 45% based upon HapMap data gastriccardiaadenocarcinoma(GCA)andosteosarcoma(OS))and for whites (CEU) and Yoruba (YRI) samples using a Tagging Table1.Descriptionofthestudysamples Study Cases Controls Ethnicity Country Studydesign Covariates RCC 437 1603 Caucasian US, Nestedcase–controlwithinthePLCOCancerScreeningTrial Age,gender, Finland (Proroketal,2000)andATBC(1994) studycentre(11) EC 417 407 Caucasian Poland Population-basedcase–control(Yangetal,2010a) Age,site(2) ThC 344 452 Caucasian US CasesfromtheUSRTcohort,orUniversityofTexasMDAndersonCancer Age,gender, Center.ControlsfromUSRT(Netaetal,2012) birthyear category CRC 393 434 Caucasian US Nestedcase–controlwithinscreeningarmofPLCO Age CA 1234 1368 Caucasian US Nestedcase–controlwithinscreeningarmofPLCO(Gaoetal,2011) Age ESCC 1027 1452 Asian China Neighborhood-basedcase–controlfromtheUGICancerGeneticsProject Age,gender, (Gaoetal,2009)andnestedcase–controlfromNITs(Blotetal,1993) studyregion(2) GCA 753 1452 Asian China SameasESCC Age,gender, studyregion(2) OS 96 1428 Caucasian US Hospital-basedcase–control(63controls);1365additional Gender controlsfromPLCO(Mirabelloetal,2011;Troisietal,2006) Abbreviations:ATBC¼alpha-tocopherol,Beta-CaroteneCancerPrevention;CA¼colorectaladenoma;CRC¼colorectalcancer;EC¼endometrialcancer;ESCC¼oesophagealsquamouscell carcinoma;GCA¼gastriccardiaadenocarcinoma;NITs¼nutritioninterventiontrials;PLCO¼prostate,lung,colorectalandovarian;RCC¼renalcellcarcinoma;OS¼osteosarcoma;ThC¼ thyroidcancer;UGI¼uppergastrointestinal;USRT¼USradiologictechnologists. www.bjcancer.com|DOI:10.1038/bjc.2013.7 1379 BRITISHJOURNAL OF CANCER Genetic variants in9p21.3andmultiple tumours algorithm (Carlson et al, 2004). Selected SNPs are listed in fornumbersofSNPs.Allstatisticalanalyseswereperformedusing Supplementary Table 2. the R software. The iSelect panel was validated using all three HapMap populations (CEU, YRI, Japanese and Chinese). The SNPs with low (o90%) genotyping completion rate, low (o95%) concor- dance rate or deviation (Po0.001) from Hardy–Weinberg RESULTS equilibriumamongcontrolswereexcludedfromeachparticipating study.ThenumberofSNPsincludedinthefinalanalyseswere:170 When analysing each study separately, we found one SNP in SNPsforRCC,202SNPsforEC,195SNPsforThC,193SNPsfor CDKN2A(rs3731239)thatwassignificantlyassociatedwithESCC CRC, 203 SNPs for CA, 139 SNPs for ESCC and GCA and 200 after Bonferroni correction (P¼7(cid:2)10(cid:3)6) (Table 2a). The minor SNPs for OS. In the ESCC and GCA study, a larger number of allele (G, MAF¼0.12) of this SNP was associated with increased SNPs were excluded due to low MAF (o5%), likely reflecting ESCC risk (OR¼1.51, 95% CI¼1.25, 1.84, for AG vs AA; differences between white and Asian populations. OR¼1.88,95%CI¼1.04,3.41,forGGvsAA;Table2a).Figure1 shows that the LD pattern and genotype frequencies among Statisticalanalyses. Wefirstassessedtheassociationbetweeneach controls were different in the Chinese and Caucasian samples. SNP and each cancer outcome separately. Unconditional logistic We also found 18 additional SNPs that were associated regressionwasusedtoestimateORsand95%confidenceintervals with at least one tumour outcome at Po0.01 (Table 2b), (CIs) and P-values for trend, using additive coding for genotypes although the associations were not significant after Bonferroni (0,1,2minoralleles).Thehomozygoteofthecommonalleleserved correction.Amongthem,oneSNPinMTAP(rs7023329)thatwas as the reference group. Heterozygous and homozygous rare previously associated with melanoma and nevi in several GWAS genotypes were combined when the number of subjects with (Bishop et al, 2009; Barrett et al, 2011), was associated with CA homozygousminoralleleswaso5,andadominantgeneticmodel (P¼0.0005). Another previously identified SNP (rs4977756) in was used. Appropriate covariates adjustment was performed for CDKN2BAS from a GWAS for glioma (Shete et al, 2009), was eachtumouroutcomeperdiscussionwithprincipalinvestigatorsof associated with EC (P¼0.009) and ESCC (P¼0.002). each study (Table 1). In fixed-effect meta-analyses, only rs7023329 in MTAP showed To examine whether 9p21 variants were associated with marginal association (fixed effect Po0.05) before correction for multiple cancer/tumour outcomes, we conducted meta-analyses multiple testing (Table 2c). When using the subset-based approach combining data from the eight studies. To combine SNP results (ASSET), rs7023329 showed suggestive association with multiple across studies, we first used a standard fixed-effect meta-analysis tumours (positive effect P¼0.007), with the strongest signal and then a newly developed subset-based statistical approach obtained from the subset combining data from CRC, CA and OS (ASSET)(Bhattacharjeeetal,2012).ASSETisamodifiedfix-effect studies (Table 2c). In addition, the subset approach identified meta-analysisapproachthatallowsforheterogeneityofSNPeffects significant associations between rs3731239 in CDKN2A, rs615552 on different outcomes by exhaustively exploring subsets of the andrs573687inCDKN2B,andrs564398inCDKN2BAS,andECand studies for the presence of association signals. The ASSET test ESCC after Bonferroni correction (positive effect Po2.46(cid:2)10(cid:3)4, statisticZ(S)foragivensubsetSofkstudiesisaweightedsumof Table2c),althoughtheseassociationsseemedtobemainlydrivenby thekstudy-specificteststatistics,Z(S)¼a1Z1þyþakZk,where ESCCbasedonsensitivityanalysesthatexcludedESCC.Theeffects theajistheproportionofthesamplesizeforthejthstudyrelative of all SNPs with Pp0.01 in the subset analyses showed the same to the total sample size for the studies in the given subset S. The direction (positive effect) across contributing study outcomes overall evidence of the association of the SNP is then based on (Table2b andc). evaluationofZmax¼ maxS|Z(S)|,i.e.themaximumofthesubset- Gene-based analyses showed that the CDKN2A gene was specificteststatisticsoverallpossiblesubsetsofthestudies.Under significantly associated with ESCC (P ¼0.0001) and the gene the null hypothesis the vector of values Z(S) has a multivariate associationremainedsignificantafteradjustingformultipletesting normal distribution with mean zero and variances equal to one. (Table3).Othergenesinthenearbyregion,MTAP(P ¼0.015), gene The correlation between Z(A) and Z(B) for two different subsets CDKN2B (P ¼0.01) and CDKN2BAS (P ¼0.009), also gene gene A and B is given in (Bhattacharjee et al, 2012). We computed a showed suggestive associations with ESCC (Table 3). In addition, two-sidedversionofthetestthatalsoallowsthedetectionofeffects MTAP showed a suggestive association with CA (P ¼0.006). gene in opposite directions. Both fixed-effect and subset-based meta- analyses were performed using the ‘ASSET’ R package, which can take into account shared controls across studies. Because theSNP minorallelesmaydifferacrossstudies,westandardisedtheeffects before combining the data by multiplying the beta-coefficients of Table2a.Associationbetweenrs3731239andESCCinaChinese SNPs by 1 or -1. populationa Gene-based analyses were performed on the 22 genes to assess thesignificanceofthejointeffectofmultipleSNPsineachgeneon Case, Control, each outcome separately. Gene-based P-values (P ) were gene n¼1027 n¼1452 computed using the minP method by Adaptive Rank Truncated Genotype (%)b (%)b OR 95%CI P-trend Product(ARTP)program(Yuetal,2009).TheminimumP-value AA 712(69.3) 1093(75.3) 1.00 — of each gene was used as the test statistic and its significance was assessedusingapermutationtestwith10000permutations,taking AG 272(26.5) 294(20.1) 1.51 1.25–1.84 intoaccountthenumberofSNPsgenotypedineachgeneandtheir GG 25(2.4) 22(1.5) 1.88 1.04–3.41 linkage disequilibrium (LD) structure. PerGallele 1.47 1.24–1.75 7(cid:2)10(cid:3)6 We used Bonferroni correction to account for the number of SNPsorgenesandstudiestested,thereforePforSNPo3.1(cid:2)10(cid:3)5 Abbreviations: CI¼confidence interval; ESCC¼oesophageal squamous cell carcinoma; (0.05/(203(cid:2)8)) and P o2.8(cid:2)10(cid:3)4 (0.05/(22(cid:2)8)) were used OR¼oddsratio. to define SNP-based gaennde gene-based statistical significance. In aResultswereobtainedfromunconditionallogisticregression,adjustingforage,gender meta-analysis, P for combined analysiso2.46(cid:2)10(cid:3)4 (0.05/203) abnPderscteundtyagreegdioone.snotsumupto1owingtomissingvalues. was considered statistically significant after Bonferroni correction 1380 www.bjcancer.com|DOI:10.1038/bjc.2013.7 Genetic variantsin9p21.3 andmultipletumours BRITISH JOURNALOF CANCER a com P 0.53 0.35 0.48 0.15 0.12 0.14 0.75 0.1 0.37 0.27 0.96 0.41 0.34 0.45 0.75 0.34 0.55 0.86 r a s o e Ost OR 1.11 1.15 0.84 0.8 1.26 1.25 1.08 0.78 0.87 0.84 1.01 0.88 0.86 0.89 0.95 0.76 0.91 1.03 diaoma P 0.05 0.36 0.12 0.48 0.13 0.16 0.21 0.15 0.8 0.13 0.99 0.98 0.92 0.31 0.32 0.49 rn ccaarci trioc Gasaden OR 0.82 1.06 1.11 0.95 0.91 0.9 0.9 1.1 0.98 1.16 1 1 1.01 0.92 1.08 1.05 200 oldface. b n i n w squamousnoma P 0.87 0.47 0.36 0.002 0.35 0.08 0.002 0.34 0.007 6c(cid:3)710(cid:2) 0.002 0.002 0.001 0.06 0.002 0.31 0.01wasshoo aguscarci P-value Oesophcell OR 1.01 1.05 0.95 1.25 1.06 0.89 1.24 0.94 0.84 1.47 1.32 1.32 1.34 0.86 1.25 0.94 139 nTable1. i d e ctalma P 0.93 0.88 0.009 0.005 0.29 0.0005 0.006 0.84 0.008 0.63 0.56 0.09 0.36 0.09 0.11 0.13 0.65 0.06 0.6 ariateslist Coloreadeno OR 1.01 0.99 1.22 0.85 1.15 1.22 1.17 1.02 0.86 0.97 0.97 0.91 0.95 0.91 0.91 0.92 1.04 0.9 1.03 139 dy-specificcov u ectalcer P 0.006 0.007 0.7 0.08 0.31 0.1 0.19 0.94 0.29 0.67 0.64 0.46 0.27 0.58 0.18 0.92 0.5 0.89 mentofst Colorcan OR 0.72 0.74 0.95 0.83 1.28 1.19 1.15 1.01 0.9 0.96 1.05 0.93 0.89 0.94 0.87 1.02 0.93 0.99 203 eadjust h t Table2b.SelectedSNP-basedresults,withP-value0.01foratleastonetumouroutcomeo RenalcellEndometrialThyroidcarcinomacancercancer abbORPORPORPSNPGeneA1 rs17692502IFNW1G0.90.230.840.111.180.18 rs10964862IFNW1A0.980.80.990.891.040.7 rs10119678IFNA6A1.150.191.120.390.840.25 rs10757257MTAPA0.950.541.150.150.970.76 rs2039971MTAPT0.920.65 rs7023329MTAPA1.020.790.970.731.040.72 rs7027989MTAPA1.150.070.950.610.98 rs7874112MTAPG0.940.610.780.171.190.34 rs10811629MTAPG0.980.751.150.150.920.44 rs10757261CDKN2AA0.980.750.970.761.190.12 rs3731239CDKN2AG1.030.731.220.050.850.15 rs1063192CDKN2BG1.010.851.310.0090.890.27 rs573687CDKN2BA0.960.611.280.0150.870.19 rs518394CDKN2BC0.940.481.350.003 rs615552CDKN2BC0.940.421.320.0050.830.07 rs564398CDKN2BASC0.970.741.350.0030.870.21 rs11790231CDKN2BASA1.060.640.890.551.630.006 rs4977756CDKN2BASG1.020.791.30.0090.880.26 rs10757274CDKN2BASG0.980.810.760.0061.120.28 TotalSNPno.170202195193 Abbreviations:CIconfidenceinterval;ORoddsratio;SNPsingle-nucleotidepolymorphism.¼¼¼aA1istheeffectallele(minoralleleofColorectalAdenomastudypopulation).bORsandtrendP-valuesforeachSNP-tumourassociationwereobtainedbyunconditionallogisticregressionwithc5(cid:3)SignificantafterBonferronicorrectionfornumberofSNPsandstudies(P0.05/(2038)3.110).(cid:2)¼(cid:2)o www.bjcancer.com|DOI:10.1038/bjc.2013.7 1381 BRITISHJOURNAL OF CANCER Genetic variants in9p21.3andmultiple tumours Table2c.Meta-analysesofselectedSNPswithtwo-sidedsubsetsearchPp0.01a Two-sidesubsetsearchc Subsetsofstudieswith Pforpositive strongestsignalwith Pfornegative SNP Gene Fixed-effectPb CombinedP effect positiveeffect effect rs7023329 MTAP 0.04 0.01 0.007 CRC,CA,OS 0.23 rs3731239 CDKN2A 0.06 3.13(cid:2)10(cid:3)4 8.7(cid:2)10(cid:3)5d EC,ESCC 0.32 rs615552 CDKN2B 0.91 7.3(cid:2)10(cid:3)4 1.3(cid:2)10(cid:3)4d EC,ESCC 0.53 rs573687 CDKN2B 0.82 2.0(cid:2)10(cid:3)3 2.4(cid:2)10(cid:3)4d EC,ESCC 1 rs4977756 CDKN2BAS 0.38 3.2(cid:2)10(cid:3)3 0.001 EC,ESCC 0.25 rs564398 CDKN2BAS 0.83 8.3(cid:2)10(cid:3)4 2.0(cid:2)10(cid:3)4d EC,ESCC 0.39 Abbreviations:CA¼colorectaladenoma;CRC¼colorectalcancer;EC¼endometrialcancer;ESCC¼oesophagealsquamouscellcarcinoma;OS¼osteosarcoma;SNP¼single-nucleotide polymorphism. aResultswerefromASSET,asubset-basedassociationanalysisforcombiningSNP-basedresultsacrosseighttumouroutcomes. bFixedeffectPwascalculatedbystandardfixed-effectmeta-analyses. cTwo-sidedsubsetsearchallowedforoppositedirectionsofalleleeffectsacrossdifferentoutcomes. dSignificantafterBonferronicorrectionfornumberofSNPs(0.05/203¼2.46(cid:2)10(cid:3)4). rs3731239 A Frequency 1100 77.6% 1 2 61 9 6 1000 7 1 2 3 7 2 8 5 99 41 57 12 68 55 39 77 900 3 7 7 3 3 5 4 7 0 8 0 7 7 1 6 9 2 7 1 3 5 6 5 4 800 s s s s s s s s r r r r r r r r 700 74 0 5 76 94 95 40 600 0 0 4 75 91 41 500 0 0 4 72 40 400 0 0 4 34 300 20.9% 0 0 11 200 0 0 100 0 1.6% 0 AA AG GG B Frequency 800 47.8% 1 1 2 6 9 6 7 1 2 3 7 2 8 5 99 41 57 12 68 55 39 77 700 3 7 7 3 3 5 4 7 0 8 0 7 7 1 6 9 37.8% 2 7 1 3 5 6 5 4 rs rs rs rs rs rs rs rs 600 77 0 8 3 6 15 20 500 0 0 3 0 1 0 400 0 0 19 18 3 300 0 1 7 91 14.7% 1 0 7 200 0 0 100 0 0 AA AG GG Figure1.Linkagedisequilibriumstructuresandgenotypefrequenciesofrs3731239amongcontrolsofChinese(A)andCaucasian(B)samples. TheLD(indicatedbyr2)mapsweredrawnusingtheHaploviewsoftware,basedonthegenotypingdataofcontrolsamplesforESCC(A)andCA (B).LDpatternsinotherCaucasianstudiesweresimilartothatinCA. 1382 www.bjcancer.com|DOI:10.1038/bjc.2013.7 Genetic variantsin9p21.3 andmultipletumours BRITISH JOURNALOF CANCER Table3.Gene-basedP-valuesfor9p21.3genesinassociationwitheighttumouroutcomesa Oesophageal Renalcell Endometrial Thyroid Colorectal Colorectal squamous Gastriccardia Geneb carcinoma cancer cancer cancer adenoma cellcarcinoma adenocarcinoma Osteosarcoma (473/1603)c (417/407) (344/452) (393/434) (1234/1368) (1027/1452) (753/1452) (96/1426) IFNB1 0.15 0.94 0.74 0.79 0.39 0.27 0.91 0.99 IFNW1 0.62 0.63 0.56 0.06 0.68 0.82 0.3 0.97 IFNA21 0.65 0.65 0.97 0.78 0.28 0.78 0.9 0.74 IFNA10 0.51 0.76 0.8 0.88 0.07 0.87 0.26 0.9 IFNA16 0.42 0.71 0.35 0.53 0.29 0.95 0.05 0.52 IFNA17 0.58 0.95 0.99 0.28 0.78 0.32 0.86 0.89 IFNA14 0.4 0.47 0.66 0.98 0.51 0.7 0.56 0.65 IFNA5 0.61 0.88 0.82 0.48 0.08 0.77 0.22 0.17 KLHL9 0.31 0.7 0.45 0.46 0.038 0.68 0.16 0.75 IFNA6 0.4 0.57 0.51 0.74 0.026 0.56 0.32 0.81 IFNA2 0.75 0.11 0.73 0.87 0.1 0.66 0.38 0.89 IFNA8 0.76 0.65 0.88 0.94 0.19 0.26 0.31 0.6 IFNA1 0.23 0.66 1 0.99 0.14 0.18 0.56 0.65 IFNE1 0.07 0.14 0.53 0.29 0.37 0.89 0.25 0.57 MTAP 0.37 0.12 0.76 0.31 0.006 0.015 0.52 0.63 CDKN2A 0.88 0.32 0.65 0.47 0.77 0.0001d 0.43 0.19 CDKN2B 0.35 0.02 0.26 0.54 0.41 0.01 0.67 0.21 CDKN2BAS 0.99 0.04 0.07 0.44 0.45 0.009 0.84 0.43 TUSC1 0.75 0.77 0.18 0.14 0.1 0.19 0.79 0.32 PLAA 0.98 0.73 0.21 0.46 0.58 0.36 0.88 0.64 IFNK 0.07 0.82 0.6 0.92 0.3 0.84 0.49 0.86 ACO1 0.46 0.73 0.27 0.14 0.74 0.53 0.3 0.44 aGene-basedPvalueswerecomputedusingtheminPmethod,basedon10000permutations;P-valuep0.01wasshowninboldface. bGenesareorderedbylocationfromtelomeretocentromere. cNumberofcasesandcontrols. dSignificantafterBonferronicorrectionfornumberofgenesandstudies(0.05/(22(cid:2)8)¼2.8(cid:2)10(cid:3)4). The minor allele of this SNP is more common in Caucasians DISCUSSION (0.39 among controls in our study) than in Chinese (0.12 among controlsinESCC).Inaddition,thetwoethnicpopulationsshowed In this study, we evaluated associations of up to 203 SNPs in 22 distinctLDpatternsintheregionflankingthisSNP,whichmayalso geneslocatedonchromosome9p21.3withtheriskofeighttumour contribute tothe differencesinthe associationobserved. outcomesindatafromeightcase–controlstudies.Whenanalysing Recent studies have suggested that the 9p21.3 region was each tumour outcome separately, we identified a single SNP in enriched in regulatory sequences such as enhancers that CDKN2A(rs3731239)thatwassignificantlyassociatedwiththerisk regulate the expression of genes in this region (MTAP-CDKN2A/ of ESCC, after correction for multiple comparisons. Gene-based 2B/CDKN2BAS) and downstream (such as IFNA21), thereby analyses also suggested that the CDKN2A gene was significantly establishing a functional link between 9p21 genetic variation associatedwithESCC.Inthesubset-basedmeta-analyses,fourSNPs and immune signalling pathways (Harismendy et al, 2011). (rs3731239 in CDKN2A, rs615552 and rs573687 in CDKN2B, and Interestingly, rs564398 in CDKN2BAS, which showed suggestive rs564398 in CDKN2BAS) showed significant associations with associations with both EC and ESCC in our study (see ESCC and EC. Two previously identified GWAS SNPs, rs7023329 Tables 2b and c), was located within a predicted enhancer in MTAP for melanoma and nevi and rs4977756 in CDKN2A for sequence. The most significant SNP in our study, rs3731239 in glioma, showed suggestive associations with CA (for rs7023329) CDKN2A, is located adjacent to the promoter region of CDKN2A and ECand ESCC(forrs4977756),respectively,inourstudy. Our (about500bpawayfromaCpGislandandpredictedtranscription findings further highlight the importance of 9p21.3, in particular binding and DNase I sites based on ENCODE data, http:// theMTAP-CDKN2A/2B/CDKN2BASregion,inthepathogenesisof www.genome.ucsc.edu/ENCODE/). A previous study correlating multiple tumours. 9p21 SNPs with gene expression found that rs3731239 was Rs3731239 previously demonstrated weak associations with significantly associated with allele-specific expression of breastcancer(Driveretal,2008;Mavaddatetal,2009)andovarian CDKN2BAS (P¼10(cid:3)25) (Cunnington et al, 2010). Three other cancer(Goodeetal,2009)inpredominantlyCaucasianpopulations. SNPs (rs1063192, rs564398 and rs11790231) in the CDKN2B/ In our study, this SNP was significantly associated with ESCC CDKN2BAS locus that showed suggestive associations with EC in Chinese and only weakly associated with EC in Caucasians. (and/or ESCC, ThC) were also significantly associated with www.bjcancer.com|DOI:10.1038/bjc.2013.7 1383 BRITISHJOURNAL OF CANCER Genetic variants in9p21.3andmultiple tumours allele-specific expression of CDKN2BAS. CDKN2BAS is a non- chromosomal region in cancer pathogenesis. Further, data on coding RNA within the CDKN2A/2B locus, which has been somatic alterations of this region (in tumour tissue), such as gene identified by GWAS of multiple diseases; its expression showed expression, willbeparticularlyhelpful toidentifythemechanisms the strongest association with the multiple phenotypes (coronary underlying the observed associations. disease, stroke, diabetes, melanoma and glioma) that were associated with the 9p21.3 region, as compared with the three other genes of the cluster (MTAP, CDKN2A, CDKN2B) (Pasmant ACKNOWLEDGEMENTS etal,2011).TheCDKN2BASisinvolvedinregulatingCDKN2A/2B expressionthroughacis-actingmechanismaswellasbyregulating WethankXiaoqinXiongforprovidinghelpwiththedataanalyses. cell proliferation and senescence through pathways independent WethankiSelectprincipalinvestigatorsofThC,EC,TGCT,RCC, from CDKN2A/2B (Visel et al, 2010; Congrains et al, 2012). In CRC,CA,ESCC,GCAandOSstudiesforkindlyprovidingdatafor addition to CDKN2BAS, two SNPs in MTAP (rs10757257 and thisproject.WethankDr.PaulaHylandforherhelpinreviewing rs7027989), which were suggestively associated with CA in our ENCODE data. This research was supported by the Intramural study, were also found to be expression quantitative trait loci Research Program of the NIH, NCI, DCEG. for MTAP (Zeller et al, 2010). These data, combined with previous publications, indicate that common genetic variants in this region may influence disease risk by regulating gene expression through a cis-effect. With rapid progress in mapping CONFLICT OFINTEREST regulatory elements and the growing availability of cell and tissue-specific gene expression data, future studies should be The authors declare no conflict of interest. able to evaluate the functional relevance of genetic variants at 9p21.3. Somatic 9p21 deletions frequently occur in human cancers REFERENCES such as bladder cancer, pancreatic cancer, oesophageal cancer, glioma and melanoma (Schmid et al, 2000; Hu et al, 2004; ATBCCancerPreventionStudyGroup(1994)Thealpha-tocopherol,beta- Hustinx et al, 2005; Bartoletti et al, 2007; Gu et al, 2008; Rakosy carotenelungcancerpreventionstudy:design,methods,participant et al, 2008). In a previous study conducted in the same Chinese characteristics,andcompliance.AnnEpidemiol4(1):1–10. population from which the ESCC cases in the current study BarrettJH,IlesMM,HarlandM,TaylorJC,AitkenJF,AndresenPA, were obtained, the majority (73%) of ESCC tumour specimens AkslenLA,ArmstrongBK,AvrilMF,AziziE,BakkerB,BergmanW, analysed were found to have LOH at 9p21–22, and 25% Bianchi-ScarraG,Bressac-dePailleretsB,CalistaD,Cannon-AlbrightLA, (14 of 56) of tumours had CDKN2A mutations (point mutations, CordaE,CustAE,DebniakT,DuffyD,DunningAM,EastonDF, deletions, insertions) (Hu et al, 2004). In addition, promoters FriedmanE,GalanP,GhiorzoP,GilesGG,HanssonJ,HocevarM, HoiomV,HopperJL,IngvarC,JanssenB,JenkinsMA,JonssonG, inCDKN2AaretypicallymethylatedinESCCtumours(Rothetal, KeffordRF,LandiG,LandiMT,LangJ,LubinskiJ,MackieR,MalvehyJ, 2006). MartinNG,MolvenA,MontgomeryGW,vanNieuwpoortFA, Oursisthefirstsystematicevaluationofgeneticvariationinthe NovakovicS,OlssonH,PastorinoL,PuigS,Puig-ButilleJA, 9p21.3 region in relation to multiple tumour outcomes. The Randerson-MoorJ,SnowdenH,TuominenR,VanBelleP, strengths of our study include the careful and comprehensive vanderStoepN,WhitemanDC,ZelenikaD,HanJ,FangS,LeeJE,WeiQ, selection of genes in the entire 9p21.3 region, the application of a LathropGM,GillandersEM,BrownKM,GoldsteinAM,KanetskyPA, newly developed subset analysis method to combine SNP data MannGJ,MacgregorS,ElderDE,AmosCI,HaywardNK,GruisNA, across multiple studies, and use of a gene-based permutation DemenaisF,BishopJA,BishopDT(2011)Genome-wideassociationstudy analysis method to comprehensively evaluate variation in genes identifiesthreenewmelanomasusceptibilityloci.NatGenet43(11): with cancer risk. In addition, SNPs were genotyped for all studies 1108–1113. BartolettiR,CaiT,NesiG,RobertaGirardiL,BaroniG,DalCantoM(2007) using the same platform and quality control procedures. Our LossofP16expressionandchromosome9p21LOHinpredictingoutcome findings suggest that combining data from multiple cancer ofpatientsaffectedbysuperficialbladdercancer.JSurgRes143(2): outcomes may provide additional information in understanding 422–427. disease associations with GWAS variants. BhattacharjeeS,RajaramanP,JacobsKB,WheelerWA,MelinBS,HartgeP, There are several limitations in our study. First, studies YeagerM,ChungCC,ChanockSJ,ChatterjeeN(2012)Asubset-based included in this analysis varied by study design, population approachimprovespowerandinterpretationforthecombinedanalysisof ethnicity and sharing controls in some studies, which posed geneticassociationstudiesofheterogeneoustraits.AmJHumGenet90(5): challengesforcombining dataaswellasgeneralising thefindings. 821–835. We therefore applied a new statistical approach, which was BishopDT,DemenaisF,IlesMM,HarlandM,TaylorJC,CordaE,Randerson- MoorJ,AitkenJF,AvrilMF,AziziE,BakkerB, specifically designed to handle heterogeneity across studies. Bianchi-ScarraG,Bressac-dePailleretsB,CalistaD,Cannon-AlbrightLA, Second, our sample size was in general small, which may limit ChinAWT,DebniakT,Galore-HaskelG,GhiorzoP,GutI,HanssonJ, statistical power for identifying significant associations in the HocevarM,HoiomV,HopperJL,IngvarC,KanetskyPA,KeffordRF,Landi smaller individual studies. In fact, most associations were not MT,LangJ,LubinskiJ,MackieR,MalvehyJ,MannGJ,MartinNG, significant after correcting for multiple testing, with the noted MontgomeryGW,vanNieuwpoortFA,NovakovicS,OlssonH,PuigS,Weiss exceptionofrs3731239inCDKN2A,withESCC,whichwasamong M,vanWorkumW,ZelenikaD,BrownKM,GoldsteinAM,GillandersEM, the largest studies. However, the Bonferroni test is conservative, BolandA,GalanP,ElderDE,GruisNA,HaywardNK,LathropGM,Barrett especiallyforpreviouslyidentifiedGWASSNPs,andthereforethe JH,BishopJA(2009)Genome-wideassociationstudyidentifiesthreeloci observed associations in our study warrant future investigation in associatedwithmelanomarisk.NatGenet41(8):920–925. larger samples. BlotWJ,LiJY,TaylorPR,GuoW,DawseyS,WangGQ,YangCS,ZhengSF, GailM,LiGY,YuY,LiuBQ,TangreaJ,SunYH,LiuFS,FraumeniJF, In conclusion, our data indicated that genetic variants in the ZhangYH,LiB(1993)NutritioninterventiontrialsinLinxian,China: 9p21.3 region, particularly near the MTAP-CDKN2A/2B/ supplementationwithspecificvitamin/mineralcombinations,cancer CDKN2BAS, may be associated with ESCC and possibly several incidence,anddisease-specificmortalityinthegeneralpopulation.JNatl other tumours. Our findings further highlight the importance of CancerInst85(18):1483–1492. the 9p21.3 region in disease susceptibility and cancer aetiology. CarlsonCS,EberleMA,RiederMJ,YiQ,KruglyakL,NickersonDA(2004) Future studies are needed to further investigate the role of this Selectingamaximallyinformativesetofsingle-nucleotidepolymorphisms 1384 www.bjcancer.com|DOI:10.1038/bjc.2013.7 Genetic variantsin9p21.3 andmultipletumours BRITISH JOURNALOF CANCER forassociationanalysesusinglinkagedisequilibrium.AmJHumGenet geneticvariantsinthe8q24regionandriskofpapillarythyroidcancer. 74(1):106–120. Laryngoscope122(5):1040–1042. CongrainsA,KamideK,KatsuyaT,YasudaO,OguroR,YamamotoK, OkamiK,CairnsP,WestraWH,LinnJF,AhrendtSA,WuL,SidranskyD, OhishiM,RakugiH(2012)CVD-associatednon-codingRNA,ANRIL, JenJ(1997)Detaileddeletionmappingatchromosome9p21innon-small modulatesexpressionofatherogenicpathwaysinVSMC.BiochemBiophys celllungcancerbymicrosatelliteanalysisandfluorescenceinsitu ResCommun419(4):612–616. hybridization.IntJCancer74(6):588–592. CunningtonMS,SantibanezKorefM,MayosiBM,BurnJ,KeavneyB(2010) PasmantE,SabbaghA,VidaudM,BiecheI(2011)ANRIL,along,noncoding Chromosome9p21SNPsassociatedwithmultiplediseasephenotypes RNA,isanunexpectedmajorhotspotinGWAS.FASEBJ25(2):444–448. correlatewithANRILexpression.PLoSGenet6(4):e1000899. PerincheryG,BukurovN,NakajimaK,ChangJ,LiLC,DahiyaR(1999)High DriverKE,SongH,LesueurF,AhmedS,Barbosa-MoraisNL,TyrerJP, frequencyofdeletiononchromosome9p21mayharborseveraltumor- PonderBA,EastonDF,PharoahPD,DunningAM(2008)Associationof suppressorgenesinhumanprostatecancer.IntJCancer83(5):610–614. single-nucleotidepolymorphismsinthecellcyclegeneswithbreastcancer ProrokPC,AndrioleGL,BresalierRS,BuysSS,ChiaD,CrawfordED,Fogel intheBritishpopulation.Carcinogenesis29(2):333–341. R,GelmannEP,GilbertF,HassonMA,HayesRB,JohnsonCC,Mandel FalchiM,BatailleV,HaywardNK,DuffyDL,BishopJA,PastinenT,Cervino JS,ObermanA,O’BrienB,OkenMM,RaflaS,RedingD,RuttW, A,ZhaoZZ,DeloukasP,SoranzoN,ElderDE,BarrettJH,MartinNG, WeissfeldJL,YokochiL,GohaganJK(2000)DesignoftheProstate,Lung, BishopDT,MontgomeryGW,SpectorTD(2009)Genome-wide ColorectalandOvarian(PLCO)CancerScreeningTrial.ControlClin associationstudyidentifiesvariantsat9p21and22q13associatedwith Trials21(6Suppl):273S–309S. developmentofcutaneousnevi.NatGenet41(8):915–919. RakosyZ,VizkeletiL,EcsediS,BeganyA,EmriG,AdanyR,BalazsM(2008) GaoY,HayesRB,HuangWY,CaporasoNE,BurdetteL,YeagerM, Characterizationof9p21copynumberalterationsinhumanmelanoma ChanockSJ,BerndtSI(2011)DNArepairgenepolymorphismsand byfluorescenceinsituhybridization.CancerGenetCytogenet182(2): tobaccosmokingintheriskforcolorectaladenomas.Carcinogenesis32(6): 116–121. 882–887. RothMJ,AbnetCC,HuN,WangQH,WeiWQ,GreenL,D’AlelioM,Qiao GaoY,HuN,HanX,GiffenC,DingT,GoldsteinA,TaylorP(2009)Family YL,DawseySM,TaylorPR,WoodsonK(2006)p16,MGMT,RARbeta2, historyofcancerandriskforesophagealandgastriccancerinShanxi, CLDN3,CRBPandMT1Ggenemethylationinesophagealsquamouscell China.BMCcancer9:269. carcinomaanditsprecursorlesions.OncolRep15(6):1591–1597. GoldsteinAM(2004)Familialmelanoma,pancreaticcancerandgermline Sanchez-CespedesM,DeckerPA,DoffekKM,EstellerM,WestraWH,Alawi CDKN2Amutations.HumMutat23(6):630. EA,HermanJG,DemeureMJ,SidranskyD,AhrendtSA(2001)Increased GoodeEL,FridleyBL,VierkantRA,CunninghamJM,PhelanCM, lossofchromosome9p21butnotp16inactivationinprimarynon-small AndersonS,RiderDN,WhiteKL,PankratzVS,SongH,HogdallE, celllungcancerfromsmokers.CancerRes61(5):2092–2096. KjaerSK,WhittemoreAS,DiCioccioR,RamusSJ,GaytherSA, SchmidM,SenM,RosenbachMD,CarreraCJ,FriedmanH,CarsonDA SchildkrautJM,PharaohPP,SellersTA(2009)Candidategeneanalysis (2000)Amethylthioadenosinephosphorylase(MTAP)fusiontranscript usingimputedgenotypes:cellcyclesingle-nucleotidepolymorphisms identifiesanewgeneonchromosome9p21thatisfrequentlydeletedin andovariancancerrisk.CancerEpidemiolBiomarkersPrev18(3): cancer.Oncogene19(50):5747–5754. 935–944. SheteS,HoskingFJ,RobertsonLB,DobbinsSE,SansonM,MalmerB,Simon GuJ,HorikawaY,ChenM,DinneyCP,WuX(2008)Benzo(a)pyrenediol M,MarieY,BoisselierB,DelattreJY,Hoang-XuanK,ElHallaniS,Idbaih epoxide-inducedchromosome9p21aberrationsareassociatedwith A,ZelenikaD,AnderssonU,HenrikssonR,BergenheimAT,FeychtingM, increasedriskofbladdercancer.CancerEpidemiolBiomarkersPrev17(9): LonnS,AhlbomA,SchrammJ,LinnebankM,HemminkiK,KumarR, 2445–2450. HepworthSJ,PriceA,ArmstrongG,LiuY,GuX,YuR,LauC, HanSS,YeagerM,MooreLE,WeiMH,PfeifferR,ToureO,PurdueMP, SchoemakerM,MuirK,SwerdlowA,LathropM,BondyM,HoulstonRS JohanssonM,SceloG,ChungCC,GaborieauV,ZaridzeD,SchwartzK, (2009)Genome-wideassociationstudyidentifiesfivesusceptibilitylocifor Szeszenia-DabrowskaN,DavisF,BenckoV,ColtJS,JanoutV,MatveevV, glioma.NatGenet41(8):899–904. ForetovaL,MatesD,NavratilovaM,BoffettaP,BergCD,Grubb3rdRL, StarkGR,KerrIM,WilliamsBR,SilvermanRH,SchreiberRD(1998)How StevensVL,ThunMJ,DiverWR,GapsturSM,AlbanesD,WeinsteinSJ, cellsrespondtointerferons.AnnuRevBiochem67:227–264. VirtamoJ,BurdettL,BrisudaA,McKayJD,FraumeniJr.JF,ChatterjeeN, StevensAP,SpanglerB,WallnerS,KreutzM,DettmerK,OefnerPJ, RosenbergPS,RothmanN,BrennanP,ChowWH,TuckerMA, BosserhoffAK(2009)Directandtumormicroenvironmentmediated ChanockSJ,ToroJR(2012)Thechromosome2p21regionharborsa influencesof5’-deoxy-5’-(methylthio)adenosineontumorprogressionof complexgeneticarchitectureforassociationwithriskforrenalcell malignantmelanoma.JCellBiochem106(2):210–219. carcinoma.HumMolGenet21(5):1190–1200. TroisiR,MastersMN,JoshipuraK,DouglassC,ColeBF,HooverRN(2006) HarismendyO,NotaniD,SongX,RahimNG,TanasaB,HeintzmanN, Perinatalfactors,growthanddevelopment,andosteosarcomarisk.BrJ RenB,FuXD,TopolEJ,RosenfeldMG,FrazerKA(2011)9p21DNA Cancer95(11):1603–1607. variantsassociatedwithcoronaryarterydiseaseimpairinterferon-gamma TurnbullC,AhmedS,MorrisonJ,PernetD,RenwickA,MaranianM,SealS, signallingresponse.Nature470(7333):264–268. GhoussainiM,HinesS,HealeyCS,HughesD,Warren-PerryM,Tapper HuN,WangC,SuH,LiWJ,Emmert-BuckMR,LiG,RothMJ,TangZZ, W,EcclesD,EvansDG,HooningM,SchutteM,vandenOuwelandA, LuN,GiffenC,AlbertPS,TaylorPR,GoldsteinAM(2004)High HoulstonR,RossG,LangfordC,PharoahPD,StrattonMR,DunningAM, frequencyofCDKN2Aalterationsinesophagealsquamouscellcarcinoma RahmanN,EastonDF(2010)Genome-wideassociationstudyidentifies fromahigh-riskChinesepopulation.GenesChromosomesCancer39(3): fivenewbreastcancersusceptibilityloci.NatGenet42(6):504–507. 205–216. vanderRietP,NawrozH,HrubanRH,CorioR,TokinoK,KochW, HustinxSR,LeoniLM,YeoCJ,BrownPN,GogginsM,KernSE,HrubanRH, SidranskyD(1994)Frequentlossofchromosome9p21-22earlyinhead MaitraA(2005)ConcordantlossofMTAPandp16/CDKN2Aexpression andneckcancerprogression.CancerRes54(5):1156–1158. inpancreaticintraepithelialneoplasia:evidenceofhomozygousdeletionin ViselA,ZhuY,MayD,AfzalV,GongE,AttanasioC,BlowMJ,CohenJC, anoninvasiveprecursorlesion.ModPathol18(7):959–963. RubinEM,PennacchioLA(2010)Targeteddeletionofthe9p21non- MavaddatN,DunningAM,PonderBA,EastonDF,PharoahPD(2009) codingcoronaryarterydiseaseriskintervalinmice.Nature464(7287): Commongeneticvariationincandidategenesandsusceptibilitytosubtypes 409–412. ofbreastcancer.CancerEpidemiolBiomarkersPrev18(1):255–259. WaberP,DlugoszS,ChengQC,TruelsonJ,NisenPD(1997)Genetic MirabelloL,RichardsEG,DuongLM,YuK,WangZ,CawthonR,BerndtSI, alterationsofchromosomeband9p21-22inheadandneckcancerarenot BurdettL,ChowdhuryS,TeshomeK,DouglassC,SavageSA(2011) restrictedtop16INK4a.Oncogene15(14):1699–1704. Telomerelengthandvariationintelomerebiologygenesinindividuals WrenschM,JenkinsRB,ChangJS,YehRF,XiaoY,DeckerPA,BallmanKV, withosteosarcoma.IntJMolEpidemiolGenet21:19–29. BergerM,BucknerJC,ChangS,GianniniC,HalderC,KollmeyerTM, NakanishiH,WangXL,ImaiFL,KatoJ,ShiibaM,MiyaT,ImaiY, KoselML,LaChanceDH,McCoyL,O’NeillBP,PatokaJ,PicoAR,Prados TanzawaH(1999)Localizationofanoveltumorsuppressorgenelocion M,QuesenberryC,RiceT,RynearsonAL,SmirnovI,TihanT,WiemelsJ, chromosome9p21-22inoralcancer.AnticancerRes19(1A):29–34. YangP,WienckeJK(2009)VariantsintheCDKN2BandRTEL1regions NetaG,YuCL,BrennerA,GuF,HutchinsonA,PfeifferR,SturgisEM,XuL, areassociatedwithhigh-gradegliomasusceptibility.NatGenet41(8): LinetMS,AlexanderBH,ChanockS,SigurdsonAJ(2012)Common 905–908. www.bjcancer.com|DOI:10.1038/bjc.2013.7 1385 BRITISHJOURNAL OF CANCER Genetic variants in9p21.3andmultiple tumours YangHP,GonzalezBosquetJ,LiQ,PlatzEA,BrintonLA,ShermanME, YuK,LiQ,BergenAW,PfeifferRM,RosenbergPS,CaporasoN,KraftP, LaceyJrJV,GaudetMM,BurdetteLA,FigueroaJD,CiampaJG,Lissowska ChatterjeeN(2009)Pathwayanalysisbyadaptivecombinationof J,PeplonskaB,ChanockSJ,Garcia-ClosasM(2010a)Commongenetic P-values.GenetEpidemiol33(8):700–709. variationinthesexhormonemetabolicpathwayandendometrialcancer ZellerT,WildP,SzymczakS,RotivalM,SchillertA,CastagneR,MaoucheS, risk:pathway-basedevaluationofcandidategenes.Carcinogenesis31(5): GermainM,LacknerK,RossmannH,EleftheriadisM,SinningCR, 827–833. SchnabelRB,LubosE,MennerichD,RustW,PerretC,ProustC,Nicaud YangXR,LiangX,PfeifferRM,WheelerW,MaederD,BurdetteL,YeagerM, V,LoscalzoJ,HubnerN,TregouetD,MunzelT,ZieglerA,TiretL, ChanockS,TuckerMA,GoldsteinAM(2010b)Associationsof9p21 BlankenbergS,CambienF(2010)Geneticsandbeyond–thetranscriptome variantswithcutaneousmalignantmelanoma,nevi,andpigmentation ofhumanmonocytesanddiseasesusceptibility.PloSone5(5):e10693. phenotypesinmelanoma-pronefamilieswithandwithoutCDKN2A mutations.FamCancer9(4):625–633. Thisworkispublishedunderthestandardlicensetopublishagree- YapKL,LiS,Munoz-CabelloAM,RaguzS,ZengL,MujtabaS,GilJ,Walsh MJ,ZhouMM(2010)MolecularinterplayofthenoncodingRNAANRIL ment. After 12 months the work will become freely available and andmethylatedhistoneH3lysine27bypolycombCBX7intranscriptional the license terms will switch to a Creative Commons Attribution- silencingofINK4a.Molcell38(5):662–674. NonCommercial-Share Alike 3.0 Unported License. Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc) 1386 www.bjcancer.com|DOI:10.1038/bjc.2013.7