ebook img

Comment rel cher la contrainte de trame ajust e dans le cadre PDF

36 Pages·2011·0.64 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comment rel cher la contrainte de trame ajust e dans le cadre

Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 1/20 Comment relˆacher la contrainte de trame ajust´ee dans le cadre des m´ethodes proximales en restauration d’images? Nelly Pustelnik(1), Jean-Christophe Pesquet(2) et Caroline Chaux(2) (1)Lab. IMS–Universit´eBordeaux1 (2)Lab. IGM-Universit´eParis-Est GdR ISIS : 1er Avril 2011 Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 2/20 Degradation model: convolution and noise T D α Original image Blurred image (Ty) Degraded image y ∈ℓ2(Z) z ∈ℓ2(Z) Degradation model α=0.1 z = D (Ty¯) α ◮ T: ℓ2(Z) → ℓ2(Z): Convolution operator ◮ D : Effect of noise (Gaussian noise, Poisson noise, Laplace noise, ...) α ◮ α: noise parameter (variance for Gaussian noise, scaling parameter for Poisson noise, ...) Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 2/20 Degradation model: convolution and noise T D α Original image Blurred image (Ty) Degraded image y ∈ℓ2(Z) z ∈ℓ2(Z) Degradation model α=0.1 z = D (Ty¯) α ◮ T: ℓ2(Z) → ℓ2(Z): Convolution operator ◮ D : Effect of noise (Gaussian noise, Poisson noise, Laplace noise, ...) α ◮ α: noise parameter (variance for Gaussian noise, scaling parameter for Poisson noise, ...) ⇒ Our objective is to recover an image yˆ, the closest as possible to y. Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 3/20 Existing wavelet-based variational methods Gaussian noise + convolution ◮ Quadratic regularization techniques (Wiener filtering). ◮ Multiresolution analyses were used for denoising (T = Id). ◮ Redundant frame representations were substituted for wavelet bases for denoising. Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 4/20 Frame representation F∗ Frame coefficients (x) Image (y) ◮ x ∈ ℓ2(Z): Frame coefficients of the image y. ◮ F∗: ℓ2(Z)→ ℓ2(Z): Frame synthesis operator y = F∗x ◮ F: ℓ2(Z) → ℓ2(Z): Frame analysis operator ◮ Frame is tight if ∃µ ∈]0,+∞[, F∗F = µId. Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 5/20 Tight frame drawback: DTT example Original Diagonal decomposition coefficients for the first resolution level without prefiltering (top) and with prefiltering (bottom) after a dual-tree decomposition with Meyer filter M =2. Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 6/20 Existing wavelet-based variational methods Gaussian noise + convolution ◮ Quadratic regularization techniques (Wiener filtering). ◮ Multiresolution analyses were used for denoising (T = Id). ◮ Redundant frame representations were substituted for wavelet bases for denoising. Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 6/20 Existing wavelet-based variational methods Gaussian noise + convolution ◮ Quadratic regularization techniques (Wiener filtering). ◮ Multiresolution analyses were used for denoising (T = Id). ◮ Redundant frame representations were substituted for wavelet bases for denoising. ◮ Forward-backward when T 6= Id [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] → thresholded Landweber to solve kT ·−zk2+k·k . 2 1 Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 6/20 Existing wavelet-based variational methods Gaussian noise + convolution ◮ Quadratic regularization techniques (Wiener filtering). ◮ Multiresolution analyses were used for denoising (T = Id). ◮ Redundant frame representations were substituted for wavelet bases for denoising. ◮ Forward-backward when T 6= Id [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] → thresholded Landweber to solve kT ·−zk2+k·k . 2 1 Laplace, Poisson, ... noise + convolution Introduction ProblemsandAlgorithms Solution Conclusion Commentrelaˆcherlacontraintedetrameajust´eedanslecadredesm´ethodesproximalesenrestaurationd’images? 6/20 Existing wavelet-based variational methods Gaussian noise + convolution ◮ Quadratic regularization techniques (Wiener filtering). ◮ Multiresolution analyses were used for denoising (T = Id). ◮ Redundant frame representations were substituted for wavelet bases for denoising. ◮ Forward-backward when T 6= Id [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] → thresholded Landweber to solve kT ·−zk2+k·k . 2 1 Laplace, Poisson, ... noise + convolution ◮ Douglas-Rachford (DR) algorithm [Combettes&Pesquet 2007] ◮ Parallel Proximal Algo. (PPXA) [Combettes&Pesquet 2008] ◮ ADMM [Afonso et al. 2009, Setzer et al. 2009] ◮ PPXA+: unifying framework for PPXA and ADMM [Pesquet 2010]

Description:
Introduction Problems and Algorithms Solution Conclusion Comment relaˆcher la contrainte de trame ajust´ee dans le cadre des m´ethodes proximales en restauration d
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.