ebook img

Combustion and Gasification in Fluidized Beds PDF

470 Pages·2006·7.503 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combustion and Gasification in Fluidized Beds

Appendix 1 Characteristics of Solid Particles A particle may be defined as a small object having a precise physical boundary in all directions. Theparticleischaracterizedbyitsvolumeandinterfacialsurfaceincontactwiththeenvironment. A1.1 SOLID PARTICLES Solidparticlesarerigidandhaveadefiniteshape.Asphereisanaturalchoicetodefineaparticle, thoughmostnaturalparticlesarenotspherical.Hence,naturalparticlesarecharacterizedbytheir degree ofdeviation fromspherical shape, sphericity,and an equivalent diameter. A1.1.1 EQUIVALENTDIAMETERS Let us take a nonspherical particle having a surface area S, and a volume V. Several types of equivalentdiameteroftheparticlecanbedefinedtodescribetheparticle,asshowninFigureA1.1. Four morefrequently useddefinitionsare: A1.1.1.1 Volume Diameter (d ) v Volume diameter isthe diameter ofa sphere thathas the same volume asthe particle: (cid:4)(cid:2) 6(cid:3) (cid:5)13 (cid:4)(cid:2)6V(cid:3)(cid:5)13 d ¼ £volumeof particle ¼ ðA1:1Þ v p p A1.1.1.2 Surface Diameter (d) s Surfacediameteristhediameterofaspherethathasthesameexternalsurfaceareaastheparticle. Thus, (cid:4)surfaceareaof particle(cid:5)12 (cid:4)S (cid:5)12 d ¼ ¼ : ðA1:2Þ s p p A1.1.1.3 SieveSize (d ) p Sievesizeisthewidthoftheminimumsquareapertureofthesievethroughwhichtheparticlewill pass. A1.1.1.4 Surface-VolumeDiameter (d ) sv Surface-volumediameteristhediameterofaspherehavingthesamesurfacetovolumeratioasthat ofthe particle: 6pd2 S sv ¼ pd3 V sv ðA1:3Þ V d ¼6 sv S 439 q2006byTaylor&FrancisGroup,LLC 440 CombustionandGasificationinFluidizedBeds ds dsv Equivalent sphere with same Equivalent sphere with same external surface area as the ratio of surface to volume as original particle the original particle Original Particle Equivalent sphere passing through same aperture as does the original particle Equivalent sphere with same volume as the original particle d d d p p v Screen Aperture FIGUREA1.1 Differentrepresentationsofanonregularshapedparticle. A1.1.2 SPHERICITY(f) Sphericitydescribesthedepartureoftheparticlefromasphericalshape.Forexample,aspherical particle hasa sphericityof 1.0: Surfaceareaofaspherewiththevolumesameastheparticle pd2 SphericityðfÞ¼ ¼ v: ðA1:4Þ Actualsurfaceareaoftheparticle S Eliminating S and V fromEquationA1.1, Equation A1.3, and Equation A1.4, one gets: d ¼fd : ðA1:5Þ sv v The relationship between the above sizes and the sieve size d can be derived through p experiments for irregular particles and through calculations for geometrically shaped particles. An approximate relation for crushed quartz of sphericity 0.8 was given as (Abrahamsen and Geldart,1980): d <1:13d ; d <0:773d ; d <0:87d ; d <1:28d v p sv v sv p s p Thesphericityisusuallymeasured.Typicalvaluesofsomecommonlyusedparticlesaregiven in Table A1.1. Biomass particles often have very low sphericity. Characteristics of some typical particlesare shown inTable A1.2. A1.1.3 MEANPARTICLESIZEANDITSMEASUREMENT Millionsofsmallparticlesaresimultaneouslyhandledinanindustryforthepurposesofreactions, heat and mass transfer, or homogeneity. In such a particulate mass, generally particles are not uniform in sizeand are characterizedby particle size distribution. q2006byTaylor&FrancisGroup,LLC Appendix1:CharacteristicsofSolidParticles 441 TABLE A1.1 Sphericityof SomeGranular Solids Particle Sphericity Sand(Ottawa) 0.95 Sand(flint,jagged) 0.65 Sand(averageofalltypes) 0.75 Limestone 0.45 Gypsum 0.40 Coal(crushed) 0.65 Coal(pulverized) 0.73 Alumina 0.3–0.8 Catalysts 0.4–0.9 Crushedglass 0.65 FCCcatalyst 0.58 Source: CoalConversionSystemData Handbook.Table IVB10.1,DOE/FE/ 05157-2,1982. There are several characteristic properties that define aparticulate mass: † Number ofparticles † Total surface area † Total volume Itisdifficulttoprovideindividualattentiontotheseproperties,andhenceitisnecessarytodefine some average properties. Therefore, one finds it convenient to imagine an equivalent particulate massofparticlesofuniformsizethatmatchesthepropertiesoftheactualparticulatemass.However, itispossibletomatchonlytwopropertiesbetweentheactualandtheequivalent.Influidizationand in most chemical engineering applications, total volume and surface area are the two chosen properties.Theserepresentthematerialcontentandinterfacialareaacrosswhichtransferprocesses occur.Forapressuredropthroughthebed,thesurfaceareaismostimportant.Themeanparticlesize isthusdefinedinsuchawaythatitequalstheaveragesurfaceareaofparticlesofsizesinthebed. TABLE A1.2 Sphericityand Densityof Some Biomass Fuels and Ash Producedfrom Them VoidageatMinimum Particle ParticleDensity(kg/m3) Fluidization Sphericity Biomass Sawdust 430 0.586 0.95 Ricehusk 500 0.795 0.65 Ash Sawdustash 380 0.603 0.75 Ricehullash 410 0.678 0.45 Source:Chenetal.,CirculatingFluidizedBedTechnologyV,Kefa,C.ed.,InternationalAcademic Publishers,Beijing,p.508,2005. q2006byTaylor&FrancisGroup,LLC 442 CombustionandGasificationinFluidizedBeds Sieving is the most commonly used technique for the measurement of the surface area of granular solid particles. Particles of size greater than 44 microns are measured by using a set of standardtestsieveswithsquareapertureopenings.Thetestsievesarestackedwiththeonewiththe largestapertureonthetop.Thelowersievesareselectedsuchthattheaperturesaresmaller.After vibratingandshakingthestackusingasieveshakerforaperiodof20to30minutes,theparticles collectedoneachsieveare weighedandassigned asizebytakingthe arithmeticalaverage ofthe aperture size of the sieve through which the material just passed and the sieve on which it is retained: 1 d ¼ ; ðA1:6Þ m (cid:2)x (cid:3) P i d i whered isthearithmeticmeanoftheaperture(opening)oftwoadjacentsieves,andx istheweight i i fractionofsamplescollectedbetweenthesetwosieves.Theaboveequationwillmatchthesurface/ volume ratio of the actual poly-size particles. For nonspherical particles, all having the same sphericity,f, the mean size d , would then be fd . Equation A1.6 is, however, not valid for a m m discontinuousparticle size. Inindustriestheparticlesizedistributionissometimesdescribedbyd ,whichisasizebelow 50 whichlies50%ofthesamplebyweight.TherelativesizerangeR,isanothercharacteristicusedto describethe spread ofthe size distribution.It isdefined as d 2d R¼ 84 16: ðA1:7Þ 2d m whered andd arethediametercorrespondingtosizebelowwhichparticlesconstitute84%and 84 16 16%, respectively,by weight. A1.2 PACKING CHARACTERISTICS Inaparticulatemass,particlesrestoneachotherduetotheforceofgravitytoformapackedbed. Depending on the shape of particles and packing characteristics, a certain volume of space in between the particles remains unoccupied. Such space is called a void volume and is specified as voidageor porosity, defined as voidvolume Voidage; 1¼porosity¼ : ðA1:8Þ volumeof ðparticlesþvoidsÞ Themeasurementofparticlevolumeissimple,buttheprecisemeasurementofitssurfacearea isverydifficult.Thisproblemcompoundswhenoneattemptstodefinethesphericityofamassofa large number of dissimilar particles. The packing characteristics of particles are important parameters that depend on the particle’s shape and mode of packing. In some special situations, such as in the vicinity of a sphere or a plane wall, the distribution of local voidage becomes important. Unlike bulk voidage, it is not uniform or monotonically varying. It follows a damped oscillatorypattern. A1.3 PARTICLE CLASSIFICATION Inthelightoffluidizationexperience,Geldart(1972)classifiedsolidsbroadlyunderfourgroups,A, B, C, and D as shown in Figure A1.2. The particle’s classification is plotted against the density differencebetweenthesolidandthefluidizinggas.Thisclassificationisimportantinunderstanding thefluidizationbehaviourofsolidparticles,becauseundersimilaroperatingconditionsparticlesof different groups may behave entirelydifferently. q2006byTaylor&FrancisGroup,LLC Appendix1:CharacteristicsofSolidParticles 443 7 6 5 4 B D 3 Sand-Like Spoutable 2 A rp – rf (g/cm3) Aeratable 1 0.5 C Cohesive 20 50 100 200 500 Dp (mm) FIGUREA1.2 PowderclassificationdevelopedbyGeldart. A1.3.1 GROUPC These particles are very fine and are typically smaller than 30mm (r ¼2500kg/m3). The inter- p particle forces are comparable to the gravitational force on these particles. So, these particles are verydifficulttofluidize.Anattemptatfluidizationoftenresultsinchannelling.Specialtechniques are required tofluidize these particles. A1.3.2 GROUPA These particles are typically in the range of 30 to 100mm (r ¼2500kg/m3). These particles r fluidize well, but expand considerably after exceeding the minimum fluidization velocity and before bubbles start appearing. Many circulating fluidized bed systemsuse Group Aparticles. TABLE A1.3 Distinguishing Featureof Four Groupsof Particles Group C A B D Particlesizefor ,20mm 20–90mm 90–650mm .650mm r ¼2500kg/m3 r Channeling Severe Little Negligible Negligible Spoutability None None Shallowbed Readily Expansion Low High Medium Medium Minimumbubbling Nobubble .U ¼U ¼U mf mf mf velocity,U mb Bubbleshape Onlychannel Flatbase Roundedwith Rounded sphericalcap smallindentation Solidmixing Verylow High Medium Low Gasback-mixing Verylow High Medium Low Sluggingmode Flatrainingplugs Axisymmetric Mostlyaxisymmetric Mostlywallslugs Effectofparticlesize Unknown Appreciable Minor Unknown onhydrodynamics q2006byTaylor&FrancisGroup,LLC 444 CombustionandGasificationinFluidizedBeds A1.3.3 GROUPB Theseparticlesarenormallyintherangeof100to500mm(ifr ¼2500kg/m3)size.Theyfluidize p well,andbubblesappearassoonastheminimumfluidizationvelocityisexceeded.Themajorityof the fluidized bed boilers usethis group ofparticles. A1.3.4 GROUPD These are the coarsest of all particles (.500mm) (for r ¼2500kg/m3). They require a much p higher velocity to fluidize these solids. Spouted beds and some bubbling fluidized bed boilers generallyoperate on thissize ofsolids. Acomparison ofproperties ofparticles ofdifferent groups isgivenin Table A1.3. NOMENCLATURE a, b: constantsin Equation A1.9 C : coefficientof drag ina particle D d: mean openingof successivesieves, (d þd )/2 i pi piþ1 d : mean diameter ofa particulate mass with varying sizes, m m d : sieve size (diameter), m p d: surface diameter,m s d : volume diameter,m v d : surface volume diameter, m sv d , , : diameterscorrespondingtocumulativeweightsof84%,50%,and16%,respectively 84 50 16 F : drag forcein aparticle, N D m : mass ofparticle, kg p R: relative size range defined in Equation A1.6 S: actual surface ofthe particle,m2 U : minimum fluidizationvelocity, m/sec m U: superficial gas velocity, m/sec V: actual volume of the particle,m3 x: weight fractionof particlescollected betweensievei andiþ1 i f: sphericity e: voidage r: density ofgas, kg/m3 g r: density ofsolids, kg/m3 p m: viscosityof gas, kg/sq.m Ar: Archimedes number, ðgd3(r2r))/m2 p p g Re: Reynolds number, ðUd r)/m v g REFERENCES Abrahamsen,A.R.andGeldart,D.,PowderTechnol.,26,p.35,1980. Chenetal.,CirculatingFluidizedBedTechnologyV,KefaC.,ed.,InternationalAcademicPublishers,Beijing, p.508,2005. Geldart,D.,Theeffectofparticlesizeandsizedistributiononthebehaviourofgas-fluidizedbeds,Powder Technol.,6,201–215,1972. InstituteofGasTechnology,CoalConversionSystemDataHandbook,DOE/FE/05157-2,TableIVB10.1,1982. q2006byTaylor&FrancisGroup,LLC Appendix 2 Stoichiometric Calculations Stoichiometric calculations (also known as combustion calculations) provide much of the basic informationnecessaryforthedesignofaboilerplant.Theyhelpfindtheamountoffueltobefed for the required thermal output of the plant. The specifications offans and blowers are based on the air required for burning or gasifying that quantity offuel. Combustion calculations also give theamountoflimestonerequiredtoachieveacertainamountofsulfurcapture.Finallythesolidand gaseouspollutantsproducedfromthecombustionarecomputedfromthis.Mostofthecalculations are based on overallchemical reactions. A2.1 CHEMICAL REACTIONS Some boiler furnaces burning high-sulfur coal are required to retain the sulfur released from the coal during combustion in solid form such that it is not emitted into the atmosphere. Thus, stoichiometriccalculationsoftheseboilersrequirespecialconsiderations.Theoverallcombustion reactions for this type offurnace can be writtenas follows: CþO ¼CO þ32;790kJ=kgof carbon ðA2:1Þ 2 2 (cid:2) m(cid:3) m C H þ nþ O ¼nCO þ H Oþheat ðA2:2Þ n m 4 2 2 2 2 SþO ¼SO þ9260kJ=kgof sulfur ðA2:3Þ 2 2 where mand nare stoichiometric coefficients of EquationA2.2. ForabsorptionoftheSO ,limestoneisfedintothefurnace.LimestoneisfirstcalcinedtoCaO 2 through the followingreaction: CaCO ¼CaOþCO 21830kJ=kgofCaCO ðA2:4Þ 3 2 3 Ifthe sorbentcontainsmagnesium carbonate, an additional reactionoccurs: MgCO ¼MgOþCO 21183kJ=kgofMgCO ðA2:5Þ 3 2 3 Calcium oxide, from either limestone or coal ash, absorbs a fraction of the sulfur dioxide releasedfrom the coal during combustion. Thereactionis: CaOþSO þ 1O ¼CaSO þ15;141kJ=kgofsulfur ðA2:6Þ 2 2 2 4 The above equations show that oxygen is required for both the combustion and the sulfation reactions.Sinceinanygas–solidprocessthecontactbetweenthegasandsolidislessthanperfect, an excess amount of oxygen is needed for complete combustion. The extra air that provides this oxygeniscalledexcessair.Thisexcessairisabout20%forthecombustionandsulfationreactions combined. 445 q2006byTaylor&FrancisGroup,LLC 446 CombustionandGasificationinFluidizedBeds A2.2 AIR REQUIRED Notingthatdryaircontains23.16%oxygen,76.8%nitrogenand0.04%inertgasesbyweight,the dryair required for complete combustionofa unit weight ofcoal M , is givenby: da M ¼½11:53Cþ34:34ðH2O=8Þþ4:34SþA·S(cid:2)kg=kgcoal ðA2:7Þ da where C, H, O, and S are weight fractions offuel constituents known from the ultimate analysis. For each unit mass of sulfur converted to calcium sulfate, an additional amount of dry air A, is required(seeReactionA2.6).SotheextraairforaunitweightofcoalisA·S,whereAis2.16for sulfur capture and is zero when no sulfur is captured as calcium sulfate. For efficient combustion, a certain amount of air, in excess of what is required theoretically, isprovided.Togetthetotalaironemustmultiplythetheoreticalairbytheexcessaircoefficient, EAC. The total dry air T , is the sum of the theoretical requirement and whatever excess air is a allowed tocomplete the combustion. T ¼EAC·M kg=kgburned ðA2:8Þ da da TheexcessaircoefficientEAC,isdefinedinsuchawaythatEAC¼1.2wouldmean20%excess air.Airusuallycontainssomemoisture.InstandardairthisweightfractionofmoistureX ,isabout m 0.013kg/kgair,andX istheweightfractionofmoistureintheair.Thus,M ,thetotalwetairis: m wa M ¼T ð1þX Þ ðA2:9Þ wa da m A2.3 SORBENT REQUIREMENT Ifthecoalashcontainsanegligibleamountofcalciumoxide,thesorbentrequiredL ,toretainthe q sulfur in aunit weight offuelis found from the following equation: 100S L ¼ XR ðA2:10Þ q 32X CaCO3 whereSistheweightfractionofsulfurincoal,andX istheweightfractionofCaCO inthe CaCO 3 3 sorbent.Risdefinedasthecalciumtosulfurmolarratiointhefeedofsorbentandcoalrespectively. Sometimesthecoalashcontainsanappreciableamountofcalciumoxide,whichremovesapart ofthesulfurreleasedfromthecoal.IfX istheweightofcalciumoxideperunitweightoffuel CaO fed, theinherentCa/Sratio is32X /56S.Thereforethe limestone requiredfor removal ofsame CaO amount of sulfur (E S) will be reduced by the above amount. Thus, R is to be replaced by R0 in sor EquationA2.10and elsewhere asbelow: (cid:4) 32X (cid:5) R0 ¼ R2 CaO ðA2:11Þ 56S A2.4 SOLIDWASTE PRODUCED From Reaction A2.4 to Reaction A2.5 we find that the sorbent decomposes into MgO and CaO. OutofthisapartoftheCaOisconvertedintoCaSO .ThespentsorbentwouldthuscontainCaSO , 4 4 unconverted CaO, unconverted MgO, and inert components of the sorbent. The weight of spent sorbentproducedperunitweightofcoalburnedL ,isthesumofCaSO ,CaO,MgO,andinerts. w 4 Spentsorbents¼calciumsulfateþcalciumoxideþmagnesiumoxideþinert S (cid:2)L X SE (cid:3) 40L X L ¼136 E þ56 q CaCO3 2 sor þ q MgCO3 þL X ðA2:12Þ w 32 sor 100 32 84 q inert where L is the sorbent fed per unit weight of coal burned and is given by Equation A2.10. q q2006byTaylor&FrancisGroup,LLC Appendix2:StoichiometricCalculations 447 Thetotalsolidwastecontains,inadditiontothespentsorbentL ,coalashASH,andunburned w carbon ð12E Þ;lessthe CaO content X ,ofcoal converted toCaSO andincludedinL .The c CaO 4 w solid waste producedper unitweight offuel burned is thus: W ¼½L þASHþð12E Þ2X (cid:2) ðA2:13Þ a w c CaO where E is the combustionefficiency expressedas afraction. c A2.5 GASEOUS WASTE PRODUCTS Theweightoffluegasduetothecombustionreaction,W isthesumofcarbondioxide,watervapor, c nitrogen, oxygen, sulfur dioxide, and fly ash. These individual constituents of a flue gas can be found as follows. A2.5.1 CARBONDIOXIDE Carbondioxideproducedfromfixedcarbonincoal¼3:66C ðA2:14Þ In addition to the CO produced from the fixed carbon, an extra amount of carbon dioxide is 2 generatedduetocalcinationofCaCO andMgCO inthesorbentmaterial,seeEquationA2.4and 3 3 EquationA2.5.This amount W , may be calculatedas: CO 2 ! ! 44SR 100X 1:19X W ¼ 1þ MgCO3 ¼1:375SR 1þ MgCO3 ðA2:15Þ CO2 32 84X X CaCO3 CaCO3 where R is the calcium/sulfur molar ratio. ExampleA2.1 The following table gives an analysis of a coal. Calculate the amount of CO produced 2 per kilogram of the coal burned. Assume that a calcium/sulfur molar ratio of 2.5 is used for sulfur capture. The limestone contains 88%CaCO by weight and 10%MgCO byweight. 3 3 C H O N S ASH Moisture Ultimateanalysisofcoal(%) 72.8 4.8 6.2 1.5 2.2 9.0 3.5 Solution CO produced from coal combustionEquationA2.14¼3.66£0.728. 2 ¼2:66kg=kg coalduetocombustion: CO produced from calcinationEquationA2.15¼1.375£0.022£2.5 (1þ1.19£0.1/0.88) 2 ¼0:0858kg=kg fuel: Total carbon dioxide produced¼2.66þ0.0858. ¼2:745kg=kg of coal burned: q2006byTaylor&FrancisGroup,LLC 448 CombustionandGasificationinFluidizedBeds A2.5.2 WATERVAPOR Waterinthefluegascomesfromthecombustionofhydrogeninthecoalandthemoisturepresentin thecombustionair,coal,andlimestone.Thewaterinthefluegasperunitweightofcoalburnedis: 9HþEAC·M X þM þL X ðA2:16Þ da m f q ml A2.5.3 NITROGEN Nitrogen inthe fluegas comes fromthe coal as well asthe combustion air Nitrogenfromfuelandair¼Nþ0:768M EAC ðA2:17Þ da A2.5.4 OXYGEN Theoxygeninthefluegascomesfromoxygeninthecoal,excessoxygeninthecombustionair,and theoxygenleftinthefluegasforincompletecaptureofsulfur.WerecallfromEquationA2.6that for each moleof unconvertedsulfur, 1/2mol of oxygen is saved. Thus: Oxygeninfluegas¼Oþ0:2315M ðEAC21Þþð12E ÞS=2 ðA2:18Þ da sor A2.5.5 SULFURDIOXIDE If only E fraction ofthe sulfur is converted toCaSO , the SO present inthe fluegas is: sor 4 2 2Sð12E Þ ðA2:19Þ sor A2.5.6 FLYASH The flue gas may carry a part of the coal ash or sorbents. Though it is very small in amount and iseventuallycollectedinthedustcollector,itcarriesthroughtheconvectivesectionoftheboilera fractionofthesensibleheatthatmaynotbenegligible.Thefluegasisapproximatedonthebasisof: Unitweightof coalburned¼a ASH ðA2:20Þ c where a is the fraction ofthe ash incoal asit appearsas fly ash ð<0:120:5Þ: c Thetotalweightofthefluegascanbefoundbyaddinguptheabovecomponents.Simplifying them, the total weight of the flue gas per unit weight of coal burnedis: W ¼M 20:2315M þ3:66Cþ9HþL X þNþOþ2:5Sð12E Þ c wa da q ml sor ! 1:19X þ1:375SR 1þ MgCO3 þa ASHkg=kgburned ðA2:21Þ X c CaCO3 A2.6 HEATING VALUE OF FUELS Theapproximatehigherheatingvalue,HHV,ofasolidfuelmaybecalculatedfromtheDulongand Petit formula: HHV¼33;823Cþ144;249ðH2O=8Þþ9418SkJ=kg ðA2:22Þ q2006byTaylor&FrancisGroup,LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.