ebook img

Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia PDF

25 Pages·2015·13.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

RESEARCHARTICLE Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia MichaelP.Strager1*,JacquelynM.Strager2,JeffreyS.Evans3,JudyK.Dunscomb4,Brad J.Kreps4,AaronE.Maxwell5 1 DivisionofResourceManagement,WestVirginiaUniversity,Morgantown,WestVirginia,UnitedStatesof America,2 NaturalResourceAnalysisCenter,WestVirginiaUniversity,Morgantown,WestVirginia,United StatesofAmerica,3 TheNatureConservancy,FortCollins,Colorado,andDepartmentofZoologyand Physiology,UniversityofWyoming,Laramie,Wyoming,UnitedStatesofAmerica,4 TheNature Conservancy,Charlottesville,Virginia,UnitedStatesofAmerica,5 AldersonBroaddusUniversity,Philippi, WestVirginia,UnitedStatesofAmerica * [email protected] Abstract OPENACCESS PredictingthelocationsoffuturesurfacecoalmininginAppalachiaischallengingforanum- berofreasons.Economicandregulatoryfactorsimpactthecoalminingindustryandfore- Citation:StragerMP,StragerJM,EvansJS, DunscombJK,KrepsBJ,MaxwellAE(2015) castsoffuturecoalproductiondonotspecificallypredictchangesinlocationoffuturecoal CombiningaSpatialModelandDemandForecaststo production.Withthepotentialenvironmentalimpactsfromsurfacecoalmining,predictionof MapFutureSurfaceCoalMininginAppalachia.PLoS thelocationoffutureactivitywouldbevaluabletodecisionmakers.Thegoalofthisstudy ONE10(6):e0128813.doi:10.1371/journal. pone.0128813 wastoprovideamethodforpredictingfuturesurfacecoalminingextentsunderchanging economicandregulatoryforecaststhroughtheyear2035.Thiswasaccomplishedbyinte- AcademicEditor:JuanA.Añel,Universidadede Vigo,SPAIN gratingaspatialmodelwithproductiondemandforecaststopredict(1km2)griddedcellsize landcoverchange.Combiningthesetwoinputswaspossiblewitharatiowhichlinkedcoal Received:September19,2014 extractionquantitiestoaunitareaextent.Theresultwasaspatialdistributionofprobabili- Accepted:April30,2015 tiesallocatedoverforecasteddemandfortheAppalachianregionincludingnorthern,cen- Published:June19,2015 tral,southern,andeasternIllinoiscoalregions.Theresultscanbeusedtobetterplanfor Copyright:©2015Strageretal.Thisisanopen landusealterationsandpotentialcumulativeimpacts. accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare credited. Introduction DataAvailabilityStatement:Dataareavailable throughFigshareat:http://dx.doi.org/10.6084/m9. TheAppalachianregionoftheeasternUnitedStatesisanimportantsourceoffossilfuelto figshare.1411220. meetenergyneeds.Withintheregion,surfaceproductionofcoalaccountsfortwothirdsof Funding:MPS,JMSandAEMweresupportedwith totalproduction,whileundergroundminingcontributesaboutonethirdoftotalproduction fundingfromTheNatureConservancycontract [1].Regionalcoalresourcesincludesteamcoalusedinelectricpowergeneration,and(toaless- numberCVP_11132012.Thefundershadarolein erextent)metallurgicalcoalusedinindustrialprocesses. selectingthestudyarealocationandtechnical TheoverallfutureofAppalachiancoalresourceextractionisincreasinglyuncertain.Thereis specificsregardingtheminimalmappingunitusedin acomplex,dynamicrelationshipbetweenthepriceofcoal,thepriceofcompetingresources(in thestudy.Allotherdecisionsregardingthemodeling methodweredecidedbyMPS,JMSandAEM. particularnaturalgas),andpotentialgreenhousegasemissionreductionpolicieswhichreduce PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 1/25 PredictingFutureSurfaceCoalMining CompetingInterests:Theauthorshavedeclared thedemandforcoal.Coalissubjecttoincreasedcompetitionfromnaturalgasasasourceofen- thatnocompetinginterestsexist. ergyforelectricitygeneration,andmaybeequaledorsurpassedbynaturalgasinthenearfuture dependingonoilandgasprices,greenhousegasrelatedpolicies,coalproductioncosts,and otherfactors[2].Coalproductionisalsoshiftinggeographicallywithintheregion,asdemand forcleaner-burning,lowersulfurcoalhasrisenduetoincreasedenvironmentalregulation. EvenwithcoalpredictedtoplayasmallerandsmallerroleinAmerica’senergymixinthe future[3],theneedexiststomodelandspatiallypredictwheresurfacecoalminingisanticipat- edinAppalachiaduetothepotentialenvironmentalimpactsofsurfacecoalmining.Many studieshavedocumentedtheimpactsofcoalminingonbiodiversity[4,5],hydrology[6–8], humanhealth[9],andwaterquality[10–12].Theadditiveeffectshavebeenexaminedrelated tohowmultiplesurfaceminescanimpactstreams[13,14]andhowtheimportanceofspatial locationandnetworkpositionwithotherpreexistingfactors(othersurfacemines,deepmines, andresidentialdevelopment)cancontributetoecologicalstress[15–17].Bybetterpredicting probableareasforsurfacecoalextraction,thepotentialenvironmentalimpactsonsensitive ecosystemscanbeidentifiedandcontextdependentconservationprioritiescanbesetincom- plexriversystems[18]. Thisstudyprovidesamethodforpredictingfuturesurfacecoalminingextentsbyintegrating aspatialmodelwithproductiondemandforecaststobetterrepresentlandcoverchange.By combiningthesecomponents,amoreholisticpredictioncanbemade.Thishasonlybeenrecent- lypossibleduetoeffortsthatquantifiedthearealextentofsurfacecoalminingactivitiestocoal production[19].Thisenabledustocombinevaryingestimatesofsurfacecoalmineproduction [2]withspatiallyexplicitpredictivemodelingtomappotentialfuturesurfaceminingfootprints onthelandscapethroughthefuture.Wedemonstratehowtheextentofsurfaceminingcanbe predictedwiththisapproachandcomparetheresultstoactualrecentlysubmittedpermits. Toourknowledge,themostcloselyrelatedeffortrelatedtoourworkwasbyWatson[20] whomappedremainingcoalreserveswithhighmarketpotentialinthePittsburghcoalbed. Ourapproachadvancestheeffortinthreedistinctways.Thefirstisthatthescaleofourstudy iswiderinscopethanasinglecoalseam.WeincludedtheentireAppalachianregionwhich coversnorthern,central,southern,andtheeasternIllinoissubbasins.Becauseofthiswewere abletocreateaforecastoffuturecoalminingwithaspecificfocusonsurfaceminingthrough- outtheAppalachianarea.Wealsofocusedonsurfaceminingratherthanvariousunderground techniques(suchaslongwallunderground,roomandpillar).Forthepast10–15years,surface mininghasbeenamorecommonpracticeacrossAppalachiaduetoexpansionofmountain topremovaltechniques[21].Throughouttheregiontheremainingcoalseamsareoftentoo thinordeeptoundergroundmineandtheunconsolidatedoverlayingrockmakestheroof weakforundergroundminingtooccursafely[21].Second,ourapproachincorporatesfore- casteddemandscenariosintothemodelpredictionwhichwerelinkedtoasurfaceareaextrac- tionratiobyregion.Thesetwodevelopmentsenabledustospatiallyallocatethedemand acrosstheregionunderdifferentscenarios.Andthird,whilewewouldhavebenefittedfrom isopachsofcoalbedthicknessforallthecoalseamsthroughoutourregion,manyofthephysi- calpropertydatasetswecreatedasmodelvariableswerelocallysampledvalueswhichweinter- polatedwithgeostatisticalmodelingtocreateregionaldatasets.Thisenabledustouselocally sampledinputdatatocreateinterpolateddatasetstoaddressthemainresearchquestionof wherefuturesurfacecoalminingwaslikelytooccurthroughouttheregionalextent. Methods Anoverviewofthemethodologywhichincludesthespatialdatacollectionandinputdatasets forthepredictivemodelofthisstudyareprovidedinFig1. PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 2/25 PredictingFutureSurfaceCoalMining Fig1.Projectmethodologyflowchart. doi:10.1371/journal.pone.0128813.g001 Themethodologyforthisstudyincludeddefiningappropriatepredictorvariables,running aRandomForests[22]spatialmodelandperformingpredictivemappingbyallocatingproduc- tionforecastsforafuturesurfacedminefootprint.Afundamentalfirststeptothiseffortwasto selectthoselandscapepredictorvariableswhichcanbeusedtoeffectivelymodelthelocations offuturesurfacecoalmining. Predictorvariables Variablesincludedphysicalpropertiesofthecoalresource(coalgeologytype,sulfurcontent, ashcontent,andBTUs),andinfrastructurerelatedpredictors(networkdistancetoexisting coalfiredpowerplants,networkdistancetointermodaltransportationfacilities,networkdis- tancetoinlandports,distancetorail,humanpopulationdensity).Allvariableswererepre- sentedasrasterdatamodelswithacellsizeof1km2usingESRIArcGIS10.1software[23], withanalysisextentlimitedtothecoalgeologyextentwithintheAppalachianLandscapeCon- servationCooperative(LCC)[24].Fordistancerasters(distancetopowerplants,distanceto railroadsetc.)distanceswerecalculatedtofeaturesoutsidetheAppalachianLCCpriortolimit- ingrasterstothestudyareaboundary.AsummarylistofpredictorvariablesisshowninFig2. Coalgeologytype. Generalizedcoalfieldboundarieswerederivedfromamapofcoal fieldsoftheUnitedStatesata1:5,000,000scale[25].Generalizedcoalfieldsincludeareaswith knowncoal-bearinggeology,andwereusedtolimittheextentofpredictedfutureminingprob- abilitywithinthestudyarea(futureminingwaslimitedtoareaswithinmappedcoalfields). Withinthiscoalfieldboundary,wealsoobtainedstatelevelgeologicmapsfromdatasets compiledbyUSGSforU.S.states[26].Thegeneralizedstatelevelgeologicmapswereclassified intogeologicunitscontainingcoal,andthosewithoutcoal.Finally,thegeologicunits PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 3/25 PredictingFutureSurfaceCoalMining Fig2.Summarylistofpredictorvariables. doi:10.1371/journal.pone.0128813.g002 containingcoalwerefurthercross-referencedinto17differentgeologicalunitsregionwide basedongeneralizedlithologyandformation.Thecrossreferencingprocesswasnecessarydue toinconsistenciesandlabelingamongthedifferentstates.Thiswascompletedusingachronos- tratigraphiccorrelationchart[27].Formationsweregroupedbasedongeologicagetoproduce 17finalmappedcategoriesofsimilarlithologythatarenotimpactedbystateboundaries. Sulfurpercentageofcoal. Thesulfurcontentofcoalisoneaspectofcoalqualitywhich wasimportanttocharacterizeasamodelvariable.Restrictionsonsulfurdioxideemissions frompowerplantshavemadetherelativesulfurcontentofcoalanimportantconsiderationin theeconomicviabilityofdifferentcoalresources(withlowsulfurcoalgenerallybeingmorede- sirable).Thepercentageofsulfurcontentinthecoalwasinterpolatedusingboreholedatafrom theUSGSCoalQualitydatabase[28].Priortointerpolation,boreholedatawerelimitedto samplestakenatthesurface(undergroundordeepminesampleswereexcluded).Under- groundandboreholesamples(excluded)wereidentifiedbysampledepthvaluesand/orde- scriptivetextinthecommentsfieldinthesampledatabase.Surfacesampleswerealso identifiedbyvaluesinthecommentsfieldindicatingsamplesweretakenatroadcuts,pits,and stripmines[28].Whiledifferentcoalseamsmaybeencounteredwitheachoftheborehole sites,anoverallsulfurpercentageisassumedforeachsite. Theinterpolationprocessforsulfur,ash,andBritishThermalUnit(BTU)followedstan- dardgeostatisticalkrigingsteps[29].Theyincludedfirstexploringthedatafornormality,ex- aminingtrendsandthesemivariogram,andtestingmodeloutputrunsuntilasatisfactoryroot meansquarederrorandmeanstandardizederrorfromthecrossvalidationpredictionerrors werefound. Forsulfur,anordinarykrigingmodelwasappliedandanisotropyexaminedtoaccount fordirectionalinfluences.Thiswasusefulespeciallysincethecoalgeologyfollowsridgeandto- pographicalfeatures.Atotaloftenlagswereappliedwithasizeof20,000tobestfitthedistri- butionoftheinputpointlocations.Thesearchneighborhoodwasstandardsizedwitha maximumof5neighbors.Theresultsforsulfurcrossvalidationindicatedanaccuratepre- dictedsurfacewitharoot-mean-squarestandardizedpredictionerrorof1.009(avaluecloser to1.0ispreferred[29]). Ashcontentofcoal(ashyield). Ashcontentofcoalisalsorelatedtorelativecoalquality. Ashcontentisrelatedtotheportionofcoalthatremainsaftercombustion.Ashyieldwasalso PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 4/25 PredictingFutureSurfaceCoalMining obtainedfromtheUSGSCoalQualitydatabase[28]andwasalsointerpolatedusingmethods similartothoseusedforsulfurcontent. Forash,againordinarykrigingwasappliedwithanisotropyexaminedforthedirectionalin- fluenceswhichindicatedanimprovedfitwithanangleof44.6and45tolerance.Thelagsused weredifferentforash–12totalwithalagsizeof12,000.Thesearchneighborhoodwasstan- dardsizedwithamaximumof5neighborsaswithsulfur.Theresultsforsulfurcrossvalidation indicatedanaccuratepredictedsurfacewitharoot-mean-squarestandardizedpredictionerror of1.001. BTUcontent. BTUcontentofcoalisrelatedtotheamountofenergyprovidedbyagiven amountofcoal.BTUcontentofcoalperlb.wasderivedfromtheUSGSCoalQualitydatabase [28]usingmethodssimilartoashandsulfurcontent. FortheBTUinterpolation,asimplekrigingmodelwasappliedwithalogscoretransforma- tiontomakethevariancesmoreconstantthroughoutthestudyareaandbringthedatacloser tobeingnormallydistributed.Anisotropywasappliedtoaccountfordirectioninthesemivar- iogramandcovariance.Thepreferredanglewas32witha21.4degreetolerance.Twelvelags withasizeof15,000wasfoundtofitthemodelbestwiththeaverageddatapoints.Againhere, thestandardneighborhoodsearchwasusedwithamaximumof5neighbors.ThefitforBTU wasnotaswellasashandsulfurwitharoot-mean-squarestandardizederrorof0.887. Distancetocoalfiredpowerplants. Existingcoalfiredpowerplantswereidentifiedusing informationpublishedbytheU.S.EnergyInformationAdministration,basedonformEIA- 860AnnualElectricGeneratorReport[30].Thelocationsweredeterminedusinglatitude/lon- gitudecoordinatesprovidedbySourceWatch[31]andshapefilesprovidedbyEnergyInforma- tionAdministration[32].Weidentifiedatotalof318existingpowerplantsasof2011.We thenremovedatotalof92oftheseplantsthatarescheduledforclosurebetween2013and 2020[31].Anadditional25newcoalfiredfacilities(includingpowerplants,cogenerationfacil- ities,coaltoliquidsplants)wereaddedtothefinaldatasetthatareproposed,planned,inper- mitting,orunderconstructionforthisareaasnotedbySourceWatch[31],theSierraClub [33],andNationalEnergyTechnologyLaboratory[34].Forourfinalpredictorvariable,wecal- culateddistancealongahighwaynetwork[35]to251coalfiredpowerplantfacilities(226ex- isting,25new).Distancealongthehighwaynetworkwasinitiallycalculatedalong1km2cells alongtheactualhighways,andwasthenextrapolatedouttocoverallcellswithintheAppala- chianLCCusinganinversedistanceweightedinterpolator. Distancetointermodaltransportationfacilities. Intermodaltransportationfacilitiesare locationswherefreightmaybetransferredbetweendifferentmodesoftransportation(i.e. trucktobarge,trucktorail,etc.).Intermodalfacilitypointlocationswereobtainedfromthe NationalTransportationAtlasDatabase,andwerethenlimitedtoallfacilitiesexceptports, whichweremappedseparately[36].Distancetointermodalfacilitieswasmappedalongthe highwaynetwork,thenextrapolatedouttoallcellswithintheAppalachianLCC. Distancetoinlandports. InlandriverportswerealsoobtainedfromtheNationalTrans- portationAtlasDatabase[36]andwerelimitedtothoseportshandlingcoalandcoalrelated commodities.Distancetoportswasmappedalongthehighwaynetwork,thenextrapolatedout toallcellswithintheAppalachianLCC. Distancetorail. AccordingtoU.S.EnergyInformationAdministrationdomesticcoaldis- tributionstatistics,56%ofcoalproducedbythetencoal-producingstatesinthestudyareawas distributedusingrailin2011[32].Inaddition,atotalof29%ofcoaldistributeddomestically wasmovedbyriver(barges),withatotalof13%wastransportedbytruck.Thisimpliesthat proximitytorail,river,andtruckingrelatedloadingfacilitiesmaybeanassetinlocationofpo- tentialminingactivity.Miningrelatedfacilities(forloadingcoalontorailcars)arenotneces- sarilylimitedtolocationsatendpointsofraillines.Mineloadingfacilitiescanalsobefoundat PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 5/25 PredictingFutureSurfaceCoalMining anypointalongraillines,notjustattheendpointsoratspurs.Mappingdistancetoexisting railscapturesmorepotentiallocationsforaccesstoraillinesfromcoalminingpermitloca- tions,ratherthanlimitingtherailfeaturedatasettoendpointsonlyofexistingrailroads. LocationsofrailroadswereacquiredfromtheBureauofTransportationStatisticsU.S.Na- tionalTransportationAtlasrailroadslayer,atthe1:100,000mapscale[37].Distancetonearest raillinewasmappedasEuclideanstraightlinedistanceacrosstheAppalachianLCC(notlimit- edtodistancealongnetwork). Populationdensity. Populationdensitywascalculatedacrossthestudyareausing2010 Censusblockgroupdata,andwasthenconvertedtorasterformat,1km2cellsize[23]. Otherdataconsiderations. Economicfactorsareimportanttoconsiderforfuturemining sincedevelopmentdecisionshavecostsultimatelybuiltintothedecisionprocess.Mostofthe economicvariablesforminingarerelatedtothedepositgeometrystrippingratio,size,shape, anddepthofstrikeofdeposit,rockconditions,productivitiesandmachinerycapacitiesaswell assomeofthemorecommoneconomiccostsrelatedtocapitalrequirementsandoperating costs,discountrate,investments,amortization,depreciation,recoveriesandrevenues,labor forceavailability,andenvironmentalregulations[38].Otherfactorsconsideredtobeimpor- tantfornewsurfaceminingactivityincludedpastandexistingmining,strippingratios(over- burden,coalbedthickness),coalreservesremaining,surfaceownershippatterns,andcoal qualityasrelatedtomarketdemand.Eachofthesefactorswerespecificallymentionedbyinter- nalreviewersinvariousstagesofthisproject,andwerealsomentionedintheEnvironmental ImpactStatementformountaintopremovalminingintheAppalachianregion[39].Ultimate- ly,thesefactorswerenotincluded(directly)inthefinalmodelingprocess,afterinvestigationof availabledatasetsanddataquality.Locationandextentofpastminingwerenotuniformly availablefortheentirestudyarea,asminingdatasetsfromindividualstatesvariedgreatlyin quality.Datarelatedtostrippingratios(overburden,seamthickness)wereavailableforsome coalseams[40]andstatesinthestudyregion(Illinois[41];Indiana[42];WestVirginia[43]; Virginia[44]butnotothers.Remainingcoalreservesareavailableonacounty-by-countybasis forsomestates(see[45]forexample)oronaregionallevelfromtheU.S.EnergyInformation Administration,butreservedataarenotconsistentlypublishedatadetailedenoughspatial scalefortheregioninordertobeincludedintheproject.Thefocusofourmodelingonsurface miningactivityonly(ratherthansurfaceandundergroundcombined)alsoplacedmoreimpor- tanceonoverburdencoalamountsaswellasaccessibilityfromthesurface. Forsurfacelandownershippatterns,ithasbeensuggestedthatthedifferingnatureofland ownershipamongstatesmayberelatedtosurfacemining–specificallythatsurfaceminesof easternKentuckyarecharacterizedbysmallerlandowners,whilesurfaceminesinneighboring southwesternWestVirginiaaremorelikelytobeownedbylargercorporatelandowners[39]. Basedonaquickcrossreferencewithexistingpermitdata,wedidnotfindthistoexistasthe averagepermitsizeinKentuckywaslargerthantheaveragepermitsizeforWestVirginia.In anycase,landownershipdataforsuchalargestudyregionisnearlyimpossibletoassemble, particularlyinlightoftherelativelycoarsespatialscaleofthiswork(1km2cellsize).Wealso didnothaveaccesstoadequatemineralrightsdatafortheentirestudyregion,anotherimpor- tantconsideration.Whilethesedatalimitationsprecludeourabilitytomakethesamelocalde- cisionsacoalcompanywouldmakeforasite,thegoalofthisprojectwastofocusonbroader regionalpredictionsandforecasting. Activesurfaceminepermitlocations Thepreviouslylistedindependentvariableswereanalyzedwiththedependentvariableofloca- tionofactivesurfaceminepermits.Thecentroidsofeachpermitwerecalculatedforthemodel PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 6/25 PredictingFutureSurfaceCoalMining runs.Surfaceminingpermitlocationswereobtainedfromindividualstateagenciesfortheten coal-producingstateswithinthestudyarea.Miningpermitswerefurtherlimitedtoactivesur- faceminingpermitsonlybyexcludingundergroundminesandpermitsassociatedwithinac- tiveorhistoricalmines.Incertainstates,ifpermitstatus(active/inactive)wasnotindicated, permitswerelimitedtothosewithdatesfromtheyear2000tothepresentonly,inanattempt tolimitanalysistocurrent,activemines. Exclusionareas Inadditiontotheabovementionedpredictorvariablesandsurfaceminepermitlocationswe alsointegratedspatialdatasetsas“exclusions”orareaswheresurfacecoalminingcouldnot occur.Areasexcludedfromourpredictivemodelingoffuturesurfaceminingincludeperma- nentconservationlandsandareaswithexistinglandusesthatarenotconducivetominingac- tivities(urbananddevelopedlands,water)basedonthe2006NationalLandCoverDataset [46].Forpurposesofthiswork,weconsideredpermanentconservationlandstobe(inmost cases)landscompiledintheConservationBiologyInstitute’sProtectedAreasDatabase[47] withGapAnalysisstatus1or2.ConservationlandswithGapAnalysisstatus1and2[48]gen- erallyindicateareaswithpermanentprotectionfromlanduseconversionand/ormanagement plansdesignedtolimitdisturbanceandmayincludenationalparks,nationalwildliferefuges, stateparksandpreserves,andU.S.ForestServicewildernessareas(amongothers),although furtherassessmentofoutstandingmineralleasesonthesetractsmayresultintheirre-inclusion intheareawhereminingmayoccur.Inall,57,185km2throughoutthestudyarea(9.6%)was excludedduetolanduserestrictions,while14,366km2ofthestudyareawasexcludeddueto presenceofconservationlands(2.4%). Areaswerealsoidentifiedthatcontainedanextensiverecenthistoryofsurfacemining,as weareassumingtheseareastobe“minedout”,meaningtheywillnotbesurfaceminedagain inthefuture.Minedoutareaswereidentifiedascellswithincurrentactivesurfacemineper- mitsthatwereclassifiedasBarrenlandcoverinthe2006NationalLandCoverDataset[46]. Thismethodensuredwewerecapturinglargecontiguousareasofprevioussurfacemining, andnotnewlyopenedmines(sincewewereusing2006landcover).Byusingthismethod,we excludedminingonatotalof567km2,or12%oftheareacontainedwithinactivesurfacemine permits. Predictivecoalmodel Weusedthenon-parametricmodel,RandomForests[22],toestimatesurfacecoaldevelop- mentprobability,foreachofthe1km2cells,withhigherprobabilitiesindicatingagreaterlike- lihoodoffuturemining.TheRandomForestsalgorithmoffersmanyadvantagesinthatitdoes notadheretoparametricassumptions,canutilizemixeddatatypewithdifferentscale,handles highdimensionaldata,isrobusttooutliersandnoise,isnotsensitivetoautocorrelation,quan- tifiesimportanceofthepredictorvariablesandrequiresminimalparametrization[49–52]. TheRandomForestsmodelisaweak-learnerensembleapproach,whereaseriesofuncon- strainedClassificationandRegressionTrees(CART)arecreatedusingabootstrapsamplewith replacement.TheCART’sareconstructedusinganentropynodesplittingstatisticthatrecur- sivelypartitionsthedataintomorehomogeneoussubsetsandresultsinahierarchicalclassifi- cationthataccountsfor1stand2ndorderstatisticalvariation.Theout-of-bag(OOB)data withheldineachbootstrapsampleisusedtoassessfit,ateachmodeliteration,andresultsin convergentfitstatisticswithoutrequiringdatabewithheldforvalidation.Theindependent variablesarerandomlypermutatedthroughthenodesandmeandecreasesinaccuracythus PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 7/25 PredictingFutureSurfaceCoalMining accumulateprovidinganimportancemeasureofeachvariable.Thepluralityofvotesacrossthe ensembleconvergesontheoptimalfittothedataandprovidesarobustestimate[49]. Tospecifyabinominalresponsevariable(y)where;presence(surfacemininghasoccurred duringthepermitperiod)andabsence(nosurfacemininghasoccurredduringthepermitperi- od),weutilizedsurfaceminepermitcentroids,onlyusingobservationspermittedaftertheyear 2000.Toensurethatstatisticalandspatialvariabilitywasrepresentedwithoutintroducinga zero-inflationissue[49],wecreatedfivesetsofpseudo-absencedatabycreatingrandompoints andthenremovingobservationsoccurringwithinacurrent-permitor0.5milesofasurface minecentroid.Foreachtrainingsubset,weusedanequalnumberofpresence(n=5,165)and absence(n=5,165)observations,withthesamepresencedatausedineachsubset.Theinde- pendentvariableswereappendedtothepoints,fromthecorrespondingrastercell(s),usingthe softwaretoolGeospatialModelingEnvironment[51]. UsingthecompliedtrainingdatawespecifiedfiveRandomForestsmodels,representing eachrandomsubset,usingtheRandomForests[53]packageinR[54].Wetestedmodelsbyre- movinglow-performingparametersandobservedadecreaseinmodelperformanceascom- paredtothefullmodel.Modelerrorconvergedinfewerthan1,000bootstrapreplicates however,sincevariableinteractionsstabilizeataslowerratethanerror,wefixedthenumberof bootstrapreplicatedatn=1,000.BecauseRandomForestsisanensembleapproach,aslongas theparameterspaceremainsfixed,independentmodelscanbecombinedintoasingleensem- ble-model[52].Usingonlyconsistentlyselectedparametersinthemodelselection,wefitfinal modelsforeachrandom-subsetandcombinedthemintoafinalensemble-model.Modelsig- nificancewasevaluatedusingapermutated(n=999)randomizationprocedureandanitera- tive10%withholdcross-validationusingtherfUtiltiesRpackage[55].Theprobabilityofthe presenceclass{1}waspredicted,usingthescaledposteriordistributionofthevoteplurality [50],withtheRrasterpackage[54].Theestimatedextentwaslimitedtotheknownextentof coalintheregion. PredictiveMapping:FutureSurfaceMiningFootprint Inordertomapfuturepotentialsurfaceminingactivitiesonalandscapescale,weusedresults fromtheprobabilisticRandomForestsmodelingofsurfaceminepotentialalongwithregional- levelestimatesoffuturecoalminingproductionfortheyears2012through2035. RegionalcoalproductionestimatesforthefourEIAcoalsupplyregions(northern,central andsouthernAppalachians,easterninterior/Illinois)(Fig3)wereobtainedusingvariouscoal productionscenariosfromtheEIA’sAnnualEnergyOutlook[2].Valueswereobtainedfortwo differentEIAeconomic/coalproductionscenariosforcomparison:alowcoalproductionsce- narioandahighcoalproductionscenario.Thelowcoalproductionscenario(“GHG25+low gas”)predictsthelowestfuturecoalproductionofanyofEIA’s28totalscenarios,duetovery restrictivegreenhousegasemissionspoliciesandlowpricesforcompetingresourcesofoiland gas.Thehighcoalproductionscenario(“lowcoalcost”)predictsthehighestcoalproduction duetolowercostsforcoalminingwages,transportation,andmineequipment(leadingtoin- creasedcoalproduction). EIAcoalproductionestimatesprovidetotalproductionestimatesonly(surfaceandunder- groundcombined).Welimitedfutureproductionprojectionstosurfaceprojectionsonlyby multiplyingeachproductiontotalbythepercentagesurfaceaccordingtothefollowingregional figuresbasedon2010–2011productiondataintheAnnualEnergyOutlook:northernAppala- chians:20.08%surface,centralAppalachians:48.68%surface,southernAppalachians:40.06% surface,easterninterior/Illinois:30.72%surface.Surfaceminingproductionestimatesfromthe PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 8/25 PredictingFutureSurfaceCoalMining Fig3.U.S.EnergyInformationAdministration(EIA)coalsupplyregionswithintheAppalachianLandscapeConservationCooperativeboundary usedinthisproject.CountiescontainedwithinEIAcoalsupplyregions(Northern,CentralandSouthernAppalachian,EasternInterior/Illinois)were PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 9/25 PredictingFutureSurfaceCoalMining determinedfromtheEIAAnnualEnergyOutlook[2].Theareamodeledwasfurtherlimitedtotheintersectionofthecoalsupplyregionswithgeneralizedcoal fieldboundariesfortheUnitedStates,obtainedfromtheU.S.GeologicalSurvey[25].Thisfigureshowstheintersectionofthecoalsupplyregionswithactual coalfieldboundaries.TheboundaryoftheAppalachianLandscapeConservationCooperativeisshownasathinblueline,obtainedfromtheU.S.Fishand WildlifeService. doi:10.1371/journal.pone.0128813.g003 year2012throughtheyear2035werethensummedtoproduceatotalcumulativesurfacecoal productionvalueforeachregion. Inordertoestimatesurfaceareaimpactedbycoalminingactivities,anumericrelationship wasrequiredbetweensurfacemineproductionamountsandacorrespondingareadisturbed.It wasinitiallyproposedtousecurrentactivesurfaceminepermitdataalongwithrecentproduc- tionstatisticsinordertoderiveaproductiontoarearatio.However,singleminesmayproduce coalforextendedperiodsoftime,andthismethodwouldnotadequatelycapturetheentirelife cycleofamine.Inaddition,mappedminepermitpolygonsmayincludeareasthatarenotac- tuallydisturbedduringsurfacemining,sotheactualdisturbedareamaybemuchsmallerthan mappedpermitarea.Arecentstudyconcludedthatmappedminepermitsdonotofferanac- curatewaytoestimateareadisturbedbysurfacemining,basedoncurrentpermitdatabaseand mappingmethodsusedinWVandKY[56].Instead,Lutzetal.[19]developedaregression modeltoestimatetonsofcoalproducedperunitarealdisturbancefor47countiesinsouthern WVandeasternKY.Themodelwasbasedontotalareaofsurfaceminingdisturbancefrom 1985–2005(at5yeartimeintervals),comparedwithsurfacecoalproductionstatisticsforcor- respondingtimeperiods.Lutzetal.[19]estimatedthat1tonofcoalequatesto0.87m2ofsur- facedisturbance.Forthecurrentstudy,thisfigurewasconvertedto1.15milliontonsofcoal producedpersquarekilometerofsurfacelanddisturbance. Futuresurfaceminingscenariosanalyzedincludedlowcoalproductionandhighcoalpro- ductionmodels[2]fortheyears2012–2035.Foreachscenario,wecreatedanewmaplayer showingpotentiallocationsforfuturesurfaceminingactivitiesonacell-by-cellbasisusinga 1km2gridforthestudyarea.Usingthefigureof1,150,000shorttonsperkm2,weallocatedfu- tureminingproductiononacell-by-cellbasiswithineachEIAregionfirsttothosecellswith thehighestfutureminingprobability,thencontinuingtocellswithlowerfutureminingproba- bility,untilthetotalamountoffutureproductionforaparticularscenarioandregionwasallo- cated.Priortoallocation,adjacentcellswithidenticalminingprobabilityvaluesweregrouped togethertoensurethatcontiguousareasofhighminingprobabilitywerepreservedinthere- sults(ratherthanassigning“new”miningtosinglecells).Cellscontainingurbanorbuiltup land,water,conservationlands,andcentroidsofexistingminingpermitswereexcluded (maskedout)priortobuild-outanalysisasdescribedearlier. Results RandomForestsModel(ProbabilityofFutureSurfaceCoalMining) ThefinalRandomForestsmodelscenarioincludedtheoriginal9predictorvariablesofFig2. Weexperimentedbyremovinglow-performingvariablesfromthemodelbasedonvariable contributiontotheoverallresult.However,alternativemodelswithfewervariablesdidnotper- formaswellasthefullmodel,producinghigherclassificationerrorrates.Modelsignificance wastestedvs.randomlygeneratedmodelsandwasfoundtobesignificantp=0.01. ThefinaloutputoftheRandomForestsmodelisapixelbasedprobabilityoffuturesurface miningpresence(Fig4).Asestimatedbytheout-of-bagmeandecreaseinaccuracy,thecoalge- ologytypeandthesulfurcontentwerefoundtobethemostimportantpredictorvariablesin themodel,thoughallvariablescontributed(Fig5).Foreachtrainingdataset,theout-of-bag errorestimatewasaround15%andthemisclassificationofpresenceandabsencepointswere PLOSONE|DOI:10.1371/journal.pone.0128813 June19,2015 10/25

Description:
er extent) metallurgical coal used in industrial processes. The overall Bonta JV, Amerman CR, Dick WA, Hall GF, Harlukowicz TJ, Razem AC et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.