ebook img

Combined Magnetohydrodynamic- Monte Carlo Simulations of Proton Acceleration in Colliding Wind Binaries PDF

0.88 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combined Magnetohydrodynamic- Monte Carlo Simulations of Proton Acceleration in Colliding Wind Binaries

Combined Magnetohydrodynamic- Monte Carlo Simulations of Proton Acceleration in Colliding Wind Binaries Emanuele Grimaldo1,a), Anita Reimer1,2and Ralf Kissmann2 7 1 1InstituteforTheoreticalPhysics,UniversityofInnsbruck,Technikerstr.21A,6020Austria. 0 2 2InstituteforAstro-andParticlePhysics,UniversityofInnsbruck,Technikerstr.25,6020Austria. n a)Correspondingauthor:[email protected] a J 5 Abstract. The interaction between the strong winds of the stars in colliding-wind binary (CWB) systems produces two shock 2 fronts,delimitingthewindcollisionregion(WCR).There,particlesareexpectedtobeacceleratedmainlyviadiffusiveshockac- celeration,andtoproduceγ-rays,inprocessesinvolvingrelativisticelectronsand/orprotons. ] WeinvestigatetheinjectionandtheaccelerationofprotonsintypicalCWBsystemsbymeansofMonteCarlosimulations,with E atest-particleapproach.Weusemagnetohydrodynamicsimulationstodeterminethebackgroundconditionsinthewindcollision H region.Thisallowsustoconsiderparticleaccelerationatbothshocks,oneithersideoftheWCR,withaself-consistentlydeter- . minedlarge-scalemagneticfield,whichhasanimpactontheshapeoftheWCR,andthetopologyofwhichplaysanimportantrole h inparticleaccelerationatcollisionlessshocks.Suchstudiesmaycontributetoimproveγ-rayfluxpredictionsforCWBsystems. p - o INTRODUCTION r t s a Collisionlessshockfrontsareknowntoaccelerateparticles,primarilyviafirst-orderFermiacceleration,resultingin [ apowerlawenergyspectrumofthenon-thermalpopulation(e.g.[1,2]andreferencestherein). 1 Colliding-wind binaries (CWBs) - binary systems of massive, hot stars with strong stellar winds - are expected to v besiteswhereparticleaccelerationoccurs.Shocksformatthewindcollisionregion(WCR),thuscreatingasuitable 9 environment for accelerating particles by means of diffusive shock acceleration (DSA). Besides the detected radio 8 synchrotronradiationfrommanysuchsystems[3,4,5],processessuchasinverseCompton(IC)scattering,relativis- 2 ticBremsstrahlung,anddecayofneutralpionsproducedinhadronicinteractionsareexpectedtoprovidesufficiently 7 highfluxesofGeVandTeVγ-raystoallowtheirdetectionbyinstrumentssuchasFermi-LAT,HESS,MAGICand 0 . VERITAS (e.g. [6, 7, 8]). In contrast to such predictions, γ-ray emission from CWBs has not been observed up to 1 now,withtheexceptionofηCarinae[9,10,11],andthestilldebatedWR11[12]. 0 Inpreviousstudies,thenon-thermalphotonemissionoftypicalCWBsystemswascomputedusingthespectralenergy 7 distributionsofhigh-energyparticlesobtainedbycombiningthree-dimensionalhydrodynamicnumericalsimulations 1 : withthesolutionofthetransportequationforprotonsandelectrons[13,14].Intheseworks,particleaccelerationis v providedbyaverysimplifiedterminthetransportequation,whichistheanalyticalresultobtainedwhenconsidering i X apopulationofsuprathermalparticlesatashockofinfiniteextent.Theinjectionefficiencyofthermalparticlesinto theaccelerationprocess,i.e.howmanyoftheparticlesfromthethermaldistributionareabletorecrosstheshockfrom r a downstreamtoupstreamandbeinjectedintoDSA,isnecessarilyprescribed“byhand”. For studying the microphysics of shock formation and injection efficiency, (full) particle in cell (PIC), and hybrid PICsimulationsaresuitedbest:particlesmoveinthesimulationboxandarescatteredbyself-consistentlygenerated magneticturbulences(e.g.[15,16]andreferencestherein).Unfortunately,theseapproachesarecomputationallyvery demanding,andbothboxsizesandtimeintervalsthatcanbeinvestigatedarelimited. Particle acceleration has also been studied by means of Monte Carlo simulations (e.g. [17, 18, 19]). Here, particles moveundisturbedonapredefinedbackgrounduntilascatteringoccurs.Thescatteringprocessisnecessarilymodelled, butinjectionefficienciescanbeobtained,dependingontheprescribedscatteringlaws.Furthermore,thissimplifica- tionsignificantlyreducesthecomputationalload,andallowsformuchlargerregionsandtimeintervals(andinturn energyranges)tobeconsidered. Forthisreason,wechosetheMonteCarlomethodforourpurposeofsimulatingparticleaccelerationinextendedre- gions,andoverwideenergyandtimeintervals.Inparticular,weemployatest-particleapproach,resemblingmethods usedforstudyingparticleinjectionatobliqueshocks(e.g.[19,20,21]). Inordertoobtainmorerealisticbackgroundconditions,weusemagnetohydrodynamic(MHD)simulationsofatypi- calCWBsystem. Inthefollowing,wewillfirstdescribethenumericalmethodemployedinthiswork.Wewillthenshowthedetailsof thesystemstudied,aswellastheresultsofthesimulations.Thelastsectionisdevotedtotheconclusions. NUMERICALMETHOD Inthiswork,weinvestigateparticleaccelerationinthewindcollisionregionofCWBs.WeemploytheresultsofMHD simulations of a typical CWB system, carried out using the cronos code [22, 23], to characterize the background (plasma flow velocity, magnetic field, electric field, temperature, and density) that influence the particle motion in the simulation box. The background is initialized at the beginning of each simulation and, since we are applying a test-particleapproach,itisnotchangedatruntimebytheacceleratedparticles. IntheMHDsimulations,theshockfrontisaboutthreecellswidefornumericalreasonsonly.Moreover,iftheshock frontisnot“vertical”inthesimulationbox,thecellboundaryisnotparalleltotheactualshockfront(seeFig.1).This canleadtounrealisticresults,especiallyifthegyroradiusoftheparticleissmallerthanthecellsize,andtheparticle gyratesmanytimesalongtheshocksurfacewhenencounteringtheshock.AfterillustratingtheMonteCarlomethod itself,wewilldescribehowwedealwiththeseissues. FIGURE1.Schematicrepresentationofanupstreamandadownstreamcell,togetherwiththeactualshocksurfaceresultingfrom MHDsimulations.OntheCartesiangrid,thecellboundary,whichdividesupstreamanddownstream,isingeneralnotalignedwith theshocksurface. MonteCarlomethod Protons are injected into the selected cell, with an isotropic Maxwell-Boltzmann distribution of velocities in the framecomovingwiththelocalplasmaflow,withthetemperatureofthelocalbackground.Eachparticleisfollowed in the frame where the shock front is stationary, and moves on the background electromagnetic field, driven by the Lorentzforce,until:(i)ascatteringoccurs,(ii)itreachestheboundaryofacell,or(iii)itisremovedfromthesystem. The time between scatterings is exponentially distributed, with mean value t = ηr˜ /v, where η is a proportionality c g factor,visthespeedoftheparticle,andr˜ = p/qB[21].Forη = 1thiscorrespondstoBohmdiffusion.Weassume g thescatteringtobeelasticinthelocalplasmaframe.Thenewµ = cosθ ,whereθ isthepitchangleintheplasma p p p frame,isarandomnumberbetween0and1,drawnfromauniformdistribution.Thismodelslargefluctuationsinthe magneticfield[21]. Whenaparticlecrossestheboundaryofacell,thebackgroundchanges,anditstrajectoryiscomputedaccordingly. Particlesareremovedfromthesystemeitheraftertheywerescattered106 times(usuallythecaseforparticleswhich were not accelerated at the shock front and are being advected away by the plasma) or when they reach the outer boundaryoftheentiresimulationbox. Inordertoimprovestatisticsathigherenergies,thetechniqueofparticlesplittingisemployed.Astatisticalweightis assignedtoeachparticleatthebeginningofthesimulation.Whentheenergyofaparticleincreasesbyafactorof10, its statisticalweight is halved, andthe particle issplitted into two instantaneouslyidentical ones, whichwill follow differentpathsfromthatmomentonwards.Thespectrumofthefluxthroughacertainsurfaceisrecordedbyadding totheappropriateenergybinthestatisticalweightoftheparticlecrossingit.Weverifiedourcodebyreproducingthe resultsobtainedinRef.[19]. Thebackgroundinoursimulationisdividedintotworegions:oneincludestheshock-frontcells,identifiedasbeing partoftheshockfront,theotheronecomprisesalltheothercells.Whenparticlesareinthenon-shock-frontcells,the backgroundisjusttheoneresultingfromtheMHDsimulations.When,ontheotherhand,aparticleentersthearea markedasbeingpartoftheshockfront,adifferentsetupisused,withtwobiggercells-upstreamanddownstream-, thebackgroundofwhichisobtainedasdescribedinthefollowingsection.Thepositionoftheparticleasitentersthis new regime is recorded, so that, when leaving the super-cell regime, the new position in the normal background is foundbyaddingthedisplacementintheappropriatereferencesystemtotherecordedcoordinates(seeFig.2(b)). Background The background is obtained from MHD simulations. At the shock fronts, the shock transition layer is about 3 cells wide,andthecellsurfaceisingeneralnotalignedwiththeshockfront.Wethereforedividedthecomputationaldomain into two regions: “shock front” and “normal” cells. In the shock front domain, a system of “superimposed” cells (super-cells)isused.Fortechnicalreasons,thesehavedimensions(2∆x)3 upstream,and3∆x×(2∆x)2 downstream. Inordertoinitializethesuper-cells,onefirstneedstolocatethepositionoftheshockfront.Thisisdonebysettinga thresholdforthetemperature:attheshockfrontstheplasmatemperatureabruptlyrisesfrom∼104Kto∼ 107-108K. ThetemperaturegradientwasfoundtobeagoodtraceroftheshockfrontpositionbyReitbergeretal.[13]. Every upstream super-cell is associated with a downstream one (and vice versa). The background of the upstream super-cellsisobtainedbyaveragingthefieldsoftheneighbouringupstreamshock-frontcells.FollowingReitberger etal.[13],thebackgroundoftheassociateddownstreamsuper-cellisobtainedbycomputingaweightedaverageof the fields within a distance ∆x(≡cellsize) from the point 3∆x downstream of the upstream shock-front cell, in the direction normal to the shock front (see Fig. 2 (a)). The vector fields (flow velocity, magnetic field, electric field) are then rotated, so that shock normal and normal to the surface between upstream and downstream super-cells are parallel(referenceframeS(cid:48)inFig.2(b)). (a) (b) FIGURE2.(a)Illustrationofthemethodusedfortheinitializationofthebackgroundofthedownstreamsuper-cells,whichre- sultsfromaweightedaverageofthefieldswithinadistance∆xfromthepoint3∆xdownstreamofthecentre x oftheupstream c shock-frontcell,inthedirectionnormaltotheshockfront(∆xisthecellsize).(b)Schematicrepresentationofapairofupstream anddownstreamsuper-cells.Whenaparticleentersacellmarkedas“shockfront”cell,itspositionx inthesimulationdomain old isrecorded,sothat,whenleavingthesuper-cellregime,thenewpositioninthenormalbackgroundisfoundbyaddingthedis- placementvectord(cid:126)totherecordedcoordinates.Sisthenon-rotatedreferenceframe,S(cid:48)istherotatedreferenceframeusedinthe super-cell regime. Cell sizes are exaggerated for display purposes; super-cell sizes are (2∆x)3 upstream, and 3∆x×2∆x×2∆x downstream. RESULTS Parametersofthesimulations InthefollowingweconsideraBstarandWolf-Rayetstarbinarysystem,withtheparameterslistedinTable1. TABLE1.Stellarandwindparametersofatypicalcolliding-windbinarysystem,as inKissmannetal.[23]. M isthestellarmass,R thestellarradius,T theeffective ∗ ∗ ∗ temperature, L theluminosity, M˙ themasslossrate,v theterminalvelocityofthe ∗ ∞ wind,andB thesurfacemagneticfield. ∗ Star M R T L M˙ v B ∗ ∗ ∗ ∗ ∞ ∗ [M(cid:12)] [R(cid:12)] [K] [L(cid:12)] [M(cid:12)yr−1] [kms−1] [G] B 30 20 23000 105 10−6 4000 100 WR 30 10 40000 2.3×105 10−5 4000 100 ThestellarseparationisR = 1440R(cid:12).TheregionusedintheMonteCarlosimulationsconsistsof(151×81×151) cubiccellsofdimension(3.9R(cid:12))3.Westressthatnoanalyticalprescriptionsarenecessaryconcerningthelarge-scale magneticfieldattheWCR,sincethemagneticfieldwasevolveddynamicallyintheMHDbackgroundsimulations. Particlesareinjectedupstreamoftheshockfronts,atdifferentpositionsalongtheWCR,onthex-zplane,atz=40R(cid:12), z = −420 R(cid:12), and z = 420 R(cid:12). The fluxes are recorded when particles cross the shock fronts. Here, we show the resultsofsimulationscarriedoutwithη=1(highlyturbulentmedium)[21].Theimpactofvaryingηontheresultsis subjecttofuturestudies. Spectralindicesandinjectionefficiencies The analytical result for the density of particles accelerated via DSA, at a shock with compression ratio r, yields the well known dependence n(p) ∝ p−σ, where p is the momentum, n is the differential particle density, and σ=(r+2)/(r−1)isthespectralindex.ThedifferentialcurrentofprotonsintermsofthekineticenergyEis: (cid:104) (cid:16) (cid:17)(cid:105)−σ J(E)=vn(E)∝ E E+2m c2 2 , (1) p wherevisthespeedoftheproton,m isitsrestmass,andcisthespeedoflight. p The spectra resulting from the simulations can be seen in Fig. 3. The magnetic field on the WR-side of the WCR is weaker, which causes a difference of up to two orders of magnitude in the maximal energy reached by particles injectedontheWR-side(EWR ∼ 1011 eV)andthoseinjectedontheB-side(EB ∼ 1012−1013 eV).Moreover,the max max compressionratioisingeneralhigherontheB-side,whichresultsinharderspectra. TheMonteCarlosimulationsalsoallowtoestimateinjectionefficienciesforthesystem,oncethescatteringlaw(i.e. scatteringoperatorandmeanfreepathdependenceondifferentparameters)hasbeenchosen,andundertheassumption thattheshockfrontisseenasasharptransitionbytheprotons.Ifwedefinetheinjectionefficiencyεas: n ε= NT , (2) n TOT wheren andn aretheparticledensityinthenon-thermaltailandinthetotalparticledistribution,respectively, NT TOT weobtain8% ≤ ε ≤ 16%fortheWRshock,and9% ≤ ε ≤ 26%fortheBshock.Thevariationintheinjection efficiencyseemstoWRdependnotonlyonthesideoftheWCRwB heretheparticlesareinjected,butalsoonthedistance of the injection position from its apex, as can be seen in Table 2. This is probably due to both different plasma flow velocities and shock obliquities. The spectra obtained when injecting particles at z = 420 R(cid:12) are harder than those of particles injected at z = −420 R(cid:12). This is ascribable to different compression ratios at the two injection positions. Although an association of this feature with the asymmetry of the plasma flow is tempting, we note that thecompressionratiochangesnotcontinuouslyalongtheshockfront,andfurthersimulationsareneededinorderto verifyifspectraaresystematicallyharderabovetheplaneatz=0.Wenotethatefficienciesareratherhigh,therefore including feedback of the accelerated particles on the plasma would yield more realistic results. Nevertheless, our simulations indicate that the change in injection efficiency along the WCR may indeed be relevant when modelling non-thermalemissionfromCWBsystems. (a) (b) (c) FIGURE3.Spectraoffluxesthroughtheshockfrontsforprotonsinjectedat(a)z=40R(cid:12),(b)z=−420R(cid:12),and(c)z=420R(cid:12). ThedashedcurvesareobtainedbyfittingthefunctionofEquation1tothedata.Intheblueboxweshowtheplasma’sbackground speedinacutthroughthenumericaldomainaty=0.TheBstarisontheleft,theWRstarontheright.Thebow-shapedregion, closertotheBstarandbentaroundit,istheWCR.ThesmallerboxesrepresentthesectionsusedfortheMonteCarlosimulations. TABLE2.Spectralindicesandinjectionefficienciesofprotonsinjected atz=40R(cid:12),z=−420R(cid:12),andz=420R(cid:12).Theerrorsrefertothefit ofEquation1tothedata. z SideofWCR Spectralindex Injectionefficiency [R(cid:12)] σ ε 40 B 1.86±0.02 ≈26% WR 1.96±0.02 ≈16% -420 B 2.19±0.01 ≈9% WR 2.18±0.04 ≈8% 420 B 1.93±0.02 ≈16% WR 2.08±0.04 ≈13% CONCLUSIONS Inthiswork,weinvestigatedtheaccelerationofprotonsinatypicalcolliding-windbinarysystem.OurMonteCarlo test-particle simulations employ the results of magnetohydrodynamic simulations, which determine the background onwhichprotonsmove. Wefoundadifferenceinboththespectralindexandthehighestenergyreachedbytheacceleratedparticles,depending ontheconsideredsideoftheWCR,duetodifferentcompressionratiosandstrengthsofthemagneticfield.Moreover, wefoundthatthesetwocharacteristicsofthespectraofnon-thermalprotonsalsovarymovingawayfromtheapexof theWCR.Asimilarremarkcanbedoneconcerningtheinjectionefficiencies,whichseemtobeingeneralhigheron theB-sideoftheWCR,andtodecreasefurtherawayfromitsapex,alongtheshockfronts.Ourresultsindicatethat a variation of the injection efficiency probably needs to be taken into account in models aiming at predicting γ-ray fluxesproducedbynon-thermalparticlesacceleratedinCWBsystems. ACKNOWLEDGMENTS E.G.andA.R.acknowledgefinancialsupportfromtheAustrianScienceFund(FWF),projectP24926-N27. REFERENCES [1] F.C.JonesandD.C.Ellison,SpaceSci.Rev.58,259–346(1991). [2] L.O.Drury,Rep.Prog.Phys.46,p.973(1983). [3] P.M.Williams,S.M.Dougherty,R.J.Davis,K.A.vanderHucht,M.F.Bode, andD.Y.A.S.Gunawan, Mon.Not.R.Astron.Soc.289,10–20(1997). [4] J.M.Chapman,C.Leitherer,B.Koribalski,R.Bouter, andM.Storey,Astrophys.J.518,p.890(1999). [5] S.M.Dougherty,A.J.Beasley,M.J.Claussen,B.A.Zauderer, andN.J.Bolingbroke,Astrophys.J.623, p.447(2005). [6] D.EichlerandV.V.Usov,Astrophys.J.402,271–279(1993). [7] A.Reimer,M.Pohl, andO.Reimer,Astrophys.J.644,p.1118(2006). [8] P.BenagliaandG.E.Romero,Astron.Astrophys.399,1121–1134(2003). [9] M.Werner,O.Reimer,A.Reimer, andK.Egberts,Astron.Astrophys.555,p.A102(2013). [10] K.Reitberger,O.Reimer,A.Reimer,M.Werner,K.Egberts, andH.Takahashi,Astron.Astrophys.544,p. A98(2012). [11] K.Reitberger,A.Reimer,O.Reimer, andH.Takahashi,Astron.Astrophys.577,p.A100(2015). [12] M.S.Pshirkov,Mon.Not.R.Astron.Soc.457,L99–L102(2016). [13] K.Reitberger,R.Kissmann,A.Reimer,O.Reimer, andG.Dubus,Astrophys.J.782,p.96(2014a). [14] K.Reitberger,R.Kissmann,A.Reimer, andO.Reimer,Astrophys.J.789,p.87(2014b). [15] L.Gargate´ andA.Spitkovsky,Astrophys.J.744,p.67(2012). [16] D.CaprioliandA.Spitkovsky,Astrophys.J.783,p.91(2014). [17] J.G.KirkandP.Schneider,Astrophys.J.322,256–265(1987). [18] M.Ostrowski,Mon.Not.R.Astron.Soc.249,551–559(1991). [19] M.G.Baring,D.C.Ellison, andF.C.Jones,Astrophys.J.409,327–332(1993). [20] M.G.Baring,D.C.Ellison, andF.C.Jones,Astrophys.J.90,547–552(1994). [21] D.C.Ellison,M.G.Baring, andF.C.Jones,Astrophys.J.453,p.873(1995). [22] R.Kissmann,J.Pomoell, andW.Kley,J.Comput.Phys.228,2119–2131(2009). [23] R.Kissmann,K.Reitberger,O.Reimer,A.Reimer, andE.Grimaldo,AcceptedforpublicationAstrophys. J. (2016),arXiv:1609.01130.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.