COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES MOULAYRCHIDSIDIAMMIANDDELFIMF.M.TORRES 8 0 Abstract. WeproveamoregeneralversionoftheGru¨ssinequalitybyusing 0 the recent theory of combined dynamic derivatives on time scales and the 2 moregeneralnotionsofdiamond-αderivativeandintegral. Fortheparticular n case when α = 1, one gets a delta-integral Gru¨ss inequality on time scales; a for α = 0 a nabla-integral Gru¨ss inequality. If we further restrict ourselves J by fixing the time scale to the real (or integer) numbers, then the standard continuous (discrete)inequalitiesareobtained. 1 1 1. Introduction ] A TheGru¨ssinequalityisofgreatinterestindifferentialanddifferenceequationsas C well as many other areas of mathematics [8, 9, 16, 18, 19]. The classicalinequality . was proved by G. Gru¨ss in 1935 [13]: if f and g are two continuous functions on h [a,b] satisfying ϕ≤f(t)≤Φ and γ ≤g(t)≤Γ for all t∈[a,b], then t a m 1 b 1 b b 1 (1) f(t)g(t)dt− f(t)dt g(t)dt ≤ (Φ−ϕ)(Γ−γ). [ (cid:12)(cid:12)b−aZa (b−a)2 Za Za (cid:12)(cid:12) 4 (cid:12) (cid:12) 1 The lit(cid:12)erature on Gru¨ss type inequalities is now vast, and(cid:12) many extensions of the v classica(cid:12)l inequality (1) have been intensively studied by m(cid:12)any authors in the XXI 5 century[3,5,10,17,22,23,24,25]. HereweareinterestedinGru¨sstypeinequalities 6 on time scales. 8 1 The analysis on time scales is a relatively new area of mathematics that unify . and generalize discrete and continuous theories. Moreover, it is a crucial tool in 1 0 many computational and numerical applications. The subject was initiated by 8 StefanHilger[14,15]andisbeingappliedtomanydifferentfieldsinwhichdynamic 0 processes can be described with discrete or continuous models: see [1, 4, 6, 7, 12] : v and references therein. One of the important subjects being developed within the i theory of time scales is the study of inequalities [2, 11, 21, 29]. X Recently, Bohner and Matthews [5] proved a time scales version of the Gru¨ss r a inequality (1) by using the delta integral. Roughly speaking, the main result in [5] asserts that (1) continues to be valid on a general time scale by substituting the Riemann integralby the ∆-integral. The main objective of this paper is to use the more general diamond−α dynamic integral. In2006,acombineddynamicderivative♦ wasintroducedas alinearcombina- α tionof∆and∇dynamicderivativesontimescales[28]. Thediamond–αderivative reducestothestandard∆derivativeforα=1andtothestandard∇derivativefor α=0. On the other hand, it represents a weighted dynamic derivative formula on 2000 Mathematics Subject Classification. 26D15,39A13. Key words and phrases. Time scales, dynamic inequalities, combined dynamic derivatives, Gru¨ssinequality. ResearchpartiallysupportedbytheCentreforResearchonOptimizationandControl(CEOC) fromthePortugueseFoundation forScienceandTechnology(FCT),cofinancedbytheEuropean CommunityFundFEDER/POCI2010; andFCTpostdocfellowshipSFRH/BPD/20934/2004. 1 2 M.R.SIDIAMMIANDD.F.M.TORRES anyuniformlydiscretetimescalewhenα= 1. Wereferthereaderto[20,26,27,28] 2 for an account of the calculus with diamond-α dynamic derivatives. In Section 2 we briefly review the necessary definitions and calculus on time scales. Our results are given in Section 3. 2. Preliminaries A time scale T is an arbitrarynonempty closedsubset of the realnumbers. The time scales calculus was initiated by S. Hilger in his PhD thesis in order to unify discrete and continuous analysis [14, 15]. Let T be a time scale with the topology that it inherits from the real numbers. For t ∈ T, we define the forward jump operator σ :T→T by σ(t)=inf{s∈T:s>t} , and the backward jump operator ρ:T→T by ρ(t)=sup{s∈T:s<t} . If σ(t) > t we say that t is right-scattered, while if ρ(t) < t we say that t is left-scattered. Pointsthat are simultaneously right-scatteredandleft-scattered are said to be isolated. If σ(t) = t, then t is called right-dense; if ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense. The mappings µ,ν : T → [0,+∞) defined by µ(t) := σ(t)−t and ν(t) := t−ρ(t) are called, respectively, the forward and backward graininess function. Given a time scale T, we introduce the sets Tk, T , and Tk as follows. If T k k has a left-scattered maximum t , then Tk = T−{t }, otherwise Tk = T. If T has 1 1 a right-scattered minimum t , then T = T−{t }, otherwise T = T. Finally, 2 k 2 k Tk =Tk T . k k Let f : T → R be a real valued function on a time scale T. Then, for t ∈ Tk, T we define f∆(t) to be the number, if one exists, such that for all ǫ > 0, there is a neighborhood U of t such that for all s∈U, f(σ(t))−f(s)−f∆(t)(σ(t)−s) ≤ǫ|σ(t)−s|. We say that f is(cid:12)delta differentiable on Tk provid(cid:12)ed f∆(t) exists for all t ∈ Tk. (cid:12) (cid:12) Similarly, for t∈T we define f∇(t) to be the number, if one exists, such that for k all ǫ>0, there is a neighborhood V of t such that for all s∈V f(ρ(t))−f(s)−f∇(t)(ρ(t)−s) ≤ǫ|ρ(t)−s|. Wesaythatf isna(cid:12)bladifferentiableonT ,provided(cid:12) thatf∇(t)existsforallt∈T . (cid:12) k (cid:12) k Forf :T→Rwedefinethefunctionfσ :T→Rbyfσ(t)=f(σ(t))forallt∈T, thatis, fσ =f◦σ. Similarly, we define the function fρ :T→R by fρ(t)=f(ρ(t)) for all t∈T, that is, fρ =f ◦ρ. A function f : T → R is called rd-continuous, provided it is continuous at all right-densepointsinTanditsleft-sidedlimitsfiniteatallleft-densepointsinT. A functionf :T→Riscalledld-continuous,provideditiscontinuousatallleft-dense points in T and its right-sided limits finite at all right-dense points in T. A function F : T → R is called a delta antiderivative of f : T → R, provided F∆(t)=f(t) holds for all t∈Tk. Then the delta integral of f is defined by b f(t)∆t=F(b)−F(a). Za A function G : T → R is called a nabla antiderivative of g : T → R, provided G∇(t) = g(t) holds for all t ∈ T . Then the nabla integral of g is defined by k b g(t)∇t=G(b)−G(a). For more details on time scales one can see [1, 6, 7]. a R COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 3 Nowweintroduce the diamond-αderivativeandintegral,referringthe readerto [20, 26, 27, 28] for more on the associated calculus. LetTbeatimescaleandf differentiableonTinthe∆and∇senses. Fort∈T, we define the diamond-α dynamic derivative f♦α(t) by f♦α(t)=αf∆(t)+(1−α)f∇(t), 0≤α≤1. Thus, f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable. The diamond-α derivative reduces to the standard ∆ derivative for α = 1, or the standard ∇ derivative for α = 0. On the other hand, it represents a “weighted derivative” for α ∈ (0,1). Diamond-α derivatives have shown in computational experiments to provide efficient and balanced approximation formulas, leading to the design of more reliable numerical methods [27, 28]. Let f,g :T→R be diamond-α differentiable at t∈T. Then, (i) f +g :T→R is diamond-α differentiable at t∈T with (f +g)♦α(t)=(f)♦α(t)+(g)♦α(t). (ii) For any constant c, cf :T→R is diamond-α differentiable at t∈T with (cf)♦α(t)=c(f)♦α(t). (ii) fg :T→R is diamond-α differentiable at t∈T with (fg)♦α(t)=(f)♦α(t)g(t)+αfσ(t)(g)∆(t)+(1−α)fρ(t)(g)∇(t). Let a,t ∈ T, and h : T → R. Then, the diamond-α integral from a to t of h is defined by t t t h(τ)♦ τ =α h(τ)∆τ +(1−α) h(τ)∇τ, 0≤α≤1. α Za Za Za We may notice the absence of an anti-derivative for the ♦ combined derivative. α For t∈T, in general t ♦α h(τ)♦ τ 6=h(t). α (cid:18)Za (cid:19) Although the fundamental theorem of calculus does not hold for the ♦ -integral, α other properties do. Let a,b,t∈T, c∈R. Then, t t t (i) {f(τ)+g(τ)}♦ τ = f(τ)♦ τ + g(τ)♦ τ; a α a α a α t t (ii) cf(τ)♦ τ =c f(τ)♦ τ; Ra α a R α R t b t (iii) f(τ)♦ τ = f(τ)♦ τ + f(τ)♦ τ; Ra α aR α b α (iv) If f(t)≥0 for all t, then bf(t)♦ t≥0; R R a R α (v) If f(t)≤g(t) for all t, then bf(t)♦ t≤ bg(t)♦ t; R a α a α (vi) If f(t)≥0 for all t, then f(t)≡0 if and only if bf(t)♦ t=0. R R a α In [11] a diamond-α Jensen’s inequality on time scaRles is proved: let c and d be real numbers, u : [a,b] → (c,d) be continuous and h : (c,d) → R be a convex function. Then, (2) h abu(t)♦αt ≤ 1 bh(u(t))♦ t. α b−a b−a R ! Za We willuse the diamond-αJensen’sinequality (2)inthe proofofourTheorem3.4. 4 M.R.SIDIAMMIANDD.F.M.TORRES 3. Main Results In the sequel we assume that T is a time scale, a, b ∈ T with a < b, and [a,b] denote [a,b]∩T. We begin by proving some auxiliary lemmas. Lemma 3.1. If f ∈ C([a,b],R) satisfy m ≤ f(t) ≤ M for all t ∈ [a,b] and b f(t)♦ t=0, then a α R 1 b 1 f2(t)♦ t≤ (M −m)2. α b−a 4 Za Proof. Define ϕ(t) = f(t)−m. It follows that f(t) = m+(M −m)ϕ(t). One can M−m easily check that 0≤ϕ(t)≤1. Then, 1 b f2(t)♦ t α b−a Za 1 b = (m+(M −m)ϕ(t))2♦ t α b−a Za 1 b = m2+2m(M −m)ϕ(t)+(M −m)2ϕ2(t) ♦ t α b−a Za 2m((cid:0)M −m) b (M −m)2 b (cid:1) =m2+ ϕ(t)♦ t+ ϕ2(t)♦ t α α b−a b−a Za Za 2m(M −m) b (M −m)2 b ≤m2+ ϕ(t)♦ t+ ϕ(t)♦ t α α b−a b−a Za Za 2m(M −m) b f(t)−m (M −m)2 b f(t)−m =m2+ ♦ t+ ♦ t α α b−a M −m b−a M −m Za Za −m −m =m2+2m(M −m) +(M −m)2 M −m M −m (cid:18) (cid:19) (cid:18) (cid:19) 1 =−mM = (M −m)2−(M +m)2 4 1 (cid:0) (cid:1) ≤ (M −m)2. 4 (cid:3) Lemma 3.2. If f ∈ C([a,b],R) satisfy m ≤ f(t) ≤ M for all t ∈ [a,b] and b f(t)♦ t6=0, then a α 2 R 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! Proof. Setting 1 b f(t)♦ t=I(b−a), α b−a Za I ∈R, and F(t)=f(t)−I(b−a), we then have m−I(b−a)≤F(t)≤M −I(b−a). Therefore, 1 b 1 b F(t)♦ t= (f(t)−I(b−a))♦ t α α b−a b−a Za Za (3) 1 b = f(t)♦ t−I(b−a) α b−a Za =0. COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 5 It follows from Lemma 3.1 that 1 b 1 F2(t)♦ t≤ ((M −I(b−a))−(m−I(b−a)))2 α b−a 4 (4) Za 1 = (M −m)2. 4 On the other hand, using (3) we have 2 1 b 1 b F2(t)♦ t− F(t)♦ t α α b−a b−a Za Za ! 1 b = F2(t)♦ t α b−a Za 1 b = f2(t)−2I(b−a)f(t)+I2(b−a) ♦ t α b−a (5) Za 1 b(cid:0) (cid:1) = f2(t)♦ t−2I2(b−a)+I2(b−a) α b−a Za 1 b = f2(t)♦ t−I2(b−a) α b−a Za 2 1 b 1 b = f2(t)♦ t− f(t)♦ t . α α b−a b−a Za Za ! Then, using (4) and (5), we conclude with 2 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! (cid:3) From Lemma 3.1 and Lemma 3.2 we have the following corollary. Corollary 3.3. If f ∈C([a,b],R) satisfy m≤f(t)≤M for all t∈[a,b], then 2 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! We are now in conditions to prove the intended Gru¨ss inequality. Theorem 3.4. (The diamond-α Gru¨ss inequality on time scales, α ∈ [0,1]). Let T be a time scale, a,b ∈ T with a < b. If f,g ∈ C([a,b],R) satisfy ϕ ≤ f(t) ≤ Φ and γ ≤g(t)≤Γ for all t∈[a,b]∩T, then 1 b 1 b b 1 (6) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa α (b−a)2 Za α Za α (cid:12)(cid:12) 4 (cid:12) (cid:12) Proo(cid:12)f. A straightforwardcomputation leads to (cid:12) (cid:12) (cid:12) 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 1 b (7) = (f(t)+g(t))2−(f(t)−g(t))2 ♦αt 4 (b−a) Za (cid:0) (cid:1) 4 b b − f(t)♦ t g(t)♦ t . (b−a)2 α α Za Za ! 6 M.R.SIDIAMMIANDD.F.M.TORRES If we consider the function h(x) = x2, which is obviously convex, then using the diamond-α Jensen’s inequality on time scales (2), we obtain (8) ab(f(t)−g(t))♦αt 2 ≤ 1 b(f(t)−g(t))2♦ t. α b−a b−a R ! Za Then we have by (7) and (8) that (9) 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)−g(t))♦ t 4 (b−a) α (b−a)2 α ( Za Za ! 4 b b − f(t)♦ t g(t)♦ t (b−a)2 α α Za Za ) 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)+g(t))♦ t 4 (b−a) α (b−a)2 α ( Za Za ! 2 2 1 b 1 b + (f(t)+g(t))♦ t − (f(t)−g(t))♦ t (b−a)2 α (b−a)2 α Za ! Za ! 4 b b − f(t)♦ t g(t)♦ t (b−a)2 α α Za Za ) 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)+g(t))♦ t , 4(b−a) α (b−a)2 α Za Za ! since 2 2 1 b 1 b (f(t)+g(t))♦ t − (f(t)−g(t))♦ t (b−a)2 α (b−a)2 α Za ! Za ! 4 b b − f(t)♦ t g(t)♦ t=0. (b−a)2 α α Za Za Onthe other hand, we haveϕ+Φ≤(f+g)(t)≤γ+Γ. Applying Corollary3.3 to the function f +g, we get 2 1 b 1 b (10) (f(t)+g(t))2♦ t− (f(t)+g(t))♦ t ♦ t b−a α (b−a)2 α α Za Za ! 1 1 ≤ ((Φ+Γ)−(ϕ+γ))2 = (Φ+Γ−ϕ−γ)2. 4 4 Gathering (8), (9) and (10), we obtain: 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t f(t)♦ t b−a α (b−a)2 α α Za Za Za 1 ≤ ((Φ+Γ)−(ϕ+γ))2 16 1 1 ≤ (Φ−ϕ)(Γ−γ)+ (Φ−ϕ−(Γ−γ))2 . 4 4 (cid:18) (cid:19) COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 7 We consider now two cases: (i) if Φ−ϕ=Γ−γ, then 1 b 1 b b 1 (11) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t≤ (Φ−ϕ)(Γ−γ); b−a α (b−a)2 α α 4 Za Za Za (ii) if Φ−ϕ6=Γ−γ, let us define Γ−γ Φ−ϕ β = , µ= , sΦ−ϕ sΓ−γ and f (t)=βf(t), g (t)=µg(t). 1 1 Note that βµ=1. Then, we have m =βϕ≤f (t)≤βΦ=M , m =µγ ≤g (t)≤µΓ=M , 1 1 1 2 1 2 and it follows that M −m =βΦ−βϕ=β(Φ−ϕ) 1 1 (12) = (Φ−ϕ)(Γ−γ)=µ(Γ−γ)=M −m . 2 2 Using the fact that βµ=1p, (11) and (12) (with f , g ), we get 1 1 1 b 1 b b (13) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b = βµf(t)g(t)♦ t− βf(t)♦ t µg(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b = f (t)g (t)♦ t− f (t)♦ t g (t)♦ t b−a 1 1 α (b−a)2 1 α 1 α Za Za Za 1 1 1 ≤ (M −m )(M −m )= βµ(Φ−ϕ)(Γ−γ)= (Φ−ϕ)(Γ−γ). 1 1 2 2 4 4 4 If we now consider the case of −f we have −Φ≤−f(t)≤−ϕ. Using (13), 1 b 1 b b (14) (−f)(t)g(t)♦ t− (−f)(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b =− f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α ( Za Za Za ) 1 1 ≤ (−ϕ−(−Φ))(Γ−γ)= (Φ−ϕ)(Γ−γ). 4 4 Then, using (13) and (14), we arrive to 1 b 1 b b 1 f(t)g(t)♦ t− f(t)♦ t g(t)♦ t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa α (b−a)2 Za α Za α (cid:12)(cid:12) 4 Th(cid:12)(cid:12)is completes the proof of our Theorem 3.4. (cid:12)(cid:12) (cid:3) (cid:12) (cid:12) Remark 3.1. When α=1, we have the following Gru¨ss inequality on time scales: 1 b 1 b b 1 f(t)g(t)∆t− f(t)∆t g(t)∆t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa (b−a)2 Za Za (cid:12)(cid:12) 4 (cid:12) (cid:12) Rem(cid:12)ark 3.2. For T=R Theorem 3.4 gives the classical in(cid:12)equality (1). (cid:12) (cid:12) Applying the Gru¨ss inequality in Theorem 3.4 to the time scale T = Z with a=0, b=n, andf(i)=x , i=1,...,n, we arriveto the following corollarywhich i improves [10]. 8 M.R.SIDIAMMIANDD.F.M.TORRES Corollary 3.5. If ϕ≤x ≤Φ and γ ≤y ≤Γ for all 1≤i≤n, then the following i i discrete Gru¨ss inequality holds: n n n 1 1 1 x y − x y ≤ (Φ−ϕ)(Γ−γ). (cid:12)n i i n2 i i(cid:12) 4 (cid:12) Xi=1 Xi=1 Xi=1 (cid:12) (cid:12) (cid:12) Theorem 3.4(cid:12)is valid for an arbitrary tim(cid:12)e scale. For example, let q > 1 and (cid:12) (cid:12) T={qN0}. Corollary 3.6. (Quantum Gru¨ss inequality) If f and g satisfy ϕ≤f(qi)≤Φ and γ ≤g(qi)≤Γ for all qi, i=m,...,n, then the following inequality holds: n−1qif(qi+1)g(qi+1) 1 n−1 n−1 i=m − qif(qi+1) qig(qi+1) (cid:12)(cid:12)(cid:12)P in=−m1 qi in=−m1 qi 2 iX=m ! iX=m !(cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12)(cid:12) P (cid:16)P (cid:17) ≤ 1(Φ−ϕ)(Γ−(cid:12)(cid:12)γ). (cid:12) (cid:12) 4 References [1] R.Agarwal,M.Bohner,D.O’ReganandA.Peterson, Dynamicequations ontimescales: a survey,J.Comput.Appl.Math.141(2002), no.1-2,1–26. [2] R.Agarwal,M.BohnerandA.Peterson,Inequalitiesontimescales: asurvey,Math.Inequal. Appl.4(2001), no.4,535–557. [3] G. A. Anastassiou, MultivariateFinktype identity and multivariate Ostrowski,comparison ofmeansandGru¨sstypeinequalities,Math.Comput.Modelling46(2007),no.3-4,351–374. [4] Z.BartosiewiczandD.F.M.Torres,Noether’stheoremontimescales,J.Math.Anal.Appl., inpress. [5] M.BohnerandT.Matthews,TheGru¨ssinequalityontimescales,Commun.Math.Anal.3 (2007), no.1,1–8(electronic). [6] M.BohnerandA.Peterson,Dynamic equations on time scales,Birkha¨userBoston,Boston, MA,2001. [7] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkha¨user Boston,Boston,MA,2003. [8] P.CeroneandS.S.Dragomir,ArefinementoftheGru¨ssinequalityandapplications,Tamkang J.Math.38(2007), no.1,37–49. [9] S. S. Dragomir, A generalization of Gru¨ss’s inequality in inner product spaces and applica- tions,J.Math.Anal.Appl.237(1999), no.1,74–82. [10] S.S.Dragomir,AGru¨sstypediscreteinequalityininnerproductspacesandapplications,J. Math.Anal.Appl.250(2000), no.2,494–511. [11] R.A.C.Ferreira,M.R.SidiAmmiandD.F.M.Torres,Diamond-alphaintegralinequalities ontimescales,Proc.8thPortugueseConferenceonAutomaticControl–CONTROLO’2008, 2008,inpress. [12] R.A.C.FerreiraandD.F.M.Torres,Remarksonthecalculusofvariationsontimescales, Int.J.Ecol.Econ.Stat.9(2007), no.F07,65–73. b [13] G. Gru¨ss, U¨ber das Maximum des absoluten Betrages von b−1aR f(x)g(x)dx − a b b (b−1a)2 Ra f(x)dxRa g(x)dx,Math.Z.39(1935), no.1,215–226. [14] S.Hilger,Analysisonmeasurechains—aunifiedapproachtocontinuousanddiscretecalculus, ResultsMath.18(1990), no.1-2,18–56. [15] S. Hilger, Differential and difference calculus—unified!, Nonlinear Anal. 30 (1997), no. 5, 2683–2694. [16] Z. Liu, Notes on a Gru¨ss type inequality and its application, Vietnam J. Math. 35 (2007), no.2,121–127. [17] A. McD. Mercer, An improvement of the Gru¨ss inequality, JIPAM. J. Inequal. Pure Appl. Math.6(2005), no.4,Article93,4pp.(electronic). [18] D.S.Mitrinovi´c,Analytic inequalities,Springer,NewYork,1970. [19] D. S. Mitrinovi´c, J. E. Peˇcari´c and A. M. Fink, Classical and new inequalities in analysis, KluwerAcad.Publ.,Dordrecht,1993. COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 9 [20] D. Mozyrska and D. F. M. Torres, Diamond-alpha polynomial series on time scales, Proc. 8thPortugueseConferenceonAutomaticControl–CONTROLO’2008,2008,inpress. [21] U.M.OzkanandH.Yildirim,Steffensen’sintegralinequalityontimescales,J.Inequal.Appl. 2007,Art.ID46524,10pp. [22] B. G. Pachpatte, Some new Ostrowski and Gru¨ss type inequalities, Tamkang J. Math. 38 (2007), no.2,111–120. [23] J.E.Peˇcari´candB.Tepeˇs, OnGru¨sstypeinequalitiesofDragomirandFedotov,JIPAM.J. Inequal.PureAppl.Math.4(2003), no.5,Article91,6pp.(electronic). [24] J.Peˇcari´candB.Tepeˇs,AnoteonGru¨sstypeinequalityintermsof∆-seminorms,Makedon. Akad.Nauk.Umet.Oddel.Mat.-Tehn.Nauk.Prilozi23/24(2002/03),no.1-2,29–35(2004). [25] I. Peri´cand R.Raji´c, Gru¨ssinequality forcompletely bounded maps,Linear AlgebraAppl. 390(2004), 287–292. [26] J.W.Rogers,Jr.andQ.Sheng,Notesonthediamond-αdynamicderivativeontimescales, J.Math.Anal.Appl.326(2007), no.1,228–241. [27] Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales,Electron.J.Qual.TheoryDiffer.Equ.2007,No.17,13pp.(electronic). [28] Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivativesontimescalesandtheirapplications,NonlinearAnal.RealWorldAppl.7(2006), no.3,395–413. [29] M.R.SidiAmmiandD.F.M.Torres,Existenceofpositivesolutionsfornonlocalp-Laplacian thermistor problems on time scales, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article69,10pp. DepartmentofMathematics,University of Aveiro,3810-193Aveiro,Portugal E-mail address: [email protected] E-mail address: [email protected]