ebook img

Combined dynamic Gruss inequalities on time scales PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combined dynamic Gruss inequalities on time scales

COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES MOULAYRCHIDSIDIAMMIANDDELFIMF.M.TORRES 8 0 Abstract. WeproveamoregeneralversionoftheGru¨ssinequalitybyusing 0 the recent theory of combined dynamic derivatives on time scales and the 2 moregeneralnotionsofdiamond-αderivativeandintegral. Fortheparticular n case when α = 1, one gets a delta-integral Gru¨ss inequality on time scales; a for α = 0 a nabla-integral Gru¨ss inequality. If we further restrict ourselves J by fixing the time scale to the real (or integer) numbers, then the standard continuous (discrete)inequalitiesareobtained. 1 1 1. Introduction ] A TheGru¨ssinequalityisofgreatinterestindifferentialanddifferenceequationsas C well as many other areas of mathematics [8, 9, 16, 18, 19]. The classicalinequality . was proved by G. Gru¨ss in 1935 [13]: if f and g are two continuous functions on h [a,b] satisfying ϕ≤f(t)≤Φ and γ ≤g(t)≤Γ for all t∈[a,b], then t a m 1 b 1 b b 1 (1) f(t)g(t)dt− f(t)dt g(t)dt ≤ (Φ−ϕ)(Γ−γ). [ (cid:12)(cid:12)b−aZa (b−a)2 Za Za (cid:12)(cid:12) 4 (cid:12) (cid:12) 1 The lit(cid:12)erature on Gru¨ss type inequalities is now vast, and(cid:12) many extensions of the v classica(cid:12)l inequality (1) have been intensively studied by m(cid:12)any authors in the XXI 5 century[3,5,10,17,22,23,24,25]. HereweareinterestedinGru¨sstypeinequalities 6 on time scales. 8 1 The analysis on time scales is a relatively new area of mathematics that unify . and generalize discrete and continuous theories. Moreover, it is a crucial tool in 1 0 many computational and numerical applications. The subject was initiated by 8 StefanHilger[14,15]andisbeingappliedtomanydifferentfieldsinwhichdynamic 0 processes can be described with discrete or continuous models: see [1, 4, 6, 7, 12] : v and references therein. One of the important subjects being developed within the i theory of time scales is the study of inequalities [2, 11, 21, 29]. X Recently, Bohner and Matthews [5] proved a time scales version of the Gru¨ss r a inequality (1) by using the delta integral. Roughly speaking, the main result in [5] asserts that (1) continues to be valid on a general time scale by substituting the Riemann integralby the ∆-integral. The main objective of this paper is to use the more general diamond−α dynamic integral. In2006,acombineddynamicderivative♦ wasintroducedas alinearcombina- α tionof∆and∇dynamicderivativesontimescales[28]. Thediamond–αderivative reducestothestandard∆derivativeforα=1andtothestandard∇derivativefor α=0. On the other hand, it represents a weighted dynamic derivative formula on 2000 Mathematics Subject Classification. 26D15,39A13. Key words and phrases. Time scales, dynamic inequalities, combined dynamic derivatives, Gru¨ssinequality. ResearchpartiallysupportedbytheCentreforResearchonOptimizationandControl(CEOC) fromthePortugueseFoundation forScienceandTechnology(FCT),cofinancedbytheEuropean CommunityFundFEDER/POCI2010; andFCTpostdocfellowshipSFRH/BPD/20934/2004. 1 2 M.R.SIDIAMMIANDD.F.M.TORRES anyuniformlydiscretetimescalewhenα= 1. Wereferthereaderto[20,26,27,28] 2 for an account of the calculus with diamond-α dynamic derivatives. In Section 2 we briefly review the necessary definitions and calculus on time scales. Our results are given in Section 3. 2. Preliminaries A time scale T is an arbitrarynonempty closedsubset of the realnumbers. The time scales calculus was initiated by S. Hilger in his PhD thesis in order to unify discrete and continuous analysis [14, 15]. Let T be a time scale with the topology that it inherits from the real numbers. For t ∈ T, we define the forward jump operator σ :T→T by σ(t)=inf{s∈T:s>t} , and the backward jump operator ρ:T→T by ρ(t)=sup{s∈T:s<t} . If σ(t) > t we say that t is right-scattered, while if ρ(t) < t we say that t is left-scattered. Pointsthat are simultaneously right-scatteredandleft-scattered are said to be isolated. If σ(t) = t, then t is called right-dense; if ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense. The mappings µ,ν : T → [0,+∞) defined by µ(t) := σ(t)−t and ν(t) := t−ρ(t) are called, respectively, the forward and backward graininess function. Given a time scale T, we introduce the sets Tk, T , and Tk as follows. If T k k has a left-scattered maximum t , then Tk = T−{t }, otherwise Tk = T. If T has 1 1 a right-scattered minimum t , then T = T−{t }, otherwise T = T. Finally, 2 k 2 k Tk =Tk T . k k Let f : T → R be a real valued function on a time scale T. Then, for t ∈ Tk, T we define f∆(t) to be the number, if one exists, such that for all ǫ > 0, there is a neighborhood U of t such that for all s∈U, f(σ(t))−f(s)−f∆(t)(σ(t)−s) ≤ǫ|σ(t)−s|. We say that f is(cid:12)delta differentiable on Tk provid(cid:12)ed f∆(t) exists for all t ∈ Tk. (cid:12) (cid:12) Similarly, for t∈T we define f∇(t) to be the number, if one exists, such that for k all ǫ>0, there is a neighborhood V of t such that for all s∈V f(ρ(t))−f(s)−f∇(t)(ρ(t)−s) ≤ǫ|ρ(t)−s|. Wesaythatf isna(cid:12)bladifferentiableonT ,provided(cid:12) thatf∇(t)existsforallt∈T . (cid:12) k (cid:12) k Forf :T→Rwedefinethefunctionfσ :T→Rbyfσ(t)=f(σ(t))forallt∈T, thatis, fσ =f◦σ. Similarly, we define the function fρ :T→R by fρ(t)=f(ρ(t)) for all t∈T, that is, fρ =f ◦ρ. A function f : T → R is called rd-continuous, provided it is continuous at all right-densepointsinTanditsleft-sidedlimitsfiniteatallleft-densepointsinT. A functionf :T→Riscalledld-continuous,provideditiscontinuousatallleft-dense points in T and its right-sided limits finite at all right-dense points in T. A function F : T → R is called a delta antiderivative of f : T → R, provided F∆(t)=f(t) holds for all t∈Tk. Then the delta integral of f is defined by b f(t)∆t=F(b)−F(a). Za A function G : T → R is called a nabla antiderivative of g : T → R, provided G∇(t) = g(t) holds for all t ∈ T . Then the nabla integral of g is defined by k b g(t)∇t=G(b)−G(a). For more details on time scales one can see [1, 6, 7]. a R COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 3 Nowweintroduce the diamond-αderivativeandintegral,referringthe readerto [20, 26, 27, 28] for more on the associated calculus. LetTbeatimescaleandf differentiableonTinthe∆and∇senses. Fort∈T, we define the diamond-α dynamic derivative f♦α(t) by f♦α(t)=αf∆(t)+(1−α)f∇(t), 0≤α≤1. Thus, f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable. The diamond-α derivative reduces to the standard ∆ derivative for α = 1, or the standard ∇ derivative for α = 0. On the other hand, it represents a “weighted derivative” for α ∈ (0,1). Diamond-α derivatives have shown in computational experiments to provide efficient and balanced approximation formulas, leading to the design of more reliable numerical methods [27, 28]. Let f,g :T→R be diamond-α differentiable at t∈T. Then, (i) f +g :T→R is diamond-α differentiable at t∈T with (f +g)♦α(t)=(f)♦α(t)+(g)♦α(t). (ii) For any constant c, cf :T→R is diamond-α differentiable at t∈T with (cf)♦α(t)=c(f)♦α(t). (ii) fg :T→R is diamond-α differentiable at t∈T with (fg)♦α(t)=(f)♦α(t)g(t)+αfσ(t)(g)∆(t)+(1−α)fρ(t)(g)∇(t). Let a,t ∈ T, and h : T → R. Then, the diamond-α integral from a to t of h is defined by t t t h(τ)♦ τ =α h(τ)∆τ +(1−α) h(τ)∇τ, 0≤α≤1. α Za Za Za We may notice the absence of an anti-derivative for the ♦ combined derivative. α For t∈T, in general t ♦α h(τ)♦ τ 6=h(t). α (cid:18)Za (cid:19) Although the fundamental theorem of calculus does not hold for the ♦ -integral, α other properties do. Let a,b,t∈T, c∈R. Then, t t t (i) {f(τ)+g(τ)}♦ τ = f(τ)♦ τ + g(τ)♦ τ; a α a α a α t t (ii) cf(τ)♦ τ =c f(τ)♦ τ; Ra α a R α R t b t (iii) f(τ)♦ τ = f(τ)♦ τ + f(τ)♦ τ; Ra α aR α b α (iv) If f(t)≥0 for all t, then bf(t)♦ t≥0; R R a R α (v) If f(t)≤g(t) for all t, then bf(t)♦ t≤ bg(t)♦ t; R a α a α (vi) If f(t)≥0 for all t, then f(t)≡0 if and only if bf(t)♦ t=0. R R a α In [11] a diamond-α Jensen’s inequality on time scaRles is proved: let c and d be real numbers, u : [a,b] → (c,d) be continuous and h : (c,d) → R be a convex function. Then, (2) h abu(t)♦αt ≤ 1 bh(u(t))♦ t. α b−a b−a R ! Za We willuse the diamond-αJensen’sinequality (2)inthe proofofourTheorem3.4. 4 M.R.SIDIAMMIANDD.F.M.TORRES 3. Main Results In the sequel we assume that T is a time scale, a, b ∈ T with a < b, and [a,b] denote [a,b]∩T. We begin by proving some auxiliary lemmas. Lemma 3.1. If f ∈ C([a,b],R) satisfy m ≤ f(t) ≤ M for all t ∈ [a,b] and b f(t)♦ t=0, then a α R 1 b 1 f2(t)♦ t≤ (M −m)2. α b−a 4 Za Proof. Define ϕ(t) = f(t)−m. It follows that f(t) = m+(M −m)ϕ(t). One can M−m easily check that 0≤ϕ(t)≤1. Then, 1 b f2(t)♦ t α b−a Za 1 b = (m+(M −m)ϕ(t))2♦ t α b−a Za 1 b = m2+2m(M −m)ϕ(t)+(M −m)2ϕ2(t) ♦ t α b−a Za 2m((cid:0)M −m) b (M −m)2 b (cid:1) =m2+ ϕ(t)♦ t+ ϕ2(t)♦ t α α b−a b−a Za Za 2m(M −m) b (M −m)2 b ≤m2+ ϕ(t)♦ t+ ϕ(t)♦ t α α b−a b−a Za Za 2m(M −m) b f(t)−m (M −m)2 b f(t)−m =m2+ ♦ t+ ♦ t α α b−a M −m b−a M −m Za Za −m −m =m2+2m(M −m) +(M −m)2 M −m M −m (cid:18) (cid:19) (cid:18) (cid:19) 1 =−mM = (M −m)2−(M +m)2 4 1 (cid:0) (cid:1) ≤ (M −m)2. 4 (cid:3) Lemma 3.2. If f ∈ C([a,b],R) satisfy m ≤ f(t) ≤ M for all t ∈ [a,b] and b f(t)♦ t6=0, then a α 2 R 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! Proof. Setting 1 b f(t)♦ t=I(b−a), α b−a Za I ∈R, and F(t)=f(t)−I(b−a), we then have m−I(b−a)≤F(t)≤M −I(b−a). Therefore, 1 b 1 b F(t)♦ t= (f(t)−I(b−a))♦ t α α b−a b−a Za Za (3) 1 b = f(t)♦ t−I(b−a) α b−a Za =0. COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 5 It follows from Lemma 3.1 that 1 b 1 F2(t)♦ t≤ ((M −I(b−a))−(m−I(b−a)))2 α b−a 4 (4) Za 1 = (M −m)2. 4 On the other hand, using (3) we have 2 1 b 1 b F2(t)♦ t− F(t)♦ t α α b−a b−a Za Za ! 1 b = F2(t)♦ t α b−a Za 1 b = f2(t)−2I(b−a)f(t)+I2(b−a) ♦ t α b−a (5) Za 1 b(cid:0) (cid:1) = f2(t)♦ t−2I2(b−a)+I2(b−a) α b−a Za 1 b = f2(t)♦ t−I2(b−a) α b−a Za 2 1 b 1 b = f2(t)♦ t− f(t)♦ t . α α b−a b−a Za Za ! Then, using (4) and (5), we conclude with 2 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! (cid:3) From Lemma 3.1 and Lemma 3.2 we have the following corollary. Corollary 3.3. If f ∈C([a,b],R) satisfy m≤f(t)≤M for all t∈[a,b], then 2 1 b 1 b 1 f2(t)♦ t− f(t)♦ t ≤ (M −m)2. α α b−a b−a 4 Za Za ! We are now in conditions to prove the intended Gru¨ss inequality. Theorem 3.4. (The diamond-α Gru¨ss inequality on time scales, α ∈ [0,1]). Let T be a time scale, a,b ∈ T with a < b. If f,g ∈ C([a,b],R) satisfy ϕ ≤ f(t) ≤ Φ and γ ≤g(t)≤Γ for all t∈[a,b]∩T, then 1 b 1 b b 1 (6) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa α (b−a)2 Za α Za α (cid:12)(cid:12) 4 (cid:12) (cid:12) Proo(cid:12)f. A straightforwardcomputation leads to (cid:12) (cid:12) (cid:12) 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 1 b (7) = (f(t)+g(t))2−(f(t)−g(t))2 ♦αt 4 (b−a) Za (cid:0) (cid:1) 4 b b − f(t)♦ t g(t)♦ t . (b−a)2 α α Za Za ! 6 M.R.SIDIAMMIANDD.F.M.TORRES If we consider the function h(x) = x2, which is obviously convex, then using the diamond-α Jensen’s inequality on time scales (2), we obtain (8) ab(f(t)−g(t))♦αt 2 ≤ 1 b(f(t)−g(t))2♦ t. α b−a b−a R ! Za Then we have by (7) and (8) that (9) 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)−g(t))♦ t 4 (b−a) α (b−a)2 α ( Za Za ! 4 b b − f(t)♦ t g(t)♦ t (b−a)2 α α Za Za ) 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)+g(t))♦ t 4 (b−a) α (b−a)2 α ( Za Za ! 2 2 1 b 1 b + (f(t)+g(t))♦ t − (f(t)−g(t))♦ t (b−a)2 α (b−a)2 α Za ! Za ! 4 b b − f(t)♦ t g(t)♦ t (b−a)2 α α Za Za ) 2 1 1 b 1 b ≤ ((f(t)+g(t))2♦ t− (f(t)+g(t))♦ t , 4(b−a) α (b−a)2 α   Za Za !  since   2 2 1 b 1 b (f(t)+g(t))♦ t − (f(t)−g(t))♦ t (b−a)2 α (b−a)2 α Za ! Za ! 4 b b − f(t)♦ t g(t)♦ t=0. (b−a)2 α α Za Za Onthe other hand, we haveϕ+Φ≤(f+g)(t)≤γ+Γ. Applying Corollary3.3 to the function f +g, we get 2 1 b 1 b (10) (f(t)+g(t))2♦ t− (f(t)+g(t))♦ t ♦ t b−a α (b−a)2 α α Za Za ! 1 1 ≤ ((Φ+Γ)−(ϕ+γ))2 = (Φ+Γ−ϕ−γ)2. 4 4 Gathering (8), (9) and (10), we obtain: 1 b 1 b b f(t)g(t)♦ t− f(t)♦ t f(t)♦ t b−a α (b−a)2 α α Za Za Za 1 ≤ ((Φ+Γ)−(ϕ+γ))2 16 1 1 ≤ (Φ−ϕ)(Γ−γ)+ (Φ−ϕ−(Γ−γ))2 . 4 4 (cid:18) (cid:19) COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 7 We consider now two cases: (i) if Φ−ϕ=Γ−γ, then 1 b 1 b b 1 (11) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t≤ (Φ−ϕ)(Γ−γ); b−a α (b−a)2 α α 4 Za Za Za (ii) if Φ−ϕ6=Γ−γ, let us define Γ−γ Φ−ϕ β = , µ= , sΦ−ϕ sΓ−γ and f (t)=βf(t), g (t)=µg(t). 1 1 Note that βµ=1. Then, we have m =βϕ≤f (t)≤βΦ=M , m =µγ ≤g (t)≤µΓ=M , 1 1 1 2 1 2 and it follows that M −m =βΦ−βϕ=β(Φ−ϕ) 1 1 (12) = (Φ−ϕ)(Γ−γ)=µ(Γ−γ)=M −m . 2 2 Using the fact that βµ=1p, (11) and (12) (with f , g ), we get 1 1 1 b 1 b b (13) f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b = βµf(t)g(t)♦ t− βf(t)♦ t µg(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b = f (t)g (t)♦ t− f (t)♦ t g (t)♦ t b−a 1 1 α (b−a)2 1 α 1 α Za Za Za 1 1 1 ≤ (M −m )(M −m )= βµ(Φ−ϕ)(Γ−γ)= (Φ−ϕ)(Γ−γ). 1 1 2 2 4 4 4 If we now consider the case of −f we have −Φ≤−f(t)≤−ϕ. Using (13), 1 b 1 b b (14) (−f)(t)g(t)♦ t− (−f)(t)♦ t g(t)♦ t b−a α (b−a)2 α α Za Za Za 1 b 1 b b =− f(t)g(t)♦ t− f(t)♦ t g(t)♦ t b−a α (b−a)2 α α ( Za Za Za ) 1 1 ≤ (−ϕ−(−Φ))(Γ−γ)= (Φ−ϕ)(Γ−γ). 4 4 Then, using (13) and (14), we arrive to 1 b 1 b b 1 f(t)g(t)♦ t− f(t)♦ t g(t)♦ t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa α (b−a)2 Za α Za α (cid:12)(cid:12) 4 Th(cid:12)(cid:12)is completes the proof of our Theorem 3.4. (cid:12)(cid:12) (cid:3) (cid:12) (cid:12) Remark 3.1. When α=1, we have the following Gru¨ss inequality on time scales: 1 b 1 b b 1 f(t)g(t)∆t− f(t)∆t g(t)∆t ≤ (Φ−ϕ)(Γ−γ). (cid:12)(cid:12)b−aZa (b−a)2 Za Za (cid:12)(cid:12) 4 (cid:12) (cid:12) Rem(cid:12)ark 3.2. For T=R Theorem 3.4 gives the classical in(cid:12)equality (1). (cid:12) (cid:12) Applying the Gru¨ss inequality in Theorem 3.4 to the time scale T = Z with a=0, b=n, andf(i)=x , i=1,...,n, we arriveto the following corollarywhich i improves [10]. 8 M.R.SIDIAMMIANDD.F.M.TORRES Corollary 3.5. If ϕ≤x ≤Φ and γ ≤y ≤Γ for all 1≤i≤n, then the following i i discrete Gru¨ss inequality holds: n n n 1 1 1 x y − x y ≤ (Φ−ϕ)(Γ−γ). (cid:12)n i i n2 i i(cid:12) 4 (cid:12) Xi=1 Xi=1 Xi=1 (cid:12) (cid:12) (cid:12) Theorem 3.4(cid:12)is valid for an arbitrary tim(cid:12)e scale. For example, let q > 1 and (cid:12) (cid:12) T={qN0}. Corollary 3.6. (Quantum Gru¨ss inequality) If f and g satisfy ϕ≤f(qi)≤Φ and γ ≤g(qi)≤Γ for all qi, i=m,...,n, then the following inequality holds: n−1qif(qi+1)g(qi+1) 1 n−1 n−1 i=m − qif(qi+1) qig(qi+1) (cid:12)(cid:12)(cid:12)P in=−m1 qi in=−m1 qi 2 iX=m ! iX=m !(cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12)(cid:12) P (cid:16)P (cid:17) ≤ 1(Φ−ϕ)(Γ−(cid:12)(cid:12)γ). (cid:12) (cid:12) 4 References [1] R.Agarwal,M.Bohner,D.O’ReganandA.Peterson, Dynamicequations ontimescales: a survey,J.Comput.Appl.Math.141(2002), no.1-2,1–26. [2] R.Agarwal,M.BohnerandA.Peterson,Inequalitiesontimescales: asurvey,Math.Inequal. Appl.4(2001), no.4,535–557. [3] G. A. Anastassiou, MultivariateFinktype identity and multivariate Ostrowski,comparison ofmeansandGru¨sstypeinequalities,Math.Comput.Modelling46(2007),no.3-4,351–374. [4] Z.BartosiewiczandD.F.M.Torres,Noether’stheoremontimescales,J.Math.Anal.Appl., inpress. [5] M.BohnerandT.Matthews,TheGru¨ssinequalityontimescales,Commun.Math.Anal.3 (2007), no.1,1–8(electronic). [6] M.BohnerandA.Peterson,Dynamic equations on time scales,Birkha¨userBoston,Boston, MA,2001. [7] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkha¨user Boston,Boston,MA,2003. [8] P.CeroneandS.S.Dragomir,ArefinementoftheGru¨ssinequalityandapplications,Tamkang J.Math.38(2007), no.1,37–49. [9] S. S. Dragomir, A generalization of Gru¨ss’s inequality in inner product spaces and applica- tions,J.Math.Anal.Appl.237(1999), no.1,74–82. [10] S.S.Dragomir,AGru¨sstypediscreteinequalityininnerproductspacesandapplications,J. Math.Anal.Appl.250(2000), no.2,494–511. [11] R.A.C.Ferreira,M.R.SidiAmmiandD.F.M.Torres,Diamond-alphaintegralinequalities ontimescales,Proc.8thPortugueseConferenceonAutomaticControl–CONTROLO’2008, 2008,inpress. [12] R.A.C.FerreiraandD.F.M.Torres,Remarksonthecalculusofvariationsontimescales, Int.J.Ecol.Econ.Stat.9(2007), no.F07,65–73. b [13] G. Gru¨ss, U¨ber das Maximum des absoluten Betrages von b−1aR f(x)g(x)dx − a b b (b−1a)2 Ra f(x)dxRa g(x)dx,Math.Z.39(1935), no.1,215–226. [14] S.Hilger,Analysisonmeasurechains—aunifiedapproachtocontinuousanddiscretecalculus, ResultsMath.18(1990), no.1-2,18–56. [15] S. Hilger, Differential and difference calculus—unified!, Nonlinear Anal. 30 (1997), no. 5, 2683–2694. [16] Z. Liu, Notes on a Gru¨ss type inequality and its application, Vietnam J. Math. 35 (2007), no.2,121–127. [17] A. McD. Mercer, An improvement of the Gru¨ss inequality, JIPAM. J. Inequal. Pure Appl. Math.6(2005), no.4,Article93,4pp.(electronic). [18] D.S.Mitrinovi´c,Analytic inequalities,Springer,NewYork,1970. [19] D. S. Mitrinovi´c, J. E. Peˇcari´c and A. M. Fink, Classical and new inequalities in analysis, KluwerAcad.Publ.,Dordrecht,1993. COMBINED DYNAMIC GRU¨SS INEQUALITIES ON TIME SCALES 9 [20] D. Mozyrska and D. F. M. Torres, Diamond-alpha polynomial series on time scales, Proc. 8thPortugueseConferenceonAutomaticControl–CONTROLO’2008,2008,inpress. [21] U.M.OzkanandH.Yildirim,Steffensen’sintegralinequalityontimescales,J.Inequal.Appl. 2007,Art.ID46524,10pp. [22] B. G. Pachpatte, Some new Ostrowski and Gru¨ss type inequalities, Tamkang J. Math. 38 (2007), no.2,111–120. [23] J.E.Peˇcari´candB.Tepeˇs, OnGru¨sstypeinequalitiesofDragomirandFedotov,JIPAM.J. Inequal.PureAppl.Math.4(2003), no.5,Article91,6pp.(electronic). [24] J.Peˇcari´candB.Tepeˇs,AnoteonGru¨sstypeinequalityintermsof∆-seminorms,Makedon. Akad.Nauk.Umet.Oddel.Mat.-Tehn.Nauk.Prilozi23/24(2002/03),no.1-2,29–35(2004). [25] I. Peri´cand R.Raji´c, Gru¨ssinequality forcompletely bounded maps,Linear AlgebraAppl. 390(2004), 287–292. [26] J.W.Rogers,Jr.andQ.Sheng,Notesonthediamond-αdynamicderivativeontimescales, J.Math.Anal.Appl.326(2007), no.1,228–241. [27] Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales,Electron.J.Qual.TheoryDiffer.Equ.2007,No.17,13pp.(electronic). [28] Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivativesontimescalesandtheirapplications,NonlinearAnal.RealWorldAppl.7(2006), no.3,395–413. [29] M.R.SidiAmmiandD.F.M.Torres,Existenceofpositivesolutionsfornonlocalp-Laplacian thermistor problems on time scales, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article69,10pp. DepartmentofMathematics,University of Aveiro,3810-193Aveiro,Portugal E-mail address: [email protected] E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.