& COMBINED-CYCLE GAS STEAM TURBINE POWER PLANTS Second Edition Contents List of Figures and Tables .......................................................... vi 1. Introduction .................................................................................. 1 2. The Electricity Market .................................................................. 5 3. Thermodynamic Principles of the Combined-Cycle Plant ........35 4. Combined-Cycle Concepts ....................................................... .47 5. Applications of Combined-Cycles ............................................ 125 6. Components .............................................................................. 155 7. Control and Automation .......................................................... 189 8. Operating and Part Load Behavior .......................................... 203 9. Environmental Considerations .................................................. 219 10. Developmental Trends .............................................................. 231 11. Some Typical Combined-Cycle Plants .................................... 241 12. Conclusion ................................................................................ 265 13. Appendices ................................................................................ 269 Conversions .............................................................................. 270 Calculation of the Operating Performance of Combined-Cycle Installations .................................................. 271 Symbols and Indicies Used ...................................................... 280 Bibliography ............................................................................ 281 Index ........................................................................................ 288 List of Figures and Tables 1-1 Simplified Flow Diagram of a Combined-Cycle .................... 3 2-1 Market Development Order Volumes .................................. 10 2-2 Comparison of Different Turnkey Power Plants in Terms of Specific Price and Output ................................ 15 2-3 The Cost Percentage of the Different Plant Areas for a Typical 400 MW Turnkey Combined-Cycle Plant.. ..........16 2-4 Net Efficiencies for GT, CC, ST (Coal Fired), Nuclear and Diesel Power plants ........................................ 18 2-5 The Cost of Fuels .................................................................. 21 2-6 Variable Operating and Maintenance Costs for Various Power plants of Different Sizes. Fuel costs not included ...22 2-7 Fixed Operating and Maintenance Costs for Various Power plants of Different Sizes............................... 23 2-8 Construction Time for various Power Plants (From 'Notice To Proceed' to 'Commercial Operation') ....26 2-9 Dependence of the Cost of Electricity on the Equivalent Utilization Time (100 MW) ................................ 27 2-10 Dependence of the Cost of Electricity on the Equivalent Utilization Time (400 MW) ................................ 28 2-11 Dependence of the Cost of Electricity on the Equivalent Utilization Time 0,000 MW).............................. 29 2-12 Dependence of Cost of Electricity on the Annuity Factor (4,000 hr/annum) ........................................ 30 2-13 Dependence of Cost of Electricity on the Annuity Factor (7,500 hr/annum) ........................................ 31 2-14 Dependence of Cost of Electricity on the Cost of Fuel.. ....32 3-1 Temperature/Entropy Diagrams for Various Cycles ............38 3-2a The Efficiency of a Simple Cycle Gas Turbine with Singl~ Stage Combustion as a Function of Turbine Inlet Temperature (TIT) & the Turbine Exhaust Temperature ....42 Figures and Tables vii 3-2b The Efficiency of a Combined-Cycle with a Single Stage Combustion Gas Turbine as a Function of the Turbine Inlet Temperature (TIT) and the Turbine Exhaust Temperature .............................................. 43 3-3a The Efficiency of a Simple Cycle Gas Turbine with Sequential Combustion as a Function of the Turbine Inlet Temperature (TIT) and the Turbine Exhaust Temperature .......................................................................... 44 3-3b The Efficiency of a Combined-Cycle with a Sequential Combustion Gas Turbine as a Function of the Turbine Inlet Temperature (TIT) and the Turbine Exhaust Temperature .......................................................................... 45 4-1 Energy/Temperature Diagram for an Idealized Heat Exchanger .................................................................... 49 4-2 Flow Diagram of a Single Pressure Cycle............................ 51 4-3 Energy/Temperature Diagram for a Single Pressure HRSG ...................................................................... 52 4-4 Heat Balance for a Single Pressure Cycle........................... .53 4-5 Energy Flow Diagram for the Single Pressure Combined-Cycle Plant .......................................................... 54 4-6 Effect of Live Steam Pressure on Steam Turbine Output, Steam Turbine Exhaust Moisture Content and HRSG Efficiency for a Single Pressure Cycle ............. .55 4-7 Energy/Temperature Diagram of a Single Pressure HRSG with Live Steam Pressures of 40 and 105 bar ..........56 4-8 Effect of Live Steam Pressure on Condenser Waste Heat at Constant Vacuum .................................................... 57 4-9 Effect of Live Steam Temperature on Steam Turbine Output, HRSG Efficiency and Steam Turbine Exhaust Moisture Content for a Single Pressure Cycle at 105 bar Live Steam Pressure ........................................................ 58 4-10 Effect of Pinch Point on Relative Steam Turbine Output and Relative HRSG Heating Surface ...................... 59 4-11 Influence of HRSG Back Pressure on Combined-Cycle Output and Efficiency, GT Output and Efficiency and HRSG Surface ................................................................ 61 viii Figures and Tables 4-12 Effect of Feedwater Temperature on Steam Turbine Output and HRSG Efficiency for Cycles with One Stage of Preheating .............................................................. 62 4-13 Energy/Temperature Diagram for a Single Pressure HRSG ...................................................................... 63 4-14 Energy/Temperature Diagram for a Conventional Steam Generator ..................................... ·..················· ..········.64 4-15 Flow Diagram of a Single Pressure Cycle with LP Preheating Loop for High-Sulphur Fields ............................ 66 4-16 Effect of Live Steam Pressure and Feedwater Temperature on Available Heat Compared to Required Heat in Preheating Loop ...................................... 67 4-17 Heat Balance for a Single Pressure Cycle with LPPreheating Loop .............................................................. 68 4-18 Energy/Temperature Diagram for a Single Pressure HRSG with LPEvaporator Preheating Loop ........................ 69 4-19 Flow Diagram of a Dual Pressure Cycle for High Sulfur Fuels .................................. ··········..·..················ .70 4-20 Effect of Feedwater Temperature and Number of Preheating Stages on Steam Turbine Output of a Dual Pressure Cycle ........................................... ······..···········71 4-21 Flow Diagram of a Dual Pressure Cycle for Low Sulfur Fuels ............................................ ·················· ..············72 4-22 Heat Balance for a Dual Pressure Cycle with Low Sulfur FueL.......................................... ·································· .73 4-23 Energy Flow Diagram for the Dual Pressure Combined-Cycle Plant .......................................................... 74 4-24 Energy/Temperature Diagram for a Dual Pressure HRSG ...................................................................... 75 4-25 Effect of HP and LPPressure on Steam Turbine Output and Exhaust Moisture Content for a Dual Pressure Cycle ...................................................................... 78 4-26 Effect of LPPressure on HRSG Efficiency for a Dual Pressure Cycle ............................................ ·..···············79 Figures and Tables ix 4-27 Effect of LPand HP Steam Temperatures on Steam Turbine Output for a Dual Pressure Cycle ..............80 4-28 Effect of HP and LPEvaporator Pinch Point on Steam Turbine Output and Relative HRSG Surface for a Dual Pressure Cycle .................................................... 81 4-29 Flow Diagram of a Triple Pressure Cycle ............................ 82 4-30 Heat Balance for a Triple Pressure Cycle ............................ 83 4-31 Energy/Temperature Diagram for a Triple Pressure HRSG ...................................................................... 84 4-32 Energy Flow Diagram for the Triple Pressure Combined-Cycle plant .......................................................... 85 4-33 Steam Turbine Output and Exhaust Moisture Content versus HP and IP Pressure for Triple Pressure Cycle at Constant LP Pressure (5 bar) .................. 86 4-34 Effect of LPPressure on Steam Turbine Output and Relative HRSG Surface for Triple Pressure Cycle at Constant HP 005 bar) and IP (25 bar) ................87 4-35 Live Steam Temperature Optimization for a Triple Pressure Cycle ............................................................ 88 4-36 Temperature/Entropy Diagram Showing the Effect of "Mild Reheat" on the Steam Turbine Expansion Line ...................................................................... 89 4-37 Effect of HP and IP Evaporator Pinch Points on Steam Turbine Output and Relative HRSG Surface for a Triple Pressure Cycle with Constant LPPinch Point ...................................................................... 90 4-38 Flow Diagram of a Triple Pressure Reheat Cycle ..............91 4-39 Heat Balance for a Triple Pressure Reheat Cycle................92 4-40 Temperature/Entropy Diagram Showing the Effect of Full Reheat on the Steam Turbine Expansion Line ............93 4-41 Energy Flow Diagram for the Triple Pressure Reheat Combined-Cycle plant .......................................................... 93 4-42 Energy/Temperature Diagram for a Triple Pressure Reheat HRSG ........................................................................ 94 x Figures and Tables Steam Turbine Output and HRSG Surface versus 4-43 HP and Reheat Pressure for a Triple Pressure Reheat Cycle at Constant HP (S68QC) and Reheat (S68 C) Temperature ................................................ 94 Q Steam Turbine Output versus HP Steam and Reheat 4-44 Temperature for a Triple Pressure Reheat Cycle at Constant HP (120 bar), IP (30 bar) and LP(S bar) Pressure .................................................................................. 96 Flow Diagram of a High Pressure Reheat Cycle 4-45 with an HP Once Through HRSG and a Drum Type LP Section .......................................................... 97 Heat Balance for a Dual Pressure Reheat Cycle 4-46 with a Once Through HRSG ................................................ 98 Energy/Temperature Diagram for 647QC(A), 7S0QC(B) 4-47 and 1000 C(C) Exhaust Gas Temperature Entering Q 1 the HRSG......................................... ·········..·················· ...·...· 00 Effect of Temperature after Supplementary Firing 4-48 on Power Output and Efficiency Relative to that of a Single Pressure Cycle ...................................................... 101 Heat Balance for a Single Pressure Cycle with 4-49 Supplementary Firing .......................... ················· ...............102 Selection of a Combined-Cycle Concept ........................... ·1OS 4-50 Entropy/Temperature Diagram for a Gas Turbine 4-51 Process at Two Different Ambient Air Temperatures ......108 Relative Efficiency of Gas Turbine, Steam Process 4-52 and Combined-Cycle as a Function of the Air Temperature at Constant Vacuum ................................ 109 Relative Power Output of Gas Turbine, Steam 4-53 Turbine and Combined-Cycle as a Function of Air Temperature at Constant Vacuum ...................... ·....·....110 Relative Power Output of Gas Turbine, Steam 4-54 Turbine and Combined-Cycle and Relative Air Pressure versus Elevation Above Sea Level .................. ···.111 Relative Power Output and Efficiency of Gas 4-55 T\lrbine and Combined-Cycle versus Relative Humidity at Constant Vacuum ................ ·············· ..···········.112 Figures and Tables xi 4-56 Effect of Water and Steam Injection on Relative Combined-Cycle Power Output and Efficiency versus the Water or Steam/Fuel Ratio................................ 114 4-57 Effect of Condenser Pressure on Steam Turbine Output .................................................................... 117 4-58 Temperature of Cooling Medium versus Condenser Pressure for Direct Cooling, Wet Cooling Tower and Air Cooled Condenser ................................................ 118 4-59 Flow Diagram to Show Fuel Preheating ............................ 119 4-60 Steam Turbine Output and HRSG Efficiency versus Gas Turbine Exhaust Temperature for a Single Pressure Cycle...................................................................... 121 4-61 Ratio of Steam Turbine Output of a Dual Pressure to that of a Single Pressure Cycle as a Function of Gas Turbine Exhaust Temperature .................................... 122 4-62 Indicative Relative Price versus Performance of Different Combined-Cycles based on a 178 MW Class Gas Turbine with an Exhaust Gas Temperature of 647°C (1197°F) ................................................................ 123 4-63 Indicative Relative Price versus Performance of Different Combined-Cycles based on a 178 MW Class Gas Turbine with an Exhaust Gas Temperature of 525°C(977°F) .................................................................. 124 5-1 Simplified Flow Diagram of a Cogeneration Cycle with a Back Pressure Turbine ............................................ 128 5-2 Flow Diagram of a Cogeneration Cycle with an Extraction/Condensing Steam Turbine ............................ 129 5-3 Flow Diagram of a Cogeneration Cycle with no Steam Turbine ...................................................................... 130 5-4 Heat Balance for a Single Pressure Cogeneration Cycle with Supplementary Firing ...................................... 131 5-5 Effect of Process Steam Pressure on Relative Combined- Cycle Power Output and Power Coefficient for a Single Pressure Cycle with 750°C Supplementary Firing ............132 Figures and Tables xiii 6-7 Once-Through HRSG with a Drum Type LPSection ........169 6-8 Supplementary Fired Heat Recovery Steam Generator ....174 6-9 Cross Section of a 140 MW Reheat Steam Turbine with a Separate HP Turbine and a Combined IP/LP Turbine with Axial Exhaust ................................................ 180 6-10 Cross Section of a Two Casing Steam Turbine with Geared HP Turbine .................................................... 181 6-11 Cut-away Drawing of an Air Cooled Generator for use in Combined-Cycle Power plant.. ................................ 182 Single Line Diagram ............................................................ 183 6-12 Hierarchic Levels of Automation ........................................ 185 6-13 6-14 Standard Layout for a Modern Combined-Cycle Power Plant Control Room ................................................ 186 7-1 Principle Diagram for a Combined-Cycle Load Control System .................................................................... 192 7-2 Typical Combined Cycle Droop Characteristic .................. 193 7-3 Closed Control Loops in a Combined-Cycle Plant.. ..........195 7-4 Start-up Curve for a 250 MW Class Combined- Cycle after 8 h Standstill .................................................... 201 7-5 Start-up Curve for a 250 MW Class Combined- Cycle after 60 h Standstill .................................................. 201 7-6 Start-up Curve for a 250 MW Class Combined- Cycle after 120 h Standstill ................................................ 202 Combined-Cycle Shut Down Curve.................................... 202 7-7 Effect of Vacuum on Combined-Cycle Efficiency..............208 8-1 Effect of Frequency on Relative Combined-Cycle 8-2 Output and Efficiency for Continuous Full Load Operation ............................................................................ 209 Part Load Efficiency of Gas Turbine and 8-3 Combined-Cycle .................................................................. 211