ebook img

Combinatorics of Minuscule Representations PDF

329 Pages·2013·1.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combinatorics of Minuscule Representations

more information - www.cambridge.org/9781107026247 CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 199 CombinatoricsofMinusculeRepresentations CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK, B.SIMON,B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 166. TheLe´vyLaplacian.ByM.N.Feller 167. Poincare´DualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations.By D.MeyerandL.Smith 168. TheCube-AWindowtoConvexandDiscreteGeometry.ByC.Zong 169. QuantumStochasticProcessesandNoncommutativeGeometry.ByK.B.Sinhaand D.Goswami 170. PolynomialsandVanishingCycles.ByM.Tiba˘r 171. OrbifoldsandStringyTopology.ByA.Adem,J.Leida,andY.Ruan 172. RigidCohomology.ByB.LeStum 173. EnumerationofFiniteGroups.ByS.R.Blackburn,P.M.Neumann,and G.Venkataraman 174. ForcingIdealized.ByJ.Zapletal 175. TheLargeSieveanditsApplications.ByE.Kowalski 176. TheMonsterGroupandMajoranaInvolutions.ByA.A.Ivanov 177. AHigher-DimensionalSieveMethod.ByH.G.Diamond,H.Halberstam,and W.F.Galway 178. AnalysisinPositiveCharacteristic.ByA.N.Kochubei 179. DynamicsofLinearOperators.ByF.BayartandE´.Matheron 180. SyntheticGeometryofManifolds.ByA.Kock 181. TotallyPositiveMatrices.ByA.Pinkus 182. NonlinearMarkovProcessesandKineticEquations.ByV.N.Kolokoltsov 183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.Dat,S.Orlik,andM.Rapoport 184. AlgebraicTheories.ByJ.Ada´mek,J.Rosicky´,andE.M.Vitale 185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem. ByA.KatokandV.Nit¸ica˘ 186. Dimensions,Embeddings,andAttractors.ByJ.C.Robinson 187. Convexity:AnAnalyticViewpoint.ByB.Simon 188. ModernApproachestotheInvariantSubspaceProblem.ByI.Chalendarand J.R.Partington 189. NonlinearPerron–FrobeniusTheory.ByB.LemmensandR.Nussbaum 190. JordanStructuresinGeometryandAnalysis.ByC.-H.Chu 191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.Osswald 192. NormalApproximationswithMalliavinCalculus.ByI.NourdinandG.Peccati 193. DistributionModuloOneandDiophantineApproximation.ByY.Bugeaud 194. MathematicsofTwo-DimensionalTurbulence.ByS.KuksinandA.Shirikyan 195. AUniversalConstructionforR-freeGroups.ByI.ChiswellandT.Mu¨ller 196. TheTheoryofHardy’sZ-Function.ByA.Ivic´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.KaniuthandK.F.Taylor 198. TopicsinCriticalPointTheory.ByK.PereraandM.Schechter 199. CombinatoricsofMinusculeRepresentations.ByR.M.Green 200. SingularitiesoftheMinimalModelProgram.ByJ.Kolla´r 201. CoherenceinThree-DimensionalCategoryTheory.ByN.Gurski Combinatorics of Minuscule Representations R.M.GREEN UniversityofColoradoBoulder cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107026247 (cid:2)C R.M.Green2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-02624-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Introduction page1 1 ClassicalLiealgebrasandWeylgroups 5 1.1 Liealgebras 5 1.2 TheclassicalLiealgebras 8 1.3 ClassicalLiealgebrasandpartiallyorderedsets 11 1.4 ClassicalWeylgroupsandpartiallyorderedsets 16 1.5 Notesandreferences 18 2 Heapsovergraphs 19 2.1 Basicdefinitions 20 2.2 FullheapsoverDynkindiagrams 26 2.3 Localstructureoffullheaps 30 2.4 Quotientheaps 38 2.5 Notesandreferences 40 3 Weylgroupactions 42 3.1 Linearoperatorsandgroupactions 43 3.2 Properideals 55 3.3 Parabolicsubheaps 62 3.4 Notesandreferences 67 4 Lietheory 70 4.1 RepresentationsofLiealgebrasfromheaps 70 4.2 ReviewofLietheory 75 4.3 ReviewofWeylgroups 80 4.4 Stronglyorthogonalsets 86 4.5 Notesandreferences 88 5 Minusculerepresentations 89 5.1 Highestweightmodules 89 5.2 Weightsandheaps 92 5.3 Periodicityandtrivialization 96 5.4 Reflections 107 5.5 Minusculerepresentationsfromheaps 112 v vi Contents 5.6 Invariantbilinearforms 115 5.7 Notesandreferences 116 6 FullheapsoveraffineDynkindiagrams 118 6.1 FullheapsintypeA(1) 118 l 6.2 ProperidealsintypeA(1) 125 l 6.3 SpinrepresentationsintypeD 129 l 6.4 TypesB(1)andD(2) 134 l l+1 6.5 FullheapsintypeE(1)andE(1) 139 6 7 6.6 TheclassificationoffullheapsoveraffineDynkindiagrams 144 6.7 Notesandreferences 147 7 Chevalleybases 148 7.1 Kac’sasymmetryfunction 148 7.2 RelationsinsimplylacedsimpleLiealgebras 153 7.3 Folding 160 7.4 Longandshortroots 165 7.5 Relationsinnon-simplylacedsimpleLiealgebras 175 7.6 Notesandreferences 181 8 CombinatoricsofWeylgroups 183 8.1 Minusculesystems 183 8.2 Weylgroupsaspermutationgroups 188 8.3 Idealsofroots 197 8.4 Weightpolytopes 202 8.5 Facesofweightpolytopes 207 8.6 Graphsfromminusculerepresentations 211 8.7 Notesandreferences 214 9 The28bitangents 216 9.1 TheGossetgraph 216 9.2 DelPezzosurfaces 219 9.3 Bitangents 226 9.4 Hesse–Cayleynotation 231 9.5 Steinercomplexes 237 9.6 Symplecticstructure 244 9.7 Notesandreferences 247 10 Exceptionalstructures 248 10.1 The27linesonacubicsurface 249 10.2 Combinatoricsofdoublesixes 253 10.3 2-graphs 258 10.4 Generalizedquadrangles 265 10.5 Higherinvariantforms 269 10.6 Notesandreferences 273 11 Furthertopics 275 11.1 MinusculeelementsofWeylgroups 275 Contents vii 11.2 Principalsubheapsasabstractposets 280 11.3 Gaussianposets 284 11.4 Jeudetaquin 289 11.5 Notesandreferences 296 AppendixA Posets,graphsandcategories 298 AppendixB Lietheoreticdata 304 References 307 Index 311 Introduction Highestweightmodulesplayakeyroleintherepresentationtheoryofseveralclasses of algebraic objects occurring in Lie theory, including Lie algebras, Lie groups, algebraic groups, Chevalley groups and quantized enveloping algebras. In many of the most important situations, the weights may be regarded as points in Euclidean space, Rn, and there is a finite group (called a Weyl group) that acts on the set of weights by linear transformations. The minuscule representations are those for which the Weyl group acts transitively on the weights, and the highest weight of sucharepresentationiscalledaminusculeweight.Theterm“minusculeweight”is a translation of Bourbaki’s term poids minuscule [8, VIII, section 7.3]; the spelling “miniscule” is also found in the literature, although less commonly, and Russian- speaking authors often call minuscule weights microweights. The list of minuscule representationsisasfollows:allfundamentalrepresentationsintypeA ,thenatural n representationsintypesC andD ,thespinrepresentationsintypesB andD ,the n n n n two27-dimensionalrepresentationsintypeE andthe56-dimensionalrepresentation 6 intypeE . 7 Minusculeweightsandminusculerepresentationsareimportantbecausetheyoccur inawidevarietyofcontextsinmathematicsandphysics,especiallyinrepresentation theory and algebraic geometry. Minuscule representations are the starting point of StandardMonomialTheorydevelopedbyLakshmibai,Seshadriandothers[42],and theyplayakeyroleinthegeometryofSchubertvarieties. One of the advantages of minuscule representations is that they are often much easier to understand than typical representations of the same objects. For example, Seshadri [70] proves that standard monomials give a basis for the homogeneous coordinateringofG/P intheminusculecase,whichissignificantlymoretractable than the general case. Littelmann’s path model for representations of Lie algebras [45] is also much simpler when minuscule representations are involved. Minuscule representationshavemanyotheralgebraicapplications:theyareusefulinthetheory ofChevalleygroups,wheretheyareusedtoconstructminusculeweightgeometries [5, section 6], and they also appear in the context of Bruhat decompositions [86]. Certainquestionsintherepresentationtheoryofalgebraicgroupscanbereducedto questionsaboutminusculerepresentations[80].InthetheoryofMacdonaldpolyno- mials[85,section6],minusculeweightsareusedtodefinetheMacdonaldoperators. 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.