ebook img

combinatorics of arc diagrams, ferrers fillings, young tableaux and lattice paths PDF

120 Pages·2009·0.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview combinatorics of arc diagrams, ferrers fillings, young tableaux and lattice paths

COMBINATORICS OF ARC DIAGRAMS, FERRERS FILLINGS, YOUNG TABLEAUX AND LATTICE PATHS by Jacob Post B.Sc., Portland State University, 2001 a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Computing Science (cid:13)c Jacob Post 2009 SIMON FRASER UNIVERSITY Summer 2009 All rights reserved. However,in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction of this work for the purpose of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Declaration of Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the “Institutional Repository” link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author’s written permission. Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. Simon Fraser University Library Burnaby, BC, Canada Last revision: Spring 09 Abstract Several recent works have explored the deep structure between arc diagrams, their nest- ings and crossings, and several other combinatorial objects including permutations, graphs, lattice paths, and walks in the Cartesian plane. This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams, relationships between them, and their connection to nestings and cross- ings. We prove a direct connection between nestings in involutions and the shape of Young tableaux,clarifyKnuthtransformationsintermsofYoungtableaux,presentalocaltransfor- mationonarcdiagramsof involutions thatweterminvolutive transformations,anddescribe variants to the well-known RSK correspondence. Keywords: Arc diagrams, Ferrers filling, Young tableaux, Lattice paths, Bijections, Nest- ings, Crossings, RSK, Knuth transformations iii Acknowledgments I would like to acknowledge the continuing support of my co-supervisor Cedric Chauve. Additionally, my senior supervisor Pavol Hell has been very flexible in allowing me to follow my own interests. The nestings and crossings study group has also been very inspirational. iv Contents Approval ii Abstract iii Acknowledgments iv Contents v List of Figures viii List of Notations xi Preface xiii 1 Introduction 1 1.1 Integer Partitions, Ferrers Diagrams, and Young’s Lattice . . . . . . . . . . . 1 1.2 Young Tableaux and the Robinson-Schensted-Knuth Correspondence . . . . . 3 1.2.1 Young Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Robinson-Schensted-Knuth and Permutations . . . . . . . . . . . . . . 5 1.3 Arc Diagrams, Nesting, and Crossing . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Arc Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Nestings and Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Strict 0-1 Ferrers Filling and Permutation Matrices . . . . . . . . . . . . . . . 13 1.5 Object Summary and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.1 Object Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v 2 Bijections and Surjections 21 2.1 Weighted Dyck and Motzkin Paths . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.1 Weighted Dyck Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2 Weighted Motzkin Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.4 Surjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Structured Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Notations and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.2 The Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Statistics on Sets of Structures . . . . . . . . . . . . . . . . . . . . . . 38 2.3.2 Statistics on Semilabeled Structured Trees . . . . . . . . . . . . . . . . 39 2.3.3 Statistics on Semilabeled Series-Reduced Structured Forests . . . . . . 40 2.4 Bicolouring Bijection Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.1 Counting Peaks in Weighted Dyck Paths . . . . . . . . . . . . . . . . . 44 2.4.2 Example: Stirling Numbers of the Second Kind . . . . . . . . . . . . . 47 2.4.3 Example: Strongly Non-crossing Set Partitions . . . . . . . . . . . . . 48 2.4.4 Example: Stirling Numbers of the First Kind . . . . . . . . . . . . . . 49 3 Permutation and Young Tableau Transformations 52 3.1 Jeu de Taquin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Evacuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Transformations of Permutations and Young Tableaux . . . . . . . . . . . . . 56 3.4 Variations on RSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Proof of Theorems 3.2 and 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Involutive Transformations 64 4.1 Knuth Transformations in Young Tableaux . . . . . . . . . . . . . . . . . . . 64 4.1.1 Knuth Relations and Transformations . . . . . . . . . . . . . . . . . . 65 4.1.2 Reifegerste’s Results and Enclosures . . . . . . . . . . . . . . . . . . . 66 4.2 Involutive Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 The Case for Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 Definitions and Enumeration . . . . . . . . . . . . . . . . . . . . . . . 73 vi 5 A Greene-like Correspondence for Nestings 77 5.1 Greene’s Result for Permutations . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Maximal Nesting Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Set Partitions, Matchings, and Permutations . . . . . . . . . . . . . . . . . . 81 6 Knuth Graphs 86 6.1 Introducing Knuth Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3 Special Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.1 Hook Shapes and Young’s Lattice . . . . . . . . . . . . . . . . . . . . 90 6.3.2 Crossings and Inversions in Non-nesting Matchings . . . . . . . . . . . 91 6.3.3 Knuth Graph Diameter of Non-nesting Involutions . . . . . . . . . . . 93 6.4 Permutations and Knuth Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 95 7 Conclusions and Perspectives 97 7.1 Transposition of a Pair of SYT in Terms of Permutations . . . . . . . . . . . 97 7.2 Transformations on Ferrers Fillings . . . . . . . . . . . . . . . . . . . . . . . . 98 7.3 Extending Results on Matchings . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.4 Trees, Structured Matchings, and the Bicolouring Bijection Principle . . . . . 102 Bibliography 103 vii List of Figures 1.1 A Ferrers diagram and its conjugate . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The lattice Y for λ = 3,2,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 λ 1.3 Examples of corners and co-corners . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 A walk in Young’s lattice which is in bijection with a standard Young tableau 4 1.5 Negation and transposition of Young tableaux . . . . . . . . . . . . . . . . . . 4 1.6 A row insertion into a Young tableau . . . . . . . . . . . . . . . . . . . . . . . 5 1.7 An example of Algorithm 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.8 An example of an arc diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9 The arc diagram of the permutation 42153 . . . . . . . . . . . . . . . . . . . . 9 1.10 The arc diagram of a set partition and its corresponding permutation . . . . 9 1.11 The arc diagram of an involution . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.12 The arc diagrams of a derangement, a singleton-free set partition, and a matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.13 The arc diagram of a balanced matching . . . . . . . . . . . . . . . . . . . . . 10 1.14 Notations and a hierarchy for families of combinatorial objects that can be represented as arc diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.15 Types of vertices in the arc diagrams of set partitions . . . . . . . . . . . . . 11 1.16 Examples of nestings and k-nestings . . . . . . . . . . . . . . . . . . . . . . . 12 1.17 Examples of crossings and k-crossings . . . . . . . . . . . . . . . . . . . . . . 12 1.18 Examples of alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.19 A strict 0-1 Ferrers filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.20 An example of a permutation matrix . . . . . . . . . . . . . . . . . . . . . . . 14 1.21 An example of the bijection between matchings on [2n] and strict 0-1 Ferrers fillings with n marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 viii 1.22 The connection between Ferrers fillings and arc diagrams . . . . . . . . . . . 16 1.23 Some objects and their relationships . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 A Ferrers filling and the Dyck path that the border describes . . . . . . . . . 22 2.2 A weighted Dyck path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Construction of a matching from a weighted Dyck path . . . . . . . . . . . . 23 2.4 Construction of a weighted Dyck path from a Ferrers filling . . . . . . . . . . 24 2.5 Exchanging the number of nestings and crossings in a matching . . . . . . . . 25 2.6 A weighted Motzkin path and the corresponding set partition . . . . . . . . . 26 2.7 Examples of strong rises, peaks, valleys, and strong falls . . . . . . . . . . . . 26 2.8 An illustration of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.9 An illustration of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.10 Examples of the surjections from set partitions to involutions . . . . . . . . . 29 2.11 Examples of the surjections to matchings . . . . . . . . . . . . . . . . . . . . 30 2.12 Examples of semilabeled objects . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.13 Extended labeling of semilabeled objects . . . . . . . . . . . . . . . . . . . . . 34 2.14 An example of a set partition in bijection with semilabeled objects . . . . . . 34 2.15 An example of a semilabeled tree in bijection with a set partition . . . . . . . 36 2.16 An example of a semilabeled forest in bijection with a set partition . . . . . . 37 2.17 Second-order Eulerian triangle relations . . . . . . . . . . . . . . . . . . . . . 45 2.18 Generation of matchings by inserting a new leftmost arc . . . . . . . . . . . . 46 2.19 A derangement in bijection with a Dyck path having bicoloured strong rises . 51 3.1 A jeu de taquin insertion into a Young tableau . . . . . . . . . . . . . . . . . 53 3.2 An evacuation by repeated jeu de taquin deletion of the origin . . . . . . . . 55 3.3 Examples of the transformations PE and PS . . . . . . . . . . . . . . . . . . 55 3.4 Symmetries of the square and transformations on permutations . . . . . . . . 57 4.1 Knuth transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Dual Knuth transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Enclosures and inversions in a standard Young tableau . . . . . . . . . . . . . 67 4.4 Illustration of the first dual Knuth transformation at step b−1 . . . . . . . . 68 4.5 Illustration of the first dual Knuth transformation at step c . . . . . . . . . . 69 4.6 Illustration of the second dual Knuth transformation at step c . . . . . . . . . 70 ix

Description:
This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams Keywords: Arc diagrams, Ferrers filling, Young tableaux, Lattice paths, Bijections, Nest- . 4.2.2 Definitions and Enumeration . such shapes as stack polyominoes and moon polyominoes.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.