ebook img

Combinatorial Physics: Combinatorics, Quantum Field Theory, and Quantum Gravity Models PDF

409 Pages·11.113 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combinatorial Physics: Combinatorics, Quantum Field Theory, and Quantum Gravity Models

OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi COMBINATORIAL PHYSICS OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi Combinatorial Physics Combinatorics, quantum field theory, and quantum gravity models Adrian Tanasa UniversityofBordeaux,France 1 OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©AdrianTanasa2021 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2021932400 ISBN 978–0–19–289549–3 DOI:10.1093/oso/9780192895493.001.0001 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi ToLuca,Brittany,andtoourfamily OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi Contents 1 Introduction 1 2 Graphs,ribbongraphs,andpolynomials 7 2.1 Graphtheory:TheTuttepolynomial 7 2.2 Ribbongraphs;theBollobás–Riordanpolynomial 12 2.3 Selectedfurtherreading 15 3 Quantumfieldtheory(QFT)—built-incombinatorics 17 3.1 DefinitionofthescalarΦ4 model 18 3.2 Perturbativeexpansion—Feynmangraphsandtheircombinatorialweights 20 3.3 Fouriertransform—themomentumspace 23 3.4 ParametricrepresentationofFeynmanintegrands 24 3.5 Thepropagatorandtheheatkernel 26 3.6 Aglimpseofperturbativerenormalization 27 3.6.1 Thepowercountingtheorem 29 3.6.2 Locality 30 3.6.3 Multi-scaleanalysis 32 3.6.4 ThesubtractionoperatorforageneralFeynmangraph 33 3.6.5 Dimensionalrenormalization 35 3.7 Dyson–Schwingerequation 36 3.8 Combinatorial(or0-dimensional)QFTandtheintermediatefieldmethod 36 3.8.1 Combinatorial(or0-dimensional)QFT 36 3.8.2 Theintermediatefieldmethod 37 3.9 Selectedfurtherreading 38 4 TreeweightsandrenormalizationinQFT 39 4.1 Preliminaryresults 41 4.2 Partitiontreeweights 43 4.3 Selectedfurtherreading 49 5 CombinatorialQFTandtheJacobianConjecture 50 5.1 TheJacobianConjectureascombinatorialQFTmodel (theAbdesselam–Rivasseaumodel) 52 5.2 TheintermediatefieldmethodfortheAbdesselam–Rivasseaumodel 53 5.3 Selectedfurtherreading 55 OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi viii Contents 6 FermionicQFT,Grassmanncalculus,andcombinatorics 56 6.1 GrassmannalgebrasandGrassmanncalculus 57 6.1.1 TheGrassmannalgebra 57 6.1.2 Grassmanncalculus;PfaffiansasGrassmannintegrals 58 6.2 OnGrassmannGaussianmeasures 59 6.3 Lingström–Gessel–Viennot(LGV)formulaforgraphswithcycles 60 6.4 Stembridge’sformulasforgraphswithcycles 63 6.5 Ageneralization 66 6.6 TuttepolynomialandtheparametricrepresentationinQFT 67 6.7 Selectedfurtherreading 71 7 AnalyticcombinatoricsandQFT 72 7.1 TheMellintransformtechnique 72 7.2 Thesaddlepointmethod 74 7.3 Selectedfurtherreading 75 8 AlgebraiccombinatoricsandQFT 76 8.1 Algebraicreminder;CombinatorialHopfAlgebras(CHAs) 77 8.2 TheConnes–KreimerHopfalgebraofFeynmangraphs 79 8.3 TheB operator,HochschildcohomologyoftheConnes–Kreimeralgebra 83 + 8.4 Multi-scalerenormalization,CHAdescription 85 8.5 Selectedfurtherreading 94 9 QFTonthenon-commutativeMoyalspaceandcombinatorics 95 9.1 Mathematicalsetting:Renormalizability 96 9.2 TheMehlerkernelandtheGrosse–Wulkenhaarmodel 99 9.3 ParametricrepresentationofGrosse–Wulkenhaar-likemodels 100 9.4 TheMellintransformandtheGrosse–Wulkenhaarmodel 104 9.5 DimensionalrenormalizationfortheGrosse–Wulkenhaarmodel 107 9.6 Aheatkernel–basedrenormalizablemodel 108 9.7 ParametricrepresentationandtheBollobás–Riordanpolynomial 110 9.7.1 Parametricrepresentation 110 9.7.2 Relationbetweenthemulti-variateBollobás–Riordanandthe polynomialsoftheparametricrepresentation 111 9.8 CombinatorialConnes–KreimerHopfalgebraandits Hochschildcohomology 112 9.8.1 CombinatorialConnes–KreimerHopfalgebra 112 9.8.2 HochschildcohomologyandthecombinatorialDSE 117 9.9 Selectedfurtherreading 120 10 Quantumgravity,groupfieldtheory(GFT),andcombinatorics 121 10.1 Quantumgravity 121 10.2 Maincandidatesforatheoryofquantumgravity:Theholographicprinciple 122 10.3 GFTmodels:theBoulatovandthecolourablemodels 123 OUPCORRECTEDPROOF – FINAL,16/2/2021,SPi Contents ix 10.4 Themulti-orientableGFTmodel 125 10.4.1 Tadpolesandgeneralizedtadpoles 127 10.4.2 Tadfaces 128 10.5 SaddlepointmethodforGFTFeynmanintegrals 129 10.6 AlgebraiccombinatoricsandtensorialGFT 133 10.6.1 TheBenGeloun–Rivasseau(BGR)model 133 10.6.2 Cones–KreimerHopfalgebraicdescriptionofthecombinatorics oftherenormalizabilityoftheBGRmodel 143 10.6.3 HochschildcohomologyandthecombinatorialDSE fortensorialGFT 153 10.7 Selectedfurtherreading 165 11 Fromrandommatricestorandomtensors 166 11.1 ThelargeN limit 169 11.2 Thedouble-scalinglimit 169 11.3 Frommatricestotensors 170 11.4 Tensorgraphpolynomials—ageneralizationoftheBollobás–Riordan polynomial 174 11.5 Selectedfurtherreading 176 12 Randomtensormodels—theU(N)D-invariantmodel 178 12.1 DefinitionofthemodelanditsDSE 179 12.1.1 U(N)D-invariantbubbleinteractions 179 12.1.2 Bubbleobservables 182 12.1.3 TheDSEforthemodel 185 12.1.4 Navigatingthefollowingsectionsofthechapter 187 12.2 TheDSEbeyondthelargeN limit 188 12.2.1 TheLO 188 12.2.2 MomentsandCumulants 189 12.2.3 Gaussianandnon-Gaussiancontributions 192 12.2.4 TheDSEatNLO 198 12.2.5 Theorder1/ND inthequarticmodel 199 12.3 Thedouble-scalinglimit 202 12.3.1 Double-scalinglimitintheDSE 202 12.3.2 Fromthequarticmodeltoagenericmodel 206 12.4 Selectedfurtherreading 208 13 Randomtensormodels—themulti-orientable(MO)model 209 13.1 Definitionofthemodel 209 13.2 The1/N expansionandthelargeN limit 212 13.2.1 Feynmanamplitudes;the1/N expansion 212 13.2.2 ThelargeN limit—theLO(melonicgraphs) 214 13.2.3 ThelargeN limit—theNLO 215 13.2.4 LeadingandNLOseries 216

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.