De Gruyter Proceedings in Mathematics Combinatorial Number Theory Proceedings of the “Integers Conference 2011” Carrollton, Georgia, October 26–29, 2011 edited by Bruce Landman Melvyn B. Nathanson Jaroslav Nešetrˇil Richard J. Nowakowski Carl Pomerance Aaron Robertson De Gruyter MathematicsSubjectClassification2010: 11-06. Editors Prof.Dr.BruceLandman Prof.Dr.MelvynB.Nathanson UniversityofWestGeorgia TheCityUniversityofNewYork DepartmentofMathematics LehmanCollege(CUNY) 1601MapleStreet DepartmentofMathematics Carrollton,GA30118,USA 250BedfordParkBoulevardWest [email protected] Bronx,NY10468,USA [email protected] Prof.Dr.JaroslavNešetˇril Prof.Dr.RichardJ.Nowakowski CharlesUniversity DalhousieUniversity DepartmentofAppliedMathematics DepartmentofMathematics&Statistics Malostranskénam.25 ChaseBuilding 11800Prague,CzechRepublic Halifax,NSB3H3J5,Canada [email protected] [email protected] Prof.Dr.CarlPomerance Prof.Dr.AaronRobertson DartmouthCollege ColgateUniversity DepartmentofMathematics DepartmentofMathematics 6188KemenyHall 13OakDrive Hanover,NH03755-3551;USA Hamilton,13346,USA [email protected] [email protected] ISBN978-3-11-028048-7 e-ISBN978-3-11-028061-6 Set-ISBN978-3-11-028062-3 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2013WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.eu Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface The Integers Conference 2011 was held October 26–29, 2011, at the University of WestGeorgiainCarrollton,Georgia,UnitedStates.ThiswasthefifthIntegersCon- ference, held bi-annually since 2003. It featured plenary lectures presented by Ken Ono,CarlaSavage,LaszloSzekely,FrankThorne,andJuliaWolf,alongwith60other researchtalks. Thisvolumeconsistsoftenrefereedarticles,whichareexpandedandrevisedver- sions of talks presented at the conference. These ten articles will appear as a special volume of the journal Integers. They represent a broad range of topics in the areas ofnumbertheoryandcombinatoricsincludingmultiplicativenumbertheory,additive numbertheory,gametheory,Ramseytheory,enumerativecombinatorics,elementary numbertheory,thetheoryofpartitions,andintegersequences. TheconferencewasmadepossiblewiththegeneroussupportoftheNumberTheory FoundationandtheUniversityofWestGeorgia. Carrollton,Georgia,USA,March2013 TheEditors Contents Preface v 1 RebeccaMilley, RichardJ.Nowakowski, and PaulOttaway TheMisèreMonoidofOne-HandedAlternatingGames 1 1.1 Introduction ............................................. 1 1.1.1 Background ....................................... 2 1.2 Equivalences ............................................ 4 1.3 Outcomes ............................................... 10 1.4 TheMisèreMonoid ....................................... 12 2 NeilHindman and JohnH.Johnson ImagesofC-SetsandRelatedLargeSetsunderNonhomogeneous Spectra 15 2.1 Introduction ............................................. 15 2.2 TheVariousNotionsofSize ................................ 19 2.3 TheFunctionsf andh ................................... 25 ˛ ˛ (cid:2) 2.4 PreservationofJ-Sets,C-Sets,andC -Sets ................... 27 2.5 PreservationofIdeals ..................................... 33 3 DanielA.Goldston and AndrewH.Ledoan OntheDifferencesBetweenConsecutivePrimeNumbers,I 37 3.1 IntroductionandStatementofResults......................... 37 3.2 TheHardy–LittlewoodPrimek-TupleConjectures .............. 38 3.3 Inclusion–ExclusionforConsecutivePrimeNumbers ............ 39 3.4 ProofoftheTheorem...................................... 42 4 PärKurlberg, JeffreyC.Lagarias, and CarlPomerance OnSetsofIntegersWhichAreBothSum-FreeandProduct-Free 45 4.1 Introduction ............................................. 45 4.2 TheUpperDensity ....................................... 47 viii Contents 4.3 AnUpperBoundfortheDensityinZ=nZ ..................... 50 4.4 ExamplesWithLargeDensity............................... 51 5 FrankThorne FourPerspectivesonSecondaryTermsintheDavenport–Heilbronn Theorems 55 5.1 Introduction ............................................. 55 5.2 CountingFieldsinGeneral ................................. 56 5.2.1 CountingTorsionElementsinClassGroups ............. 59 5.3 Davenport–Heilbronn,Delone–Faddeev,andtheMainTerms ...... 60 5.3.1 TheWorkofBelabas,Bhargava,andPomerance .......... 61 5.4 TheFourApproaches ..................................... 62 5.5 TheShintaniZeta-FunctionApproach ........................ 63 5.5.1 NonequidistributioninArithmeticProgressions ........... 66 5.6 ARefinedGeometricApproach ............................. 67 5.6.1 OriginoftheSecondaryTerm......................... 68 5.6.2 ACorrespondenceforCubicForms .................... 69 5.7 EquidistributionofHeegnerPoints ........................... 70 5.7.1 HeegnerPointsandEquidistribution ................... 71 5.8 HirzebruchSurfacesandtheMaroniInvariant .................. 73 5.9 Conclusion .............................................. 74 6 BrianHopkins SpottedTilingsandn-ColorCompositions 79 6.1 Background ............................................. 79 6.2 n-ColorCompositionEnumerations .......................... 81 6.3 Conjugablen-ColorCompositions ........................... 86 7 AviezriS.Fraenkel and YuvalTanny AClassofWythoff-LikeGames 91 7.1 Introduction ............................................. 91 7.2 ConstantFunction ........................................ 93 7.2.1 ANumerationSystem ............................... 94 7.2.2 StrategyTractabilityandStructureoftheP-Positions ...... 98 7.3 SuperadditiveFunctions ................................... 99 Contents ix 7.4 Polynomial.............................................. 103 7.5 FurtherWork ............................................ 106 8 TakaoKomatsu, FlorianLuca, and YoheiTachiya OntheMultiplicativeOrderofFnC1=Fn ModuloFm 109 8.1 Introduction ............................................. 109 8.2 PreliminaryResults ....................................... 110 8.3 ProofofTheorem8.1 ..................................... 114 8.4 CommentsandNumericalResults ........................... 120 9 NeilA.McKay and RichardJ.Nowakowski OutcomesofPartizanEuclid 123 9.1 Introduction ............................................. 123 9.2 GameTreeStructure ...................................... 125 9.3 ReducingtheSignature .................................... 128 9.3.1 Algorithm ........................................ 132 9.4 OutcomeObservations .................................... 133 9.5 OpenQuestions .......................................... 134 10 ThomasW.Pensyl and CarlaD.Savage LectureHallPartitionsandtheWreathProductsCkoSn 137 10.1 Introduction ............................................. 137 10.2 LectureHallPartitions ..................................... 138 10.3 StatisticsonC oS ...................................... 139 k n 10.4 Statisticsons-InversionSequences ........................... 140 10.5 FromStatisticsonC oS toStatisticsonI .................. 141 k n n;k 10.6 LectureHallPolytopesands-InversionSequences ............... 143 10.7 LectureHallPartitionsandtheInversionSequencesI .......... 145 n;k 10.8 ALectureHallStatisticonC oS ........................... 148 k n 10.9 InflatedEulerianPolynomialsforC oS ..................... 150 k n 10.10 ConcludingRemarks ...................................... 153 Index 155