ebook img

Combinatorial games : tic-tac-toe theory PDF

747 Pages·2008·3.036 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combinatorial games : tic-tac-toe theory

Combinatorial Games Traditionalgametheoryhasbeensuccessfulatdevelopingstrategyingamesofincomplete information:whenoneplayerknowssomethingthattheotherdoesnot.Butithaslittleto sayaboutgamesofcompleteinformation,forexampleTic-Tac-Toe,solitaire,andhex.This isthesubjectofCombinatorialGameTheory.Mostboardgamesareachallengefor mathematics:toanalyzeapositiononehastoexaminetheavailableoptions,andthenthe furtheroptionsavailableafterselectinganyoption,andsoon.Thisleadstocombinatorial chaos,wherebruteforcestudyisimpractical. Inthiscomprehensivevolume,JózsefBeckshowsreadershowtoescapefromthe combinatorialchaosviathefakeprobabilisticmethod,agame-theoreticadaptationofthe probabilisticmethodincombinatorics.Usingthis,theauthorisabletodeterminetheexact resultsaboutinfiniteclassesofmanygames,leadingtothediscoveryofsomestrikingnew dualityprinciples. József Beck isaProfessorintheMathematicsDepartmentofRutgersUniversity.He hasreceivedtheFulkersonPrizeforresearchinDiscreteMathematicsandhaswritten around100researchpublications.Heistheco-author,withW.L.Chen,ofthepioneering monographIrregularitiesofDistribution. ENCYCLOPEDIAOFMATHEMATICSANDITSAPPLICATIONS FOUNDINGEDITORG.-C.ROTA EditorialBoard P.Flajolet,M.Ismail,E.Lutwak 50 F.BorceuxHandbookofCategoricalAlgebraI 51 F.BorceuxHandbookofCategoricalAlgebraII 52 F.BorceuxHandbookofCategoricalAlgebraIII 53 V.F.KolchinRandomGraphs 54 A.KatokandB.HasselblattIntroductiontotheModernTheoryofDynamicalSystems 55 V.N.SachkovCombinatorialMethodsinDiscreteMathematics 56 V.N.SachkovProbabilisticMethodsinDiscreteMathematics 57 P.M.CohnSkewFields 58 R.GardnerGeometricTomography 59 G.A.Baker,Jr.,andP.Graves-MorrisPadéApproximants,2ndedn 60 J.KrajicekBoundedArithmetic,PropositionalLogic,andComplexityTheory 61 H.GroemerGeometricApplicationsofFourierSeriesandSphericalHarmonics 62 H.O.FattoriniInfiniteDimensionalOptimizationandControlTheory 63 A.C.ThompsonMinkowskiGeometry 64 R.B.BapatandT.E.S.RaghavanNonnegativeMatriceswithApplications 65 K.EngelSpernerTheory 66 D.Cvetkovic,P.RowlinsonandS.SimicEigenspacesofGraphs 67 F.Bergeron,G.LabelleandP.LerouxCombinatorialSpeciesandTree-LikeStructures 68 R.GoodmanandN.WallachRepresentationsandInvariantsoftheClassicalGroups 69 T.Beth,D.Jungnickel,andH.LenzDesignTheory,I,2ndedn 70 A.PietschandJ.WenzelOrthonormalSystemsforBanachSpaceGeometry 71 G.E.Andrews,R.AskeyandR.RoySpecialFunctions 72 R.TicciatiQuantumFieldTheoryforMathematicians 73 M.SternSemimodularLattices 74 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsI 75 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsII 76 A.A.IvanovGeometryofSporadicGroupsI 77 A.SchinzelPolymomialswithSpecialRegardtoReducibility 78 H.Lenz,T.Beth,andD.JungnickelDesignTheoryII,2ndedn 79 T.PalmerBanachAlgebrasandtheGeneralTheoryof∗-AlgebrasII 80 O.StormarkLie’sStructuralApproachtoPDESystems 81 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables 82 J.P.MayberryTheFoundationsofMathematicsintheTheoryofSets 83 C.Foiasetal.Navier–StokesEquationsandTurbulence 84 B.PolsterandG.SteinkeGeometriesonSurfaces 85 R.B.ParisandD.KaminskiAsymptoticsandMellin–BarnesIntegrals 86 R.McElieceTheTheoryofInformationandCoding,2ndedn 87 B.MagurnAlgebraicIntroductiontoK-Theory 88 T.MoraSolvingPolynomialEquationSystemsI 89 K.BichtelerStochasticIntegrationwithJumps 90 M.LothaireAlgebraicCombinatoricsonWords 91 A.A.IvanovandS.V.ShpectorovGeometryofSporadicGroupsII 92 P.McMullenandE.SchulteAbstractRegularPolytopes 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.EuláliaVaresLargeDeviationsandMetastability 102 L.W.Beinekeetal.(eds.)TopicsinAlgebraicGraphTheory 103 O.StaffansWell-PosedLinearSystems 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmann,T.Grundhöfer,H.HählandR.LöwenTheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise Combinatorial Games Tic-Tac-Toe Theory JÓZSEF BECK Rutgers University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521461009 © Cambridge University Press 2008 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2008 A catalogue record for this publication is available from the British Library ISBN 978-0-521-46100-9 hardback Transferred to digital printing 2009 Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter. Dedicated to my mother who taught me how to play Nine Men’s Morris (“Mill”) Contents Preface page xi A summary of the book in a nutshell 1 PART A WEAK WIN AND STRONG DRAW 15 Chapter I Win vs. Weak Win 17 1 Illustration: every finite point set in the plane is a Weak Winner 19 2 Analyzing the proof of Theorem 1.1 32 3 Examples: Tic-Tac-Toe games 42 4 More examples: Tic-Tac-Toe like games 59 5 Games on hypergraphs, and the combinatorial chaos 72 ChapterII Themainresult:exactsolutionsforinfiniteclassesof games 91 6 Ramsey Theory and Clique Games 92 7 Arithmetic progressions 106 8 Two-dimensional arithmetic progressions 118 9 Explaining the exact solutions: a Meta-Conjecture 131 10 Potentials and the Erdo˝s–Selfridge Theorem 146 11 Local vs. Global 163 12 Ramsey Theory and Hypercube Tic-Tac-Toe 172 PART B BASIC POTENTIAL TECHNIQUE – GAME- THEORETIC FIRST AND SECOND MOMENTS 193 Chapter III Simple applications 195 13 Easy building via Theorem 1.2 196 14 Games beyond Ramsey Theory 204 15 A generalization of Kaplansky’s game 216 vii viii Contents Chapter IV Games and randomness 230 16 Discrepancy Games and the variance 231 17 Biased Discrepancy Games: when the extension from fair to biased works! 245 18 A simple illustration of “randomness” (I) 260 19 A simple illustration of “randomness” (II) 270 20 Another illustration of “randomness” in games 286 PART C ADVANCED WEAK WIN – GAME-THEORETIC HIGHER MOMENT 305 Chapter V Self-improving potentials 307 21 Motivating the probabilistic approach 308 22 Game-theoretic second moment: application to the Picker–Chooser game 320 23 Weak Win in the Lattice Games 329 24 Game-theoretic higher moments 340 25 Exact solution of the Clique Game (I) 352 26 More applications 362 27 Who-scores-more games 372 Chapter VI What is the Biased Meta-Conjecture, and why is it so difficult? 380 28 Discrepancy games (I) 381 29 Discrepancy games (II) 392 30 Biased Games (I): Biased Meta-Conjecture 400 31 Biased games (II): Sacrificing the probabilistic intuition to force negativity 418 32 Biased games (III): Sporadic results 430 33 Biased games (IV): More sporadic results 439 PARTD ADVANCEDSTRONGDRAW–GAME-THEORETIC INDEPENDENCE 459 Chapter VII BigGame–SmallGame Decomposition 461 34 The Hales–Jewett Conjecture 462 35 Reinforcing the Erdo˝s–Selfridge technique (I) 470 36 Reinforcing the Erdo˝s–Selfridge technique (II) 479 37 Almost Disjoint hypergraphs 485 38 Exact solution of the Clique Game (II) 492 Contents ix Chapter VIII Advanced decomposition 504 39 Proof of the second Ugly Theorem 505 40 Breaking the “square-root barrier” (I) 525 41 Breaking the “square-root barrier” (II) 536 42 Van der Waerden Game and the RELARIN technique 545 Chapter IX Game-theoretic lattice-numbers 552 43 Winning planes: exact solution 553 44 Winning lattices: exact solution 575 45 I-Can-You-Can’t Games – Second Player’s Moral Victory 592 Chapter X Conclusion 610 46 More exact solutions and more partial results 611 47 Miscellany (I) 620 48 Miscellany (II) 634 49 Concluding remarks 644 Appendix A Ramsey Numbers 658 Appendix B Hales–Jewett Theorem: Shelah’s proof 669 Appendix C A formal treatment of Positional Games 677 Appendix D An informal introduction to game theory 705 Complete list of the Open Problems 716 What kinds of games? A dictionary 724 Dictionary of the phrases and concepts 727 References 730

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.