ebook img

Combinatorial Design Theory [expository notes] PDF

101 Pages·2010·0.513 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Combinatorial Design Theory [expository notes]

Combinatorial Design Theory1 Chris Godsil (cid:13)c 2010 1version: April 9, 2010 ii Preface This course is an introduction to combinatorial design theory. iii iv Contents Preface iii 1 Block Designs 1 1.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Fano Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.2 Trivial Cases . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.4 Another difference set construction . . . . . . . . . . . . . 2 1.2.5 Affine Planes . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Relations between Parameters . . . . . . . . . . . . . . . . . . . . 2 2 Symmetric Designs 5 2.1 Incidence Matrices of Designs . . . . . . . . . . . . . . . . . . . . 5 2.2 Constructing Symmetric Designs . . . . . . . . . . . . . . . . . . 6 2.3 Two Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6 The Bruck-Ryser-Chowla Theorem . . . . . . . . . . . . . . . . . 11 2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Hadamard Matrices 17 3.1 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 The Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Symmetric and Regular Hadamard Matrices . . . . . . . . . . . . 21 3.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Conference Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Type-II Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Planes 27 4.1 Projective Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Affine Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 M¨obius Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 v vi CONTENTS 5 Orthogonal Arrays 33 5.1 Latin Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Affine Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 Partial Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Strongly Regular Graphs. . . . . . . . . . . . . . . . . . . . . . . 37 6 Block Intersections 39 6.1 Quasi-Symmetric Designs . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Triangle-free Strongly Regular Graphs . . . . . . . . . . . . . . . 40 6.3 Resolvable Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.4 Designs with Maximal Width . . . . . . . . . . . . . . . . . . . . 44 7 t-Designs 47 7.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2 Extending Fisher’s Inequality . . . . . . . . . . . . . . . . . . . . 48 7.3 Intersection Triangles . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4 Complements and Incidence Matrices. . . . . . . . . . . . . . . . 50 7.5 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.6 Gegenbauer Polynomials . . . . . . . . . . . . . . . . . . . . . . . 52 7.7 A Positive Semidefinite Matrix . . . . . . . . . . . . . . . . . . . 53 8 Witt Designs 55 8.1 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.2 Perfect Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.3 The Binary Golay Code . . . . . . . . . . . . . . . . . . . . . . . 57 8.4 The Plane of Order Four . . . . . . . . . . . . . . . . . . . . . . . 58 8.5 The Code of PG(2,4) . . . . . . . . . . . . . . . . . . . . . . . . 59 9 Groups and Matrices 61 9.1 Group Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 62 9.3 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10 Mutually Unbiased Bases 67 10.1 Complex Lines and Angles . . . . . . . . . . . . . . . . . . . . . . 67 10.2 Equiangular Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 68 10.3 Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10.4 Difference Sets and Equiangular Lines . . . . . . . . . . . . . . . 70 10.5 MUB’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.6 Real MUB’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.7 Affine Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 10.8 Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11 Association Schemes 77 11.1 Intersection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 77 CONTENTS vii 12 Incidence Stuctures 79 12.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 12.3 Matrices and Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13 Matrix Theory 83 13.1 The Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . 83 13.2 Normal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 13.3 Positive Semidefinite Matrices . . . . . . . . . . . . . . . . . . . . 85 14 Finite Fields 87 14.1 Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.2 Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.3 Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 viii CONTENTS Chapter 1 Block Designs 1.1 Definitions We use the following definition for this lecture. (For the official definition, see Corollary ??.) A block design D consists of a point set V and a set B of blocks where each block is a k-subset of V such that: (a) There is a constant r such that each point lies in exactly r blocks. (b) There is a constant λ such that each pair of distinct points lies in exactly λ blocks. In fact (b) implies (a), which we leave as an exercise. What we call a block design might also be called a 2-design. 1.2 Examples We offer some simple examples of designs. 1.2.1 Fano Plane Here we have V =Z and the blocks are as follows: 7 {0,1,3} {1,2,4} {2,3,5} {3,4,6} {4,5,0} {5,6,1} {6,0,2} 1 2 CHAPTER 1. BLOCK DESIGNS This is a block design with parameters (v,b,r,k,λ)=(7,7,3,3,1). Ingeneralbisverylargeanditmaybeinconvenientorimpossibletopresent thedesignbylistingitsblocks. TheFanoplaneisanexampleofadifferenceset construction. AdifferencesetS inanabeliangroupGisasubsetofGwiththe property that each non-zero element of G appears the same number of times as a difference of two elements of S. Here α = {0,1,3} is a difference set for G=Z . If G is an abelian group and S ⊆G then the set 7 S+g ={x+g |x∈S} is called a translate of S. In our example, the design consists of all translates of α. The Fano plane is the projective plane of order two. 1.2.2 Trivial Cases A design is trivial if k ∈ {0,1,v−1,v}. These are valid designs, although not so interesting. For a non-trivial design, 2 ≤ k ≤ v−2. The complete design consists of allk-subsets of a set of size v. 1.2.3 Complements If we take the complement in Z of each block of the Fano plane we get a 7 design on 7 points with block size 4. This holds in general, i.e. if we take the complement of each block in a design we obtain another design. 1.2.4 Another difference set construction LetV =Z ,thenα={0,2,3,4,8}isadifferencesetandthesetofalltranslates 11 of α is a 2-design with parameters (v,b,r,k,λ)=(11,11,5,5,2). A design with b = v is called a symmetric design. We see later on that k = r in symmetric designs. 1.2.5 Affine Planes Let V be a vector space and let B be the set of lines (a line is a coset of a 1-dimensional subspace). This is a 2-design with λ=1. If we take V to be the 2-dimensional vector space over Z we get a 2-(9,3,1) design with b = 12 and 3 r =4. So (cid:26)(cid:18) (cid:19) (cid:27) a V = |a,b∈Z . b This is an affine plane of order three. 1.3 Relations between Parameters Theparametersv,b,r,k,λarenotindependent. Defineaflag tobeanordered pair (v,α) where v ∈V and α ∈B. Then by counting with respect to the first

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.