ebook img

Colorimetric recognition of DNA intercalator with unmodified gold nanoparticles Aiping Xin ... PDF

12 Pages·2009·1.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Colorimetric recognition of DNA intercalator with unmodified gold nanoparticles Aiping Xin ...

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 Colorimetric recognition of DNA intercalator with unmodified gold nanoparticles Aiping Xin, Qiupeng Dong, Cen Xiong, Liansheng Ling* State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering,Sun Yat-sen University, Guangzhou 510275, P.R.China Experimental Section Materials. All oligodeoxyribonucleotides were purchased from Beijing SBS Genetech Co.,Ltd. (Beijing, China). HAuCl ·3H O was purchased from Aldrich Co.. Trisodium citrate, 4 2 sodium chloride, sodium acetate and sodium phosphate monobasic dehydrate were purchased from tianjin fuchen chemistry reagent factory. Ru(phen) Cl and Ethidium bromide was purchased 3 2 from aldrich-sigma Co., Ru(bipy) (dppz)(BF ) ·1.5H O, Ru(phen) (dppz) (BF ) ·3.5H O and 2 4 2 2 2 4 2 2 Ru(bipy) (dppx) (BF ) ·2H O was home made. The store solution of 1.0×10-4M Ru(phen) 2+was 2 4 2 2 3 prepared by dissolving 7.1mg Ru(phen) Cl in 100ml water; 1.0×10-4 M Ethidium bromidewas 3 2 prepared by dissolving 4.0mg Ethidium bromide in 100ml water; 1.0×10-4M Ru(bipy) (dppz)2+ 2 was prepared by dissolving 9.0mg Ru(bipy) (dppz)(BF ) ·1.5H O in 100ml water; 1.0×10-4M 2 4 2 2 Ru(phen) (dppz)2+ was prepared by dissolving 9.1mg Ru(phen) (dppz) (BF ) ·3.5H O in 100ml 2 2 4 2 2 water; 1.0×10-4M Ru(bipy) (dppx)2+ was prepared by dissolving 9.3mg Ru(bipy) (dppx) 2 2 (BF ) ·2H O in 100ml water. 4 2 2 Ultraviolet-visible absorption spectra were recorded on TU 1901UV-visiable absorption spectrometer (Beijing Pukinje General Instrument Co.,Ltd) using 1 cm path length quartz cells. Nano-pure water (18.1 MΩ) that obtained from a 350 Nano-pure water system (Guangzhou Crystalline Resdurce Desalination of Sea Water and Treatment Co.,Ltd.) was used in all experiments. Preparation of Au nanoparticles Au nanoparticles were prepared with the method of reduction of HAuCl with citrate 4 [Grabar, K.C., Freeman, R.G., Hommer, M.B., Natan, M. J. Anal. Chem. 1995, 67, 735-743. ]. The average particle size was about 13 nm in diameter by TEM. Procedure 300 μL gold colloid was diluted with 300ul water, then was mixed with 150ul 1350pmol Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 oligo-a (or oligo-b), then those intercalative (or non- intercalative ) molecule were added into separately, and then with 300 μL of 10 mM PBS containing 0.35 M NaCl was added. Measurement of melting temperature The melting curve of oligo-a with and without Ru(phen) 2+ was obtained with TU 3 1901UV-visiable absorption spectrometer (Beijing Pukinje General Instrument Co.,Ltd) using 1 cm path length quartz cells. The melting curve of oligo-a in the presence of EB, Ru(bipy) dppz2+, 2 Ru(phen) dppz2+ or Ru(bipy) dppx2+ was recorded with RF-5301(Shimadazu, Japan) 2 2 spectrofluorometer with a quartz cell (1×1 cm cross-section). S-Table 1 melting temperature of oligo-a in the presence of different ligand DNA binder Tm (°C) Oligo-a (no binder) 25 Ru(phen) 2+ 26 3 EB 33 Ru(bipy) dppz2+ 44 2 Ru(phen) dppz2+ 44 2 Ru(bipy) dppx2+ 42 2 0.82 0.80 0.78 0.76 0 6 2 A 0.74 0.72 0.70 10 15 20 25 30 35 40 Temperature(oC) S-Figure-1 Melting curve of oligo-a(Oligo-a: 7.0μM, NaCl: 0.10M) Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 0.84 0.82 0.80 2600.78 A 0.76 0.74 0.72 10 15 20 25 30 35 40 45 o Temperature( C) S-Figure-2 Melting curve of oligo-a in the presence of Ru(phen) 2+ (Oligo-a: 7.0μM, NaCl: 3 0.10M, Ru(phen) 2+:5.0μM) 3 600 500 400 y sit 300 n e nt I 200 100 0 15 20 25 30 35 40 45 50 55 60 Temperature(oC) S-Figure-3 Melting curve of oligo-a in the presence of EB (EB:3.3μM, NaCl:0.1M, oligo-a:4.0μM,λ :542nm λ :602nm),slit width(EX:3.0nm, EM:5.0nm) ex em Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 200 y sit 150 n e t n I e c n 100 e c s e n i m 50 u L 0 20 30 40 50 60 70 Temperature(oC) S-Figure-4 Melting curve of oligo-a in the presence of Ru(bipy) dppz2+ 2 (Ru(bipy) dppz2+:3.3μM ,NaCl:0.1M , oligo-a:1.3μM, λ :455nm, λ :630nm), slit 2 ex em width(EX:5.0nm, EM:10.0nm) 300 y sit n e nt 200 I e c n e c s e n mi 100 u L 0 0 10 20 30 40 50 60 70 80 90 Temperature(oC) S-Figure-5 Melting curve of oligo-a in the presence of Ru(phen) dppz2+ 2 (Ru(phen) dppz2+:3.3μM, NaCl:0.1M,oligo-a:4.0μM, λ :449nm, λ :617nm), slit width (EX: 2 ex em 5.0nm, EM: 10.0nm) Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 800 y t si 600 n e t n I e c n 400 e c s e n i m u 200 L 0 0 20 40 60 80 T (℃) S-Figure-6 Melting curve of oligo-a in the presence of Ru(bipy) dppx2+ 2 (Ru(bipy) dppx2+:3.3μM, NaCl:0.1M , oligo-a:4.0μM, λ :460nm, λ :613nm), slit 2 ex em width(EX:5.0nm, EM:10.0nm) 1. Ru(phen) 2+: 3 S-Figure-7 Effect of Ru(phen) 2+on the naked gold nanoparticles. 3 A. 3.0nM gold nanoparticles B. A+0.05μM Ru(phen) 2+ 3 C. A+0.10μM Ru(phen) 2+; D. A+0.16μM Ru(phen) 2+ 3 3 E. A+0.21μM Ru(phen) 2+ F. A+ 0.26μM Ru(phen) 2+ 3 3 G.. A+0.31μM Ru(phen) 2+ 3 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 S-Figure-8 Effect of Ru(phen) 2+on the oligo-b adsorbed gold nanoparticles. 3 A. 3.0nM gold nanoparticles+1.13μM oligo-b; B. A+2.08μM Ru(phen) 2+; 3 C. A+4.00μM Ru(phen) 2+; D. A+5.21μM Ru(phen) 2+; 3 3 E. A+8.33μM Ru(phen) 2+; F. A+16.67μM Ru(phen) 2+ 3 3 2. EB S-Figure-9 Effect of Ebon the naked gold nanoparticles A.3.0 nM Au nanoparticles B. A+0.10 μM EB C. A+0.21 μM EB D. A+0.42 μM EB E. A+0.63 μM EB F. A+0.84 μM EB S-Figure-10 Effect of EB on the oligo-b adsorbed gold nanoparticles A. 3.0 nM Au nanoparticles+1.13 μM oligo-b B. A+1.04 μM EB Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 C. A+2.08 μM EB D. A+4.00 μM EB E. A+16.67 μM EB F. A+33.33 μM 3. Ru(bipy) dppz2+ 2 S-Figurre-11 Effect of Ru(bipy) dppz2+on the naked gold nanoparticles 2 A. 3.0 nM Au nanoparticles B. A+0.03 μM Ru(bipy) dppz2+ 2 C. A+0.06 μM Ru(bipy) dppz2+ D. A+0.09 μM Ru(bipy) dppz2+ 2 2 E. A+0.13 μM Ru(bipy) dppz2+ F. A+0.16 μM Ru(bipy) dppz2+ 2 2 G. A+0.21 μM Ru(bipy) dppz2+ 2 S-Figure-12 Effect of Ru(bipy) dppz2+on the oligo-b adsorbed gold nanoparticles 2 A. 3.0 nM Au nanoparticles+1.13 μM oligo-b B. A+4.0 μM Ru(bipy) dppz2+ 2 C. A+5.21 μM Ru(bipy) dppz2+ D. A+8.33 μM Ru(bipy) dppz2+ 2 2 E. A+16.67 μM Ru(bipy) dppz2+ 2 4. Ru(phen) dppz2+: 2 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 S-Figure-13 Effect of Ru(phen) dppz2+on the naked gold nanoparticles 2 A. 3.0 nM Au nanoparticles B. A+0.03 μM Ru(phen) dppz2+ 2 C. A+0.06 μM Ru(phen) dppz2+ D. A+0.09 μM Ru(phen) dppz2+ 2 2 E. A+0.13 μM Ru(phen) dppz2+ F. A+0.21 μM Ru(phen) dppz2+ 2 2 G. A+0.27 μM Ru(phen) dppz2+ H. A+0.31 μM Ru(phen) dppz2+ 2 2 .S-Figure-14 Effect of Ru(phen) dppz2+on the oligo-b adsorbed gold nanoparticles 2 A. 3.0 nMAu nanoparticles+1.13 μM oligo-b B. A+2.20 μM Ru(phen) dppz2+ 2 C. A+3.13 μM Ru(phen) dppz2+ D. A+4.17 μM Ru(phen) dppz2+ 2 2 E. A+8.33 μM Ru(phen) dppz2+ 2 5. Ru(bipy) dppx2+: 2 S-Figure -15 Effect of Ru(bipy) dppx2+on the naked gold nanoparticles 2 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 A. 3.0 nM Au nanoparticles B. A+0.011 μM Ru(bipy) dppx2+ 2 C. A+0.023 μM Ru(bipy) dppx2+ D. A+0.034 μM Ru(bipy) dppx2+ 2 2 E. A+0.057 μM Ru(bipy) dppx2+ F. A+0.12 μM Ru(bipy) dppx2+ 2 2 G. A+0.17 μM Ru(bipy) dppx2+ H. A+0.23 μM Ru(bipy) dppx2+ 2 2 S-Figure-16 Effect of Ru(bipy) dppx2+on the oligo-b adsorbed gold nanoparticles 2 A. 3.0 nM Au nanoparticles+1.13 μM oligo-b B. A+0.17 μM Ru(bipy) dppx2+ 2 C. A+0.33 μM Ru(bipy) dppx2+ D. A+2.08 μM Ru(bipy) dppx2+ 2 2 E. A+2.40 μM Ru(bipy) dppx2+ F. A+2.50 μM Ru(bipy) dppx2+ 2 2 G. A+2.71 μM Ru(bipy) dppx2+ H. A+3.13 μM Ru(bipy) dppx2+ 2 2 5.0hour 1.0 4.0hour 3.0hour 2.0hour 0.8 1.0hour 20min 0.6 A 0.4 0.2 0.0 400 500 600 700 800 Wavelength/nm S-Figure-17 Effect of incubation time on the absorption spectra of AuNPs-oligo a 1.3μM oligo a, 3.0nM AuNPs, 0.1 M NaCl Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 0.4 0.3 bA6000.2 aA - 6000.1 0.0 0.02 0.04 0.06 0.08 0.10 0.12 NaCl(M) S-Figure-18 Effect of NaCl on the aggregation of AuNPs-oligo a and AuNPS-oligo b. 1.30 μM oligo-a, 1.30 μM oligo-b, 3.0 nM AuNPs, 4.0μM Ru(bipy) dppz2+: 2 S-Table 2 Analytical parameters for detection intercalators Intercalators Linear regression Linear range r(Correlation Precision at equation(C,μmol/L) (μmol/L) coefficient) 0.5μmol/L (RSD, %) EB A=0.181+0.0477C 2.0-7.0 0.9969 2.86 Ru(bipy) dppz2+ A=0.193+0.127C 0.5-3.5 0.9973 3.55 2 Ru(phen) dppz2+ A=0.078+0.169C 1.0-4.0 0.9955 3.34 2 Ru(bipy) dppx2+ A=0.126+0.177C 1.0-3.5 0.9958 2.84 2 00..66 00..55 a 00..44 A600 00..33 00..22 00 11 22 33 44 55 66 77 88 Concentration o f EB(10-6mol/L) S-Figure 19 Effect of EB concentration on the absorbance of AuNPs-oligo a. oligo-a: 1.30 μM; gold nanoparticles:3.0 nM

Description:
Crystalline Resdurce Desalination of Sea Water and Treatment Co.,Ltd.) was . S-Figure-10 Effect of EB on the oligo-b adsorbed gold nanoparticles.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.