Color Superconducting Phases of Cold Dense Quark Matter by Je(cid:11)rey Allan Bowers Submitted to the Department of Physics at the Massachusetts Institute of Technology on May 6, 2003, in partial ful(cid:12)llment of the requirements for the degree of Doctor of Philosophy in Physics Abstract We investigate color superconducting phases of cold quark matter at densities rele- vant for the interiors of compact stars. At these densities, electrically neutral and weak-equilibrated quark matter can have unequal numbers of up, down, and strange quarks. The QCD interaction favors Cooper pairs that are antisymmetric in color and in flavor, and a crystalline color superconducting phase can occur which accom- modates pairing between flavors with unequal number densities. In the crystalline color superconductor, quarks of di(cid:11)erent flavor form Cooper pairs with nonzero to- tal momentum, yielding a condensate that varies in space like a sum of plane waves. Rotationalandtranslationalsymmetryarespontaneouslybroken. WeuseaGinzburg- Landau method to evaluate candidate crystal structures and predict that the favored structure is face-centered-cubic. We predict a robust crystalline phase with gaps comparable in magnitude to those of the color-flavor-locked phase that occurs when the flavor number densities are equal. Crystalline color superconductivity will be a generic feature of the QCD phase diagram, occurring wherever quark matter that is not color-flavor locked is to be found. If a very large flavor asymmetry forbids even the crystalline state, single-flavor pairing will occur; we investigate this and other spin-one color superconductors in a survey of generic color, flavor, and spin pairing channels. Our predictions for the crystalline phase may be tested in an ultracold gas of fermionic atoms, where a similar crystalline superfluid state can occur. If a layer of crystalline quark matter occurs inside of a compact star, it could pin rotational vortices, leading to observable pulsar glitches. Thesis Supervisor: Krishna Rajagopal Title: Associate Professor of Physics 1 2 Acknowledgments I cannot adequately express my gratitute to my mentor, teacher, collaborator, and friend, Krishna Rajagopal, for years of patient advice and inspiration. Very special thanks also to Mark Alford, for close collaboration and generous advice. Thanks to Frank Wilczek for helpful discussion and guidance. Thanks to him and to Wit Busza for serving on my thesis committee and for taking the time to review this manuscript. Thanks to Jack M. Cheyne and Greig A. Cowan for their collaboration on the spin- one calculations of Chapter 4 and Appendix B. Thanks to Paulo Bedaque, Michael Forbes, Elena Gubankova, Robert Ja(cid:11)e, Chris Kouvaris, Joydip Kundu, Vincent Liu, Dirk Rischke, Thomas Sch¨afer, Eugene Shuster, Dam Son, and Christof Wetterich for manyenlightening conversations. This research wassupported inpart bytheU.S.De- partment of Defense (D.O.D.) National Defense Science and Engineering Graduate Fellowship Program, by the Kavli Institute for Theoretical Physics (KITP) Graduate Fellowship Program, by the U.S. Department of Energy (D.O.E.) under cooperative research agreement #DF-FC02-94ER40818, and by the National Science Foundation under Grant No. PHY99-07949. I am grateful to the Kavli Institute for Theoreti- cal Physics (KITP) and the Institute for Nuclear Theory (INT) at the Univeristy of Washington for their hospitality and support during the completion of much of this work. 3 4 Contents 1 Introduction 7 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 The phase diagram of QCD . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 High density and color-flavor-locking . . . . . . . . . . . . . . . . . . 11 1.4 Intermediate density and unlocking . . . . . . . . . . . . . . . . . . . 14 1.5 Crystalline color superconductivity . . . . . . . . . . . . . . . . . . . 23 1.6 Single-flavor color superconductivity . . . . . . . . . . . . . . . . . . 37 1.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.7.1 Compact stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.7.2 Atomic physics . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2 Crystalline Superconductivity: Single Plane Wave 47 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 The LOFF plane wave ansatz . . . . . . . . . . . . . . . . . . . . . . 48 2.3 The gap equation and free energy . . . . . . . . . . . . . . . . . . . . 54 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5 More general Hamiltonian and ansatz . . . . . . . . . . . . . . . . . . 68 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3 Crystalline Superconductivity: Multiple Plane Waves 75 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 The gap equation . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 3.2.2 The Ginzburg-Landau approximation . . . . . . . . . . . . . . 81 3.2.3 The free energy . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.2 One wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Two waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.4 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Crystal structures with intersecting rings . . . . . . . . . . . . 99 3.3.6 \Regular" crystal structures . . . . . . . . . . . . . . . . . . . 100 3.3.7 Varying continuous degrees of freedom . . . . . . . . . . . . . 102 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4 Single Color and Single Flavor Color Superconductivity 110 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2 Mean-(cid:12)eld survey of quark pairing channels . . . . . . . . . . . . . . 112 4.2.1 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 Properties of the pairing channels . . . . . . . . . . . . . . . . 113 4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 Gap calculations for the attractive diquark channels . . . . . . . . . . 118 4.4 Quasiquark dispersion relations . . . . . . . . . . . . . . . . . . . . . 122 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 Applications and Outlook 132 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.2 Pulsar glitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 Ultracold Fermi gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A Evaluating J and K Integrals 152 B Spin-One Calculations 156 B.1 Calculational details . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6 B.2 Gap equation summary . . . . . . . . . . . . . . . . . . . . . . . . . . 158 B.2.1 Cγ and C gap equations . . . . . . . . . . . . . . . . . . . . 158 5 B.2.2 C(cid:27) and C(cid:27) γ gap equations . . . . . . . . . . . . . . . . . 159 03 03 5 B.2.3 C((cid:27) (cid:6)i(cid:27) ) gap equation . . . . . . . . . . . . . . . . . . . . 159 01 02 B.2.4 Cγ gap equation . . . . . . . . . . . . . . . . . . . . . . . . . 160 3 B.2.5 Cγ γ gap equation . . . . . . . . . . . . . . . . . . . . . . . . 160 3 5 B.2.6 C(γ (cid:6)iγ ) gap equation . . . . . . . . . . . . . . . . . . . . . 161 1 2 B.2.7 Cγ γ gap equation . . . . . . . . . . . . . . . . . . . . . . . . 161 0 5 B.3 Orbital/spin content of the condensates . . . . . . . . . . . . . . . . . 162 References 166 7 8 Chapter 1 Introduction 1.1 Overview In this thesis we shall discuss the behavior of cold quark matter at densities that are relevant for the interiors of compact stars. It is well known that cold dense quark matter is unstable to the formation of a condensate of quark Cooper pairs, making it a color superconductor. Various phases of color superconductivity have been proposed, and in section 1.2 we review the phase diagram of QCD to provide a larger context for a discussion of the color superconducting phases. In section 1.3 we discuss the color-flavor-locked (CFL) color superconductor, the ground state of cold quark matter at very high densities. In section 1.4 we describe how the CFL phase can be disrupted at intermediate densities that are relevant for compact stars. At these intermediate densities, neutral quark matter has unequal numbers of up, down, and strange quarks, and a crystalline color superconducting phase is favored. The crystallinecolorsuperconductor hastheremarkablevirtueofallowingpairingbetween quarks with unequal Fermi surfaces. Cooper pairs with nonzero total momentum are favored; the condensate spontaneously breaks translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern as a superposition of plane waves. In section 1.5 we discuss the crystalline phase and look ahead to the detailed calculations of chapters 2 and 3 where we investigate single-plane-wave and multiple-plane-wave crystalline phases, respectively. In section 1.6 we discuss 9 single-flavor color superconductivity, which might occur when there is a very large flavor asymmetry that forbids the crystalline state. We also preview chapter 4, which presents alargersurvey ofvarioussingle-colorandsingle-flavor colorsuperconductors. Many of these are spin-one phases with unusual spectra of elementary excitations. Finally, in section 1.7 we discuss physical contexts in which the crystalline phase may occur with observable consequences. In 1.7.1 we review the astrophysical implications of color superconductivity for compact stars. If a layer of crystalline quark matter occurs inside of a compact star, it could pin rotational vortices, leading to observable pulsar glitches. In 1.7.2, we describe how a crystalline superfluid might be created and detected in a trapped gas of ultracold fermions. These are previews of more detailed discussions of glitches and cold atoms that appear in chapter 5. 1.2 The phase diagram of QCD In recent years much theoretical and experimental e(cid:11)ort has been devoted to under- standing the behavior of quantum chromodynamics (QCD) in extreme conditions of very high temperature or density. Because QCD is asymptotically free [1], its high temperature and high density phases are readily described in terms of quark and gluon degrees of freedom [2]. At high temperature, the familiar hadronic phase of QCD gives way to a decon(cid:12)ned plasma of quarks and gluons, in which all the sym- metries of the QCD Lagrangian are unbroken [3]. This phase preceded hadronization in the early universe, and e(cid:11)orts are underway to produce and probe this phase in thermalized collisions of relativistic heavy ions at Brookhaven and CERN labora- tories [4]. At low temperature and high density, on the other hand, the hadronic phase gives way to a degenerate Fermi system of quarks. Under the influence of the QCD interaction, quarks near the Fermi surface can bind together as Cooper pairs, which condense by the BCS mechanism [5] to form a color superconduc- tor [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. While not accessible in the lab- oratory, this cold dense quark matter might occur inside compact stars, with a host of potential astrophysical implications [19]. 10
Description: