SUBMITTEDTOTHEASTROPHYSICALJOURNAL PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 COLOR-SHIFTMEASUREMENTINMICROLENSING-INDUCEDSTELLARVARIATIONFROMFUTURE SPACE-BASEDSURVEYS BYEONG-GONPARK KoreaAstronomyandSpaceScienceInstitute,838Daedeok-Rho,Yuseong-Gu,Daejeon305-348,Korea; [email protected] AND CHEONGHOHAN∗ ProgramofBrainKorea21,AstrophysicalResearchCenterfortheStructureandEvolutionoftheCosmos,SRC, DepartmentofPhysics,ChungbukNationalUniversity,Chongju361-763,Korea; 8 [email protected] 0 SubmittedtoTheAstrophysicalJournal 0 2 ABSTRACT n Ifamicrolensingeventiscausedbyastar,theeventcanexhibitchangeincolorduetothelightfromthelens. a Inthepreviousandcurrentlensingsurveys,thecolorshiftcouldnotbeusedtoconstrainthelenspopulation J becausetheblendedlightresponsibleforthecolorshiftismostlyattributedtonearbybackgroundstarsrather 1 thanthelens. However,eventstobeobservedinfuturespace-basedsurveysdonotsufferfromblendingand 3 thus the color information can be used to constrain lenses. In this paper, we demonstrate the usefulness of future surveys in measuring color shifts. By conducting simulation of galactic lensing events based on the ] specificationofaproposedspace-basedlensingsurvey,weestimatethattheshiftinthecolorofR- H willbe h measuredat5σ levelfor∼12%ofeventsthatoccuron sourcestars with apparentmagnitudesbrighterthan p J=22.5.Color-shiftedeventstendtohavehighmagnificationsandthelenseswillhavebrightnessesequivalent - o tothoseofsourcestars. Thetimescalesofthecolor-shiftedeventstendtobelongerthanthosewithoutcolor r shifts. Fromthemassdistributionoflenses,wefindthatmostofthecolor-shiftedeventswillbeproducedby t s stellarlenseswithspectraltypesdowntomidM-typemainsequencestars. a Subjectheadings:gravitationallensing [ 1 v 1. INTRODUCTION color-shiftedeventswould be higherin the space-basedsur- 5 Oneimportantcharacteristicofamicrolensingeventisthat veybecauseitwillmonitormuchfainterstarsthancurrentsur- 2 the colorof the lensed star doesnot changeduringthe lens- veys. Asthemonitoredstarbecomesfainter,therelativeflux 8 of the lens to the source star increases and thus the event is ing magnification. However, eventsobserved in actual lens- 4 morelikelytoproducelargecolorshift.Third,withhighpho- ing surveys can exhibit color shift. This color shift occurs . tometricprecision,the surveycandetectmuchsmallercolor 1 whenthefluxfromthelensedsourcestarisblendedwiththe shiftthanground-basedsurveys. Withtheincreasedfraction 0 flux from other stars located in the seeing disk of the star. 8 Thelensedandblendedstarsgenerallyhavedifferentcolors. of large color-shifted events and higher sensitivity to small 0 Then, color shift occurs as the source/blend relative bright- color shift combined with nearly an order higher event rate, : thefuturespace-basedlensingsurveywouldbeabletodetect v nesschangesduringlensingmagnification. colorshiftsforalargenumberofevents. i Kamionkowski(1995) and Buchalteretal. (1996) pointed X In this paper, we demonstrate the usefulness of future outthatiftheobjectresponsiblefora lensingeventisastar, space-basedlensingsurveysinmeasuringcolorshiftsoflens- r it is possible to obtain information about the lens from the a ing events. For this, we estimate the fraction of eventswith measuredcolorshift. However,thisideacouldnotbeimple- measurablecolorshiftsamongtheeventstobedetectedfrom mented for the actual analysis of lens population. The most theproposedMPFsurvey. Wealsoinvestigatetheproperties importantreasonforthisisthatunderthepreviousandcurrent ofthecolor-shiftedeventsbyconductingdetailedsimulation lensingsurveysconductedbyusingground-basedtelescopes, ofgalacticlensingeventsunderrealisticobservationalcondi- the blended flux is mostly attributed to nearby background tions. Thefractionofcolor-shiftedeventswaspreviouslyes- starsratherthanthelens. timatedbyBuchalteretal. (1996). However,their workwas However, the situation will be different in future space- intended as a template for general comparison with various basedlensingsurveys,suchastheMicrolensingPlanetFinder observationalassumptions and thus is not focused on a spe- (MPF). The MPF is a proposed space mission to NASA’s cific survey. In addition, they did not provide information DiscoveryProgramexclusiveformicrolensinganditwillbe aboutthepropertiesofcolor-shiftedevents. equipped with a 1.1 m aperture telescope (Bennett&Rhie Thepaperisorganizedasfollows.In§2,weintroducefor- 2002;Bennettetal.2004).Suchasurveyisidealforthemea- malism used for the description of the color shift in general surementofthecolorshiftinlensingeventsduetothefollow- cases and under various limiting cases. In § 3, we describe ingreasons.First,thankstothehighresolutionprovidedfrom the simulation conducted to estimate the fraction of color- space observation, the survey does not suffer from blending shifteventsandtheirproperties.In§4,wepresenttheresult- caused by background stars. Then, one can safely attribute ingdistributionofcolorshift. Weprobethepropertiesofthe the observed color shift to the lens. Second, the fraction of color-shiftedeventsby investigatingthe distributionsof var- ∗correspondingauthor iousquantitiesrelatedtotheeventsincludingthe sourceand 2 MICROLENINGCOLORSHIFT lensbrightness,lenslightfraction,magnification,lensmass, 3. SIMULATION andeventtimescale. In§5,wesummarizeandconclude. We estimate the color-shift distribution of events ex- 2. FORMALISM pectedfromfuturespace-basedlensingsurveysbyconduction Bayesiansimulationofgalacticmicrolensingeventsunderthe Thedifferencebetweenthe colorsof a lensingeventmea- observationalconditionsoftheMPFsurvey. Forthissimula- suredduringandbeforelensingmagnificationisexpressedas tion,itisrequiredtomodelofthephysicalparametersinclud- F /F ∆(R- H)=- 2.5log R H , (1) ingthemassdensityandvelocitydistributionsofmatteralong (cid:18)FR,0/FH,0(cid:19) thelineofsighttowardthefield, lensmassfunction,andlu- where F represents the observed flux, the subscript ‘0’ de- minosityfunctionofsourcestarsandlenses. Weconductthe notes the measured quantity without lensing magnification, simulationaccordingtothefollowingprocedure. andtheothersubscriptsk=RandHdenotetheobservedpass- Thesurveyisassumedtobeconductedtowardthegalactic bands.1 The ratio between the observed fluxes measured in bulgefieldandthelocationsofthesourceandlensalongthe theindividualpassbandsare line of sight are allocated based on the spatial mass density F AF +F F F +F distribution. Followingthe specification of the MPF survey, FR = AFR,S+FR,L, FR,0 = FR,S+FR,L, (2) wesetthecenterofthesurveyfieldat(l,b)=(1◦.2,- 2◦.4).The H H,S H,L H,0 H,S H,L spatialmassdensitydistributionismodeledbyadoptingthat where F and F representthe fluxesfrom the source star k,S k,L ofHan&Gould(2003). Inthemodel,thedensitydistribution and lens, respectively. With some algebra, the color shift is ofbulgematterisbasedonthedeprojectedinfraredlightden- representedas sityprofileofDweketal.(1995),specificallymodelG2with ∆(R- H)=- 2.5log (A+ηR)/(A+ηH) , (3) Rmax=5kpcfromtheirTable2. Thediskdensitydistribution (1+η )/(1+η ) ismodeledbyadouble-exponentialdisk,i.e. (cid:20) R H (cid:21) where ηk denotes the ratio between the fluxes from the lens R- R |z| andsource,i.e. ρ(R,z)=ρ exp - 0+ , (9) 0 h h η = FR,L, η = FH,L. (4) (cid:20) (cid:18) R z(cid:19)(cid:21) R H FR,S FH,S where (R,z) are the galactocentric cylindrical coordinates, The sign of the color shift is such that it becomes negative R0 =8 kpc is the distance of the Sun from the galactic cen- when the apparentsource star becomesbluer duringlensing ter,ρ0=0.06M⊙ pc- 3 isthelocalmassdensity,andhR=3.5 magnificationandviceversa. kpcandhz=325pcare theradialandverticalscale heights, Inthelimitingcaseofaverylowmagnification(A→1.0), respectively. theamountofthecolorshiftisapproximatedas Once the locations of the lens and source star are set, we η - η thenassigntheirvelocitiesbasedonthevelocitydistribution ∆(R- H)∼- 2.5log 1- ǫ R H , (5) model. Themodelvelocitydistributionhasa gaussianform. (1+η )(1+η ) (cid:20) R H (cid:21) The mean and dispersion of the bulge velocity distribution where ǫ = A- 1.0. As A → 1.0, ǫ → 0, and thus ∆(R- are deduced from the tensor virial theorem. The disk ve- H)→0, implying that the color shift expected from a low- locitydistributionisassumedtohaveaflatrotationspeedof magnificationeventissmall. v =220kms- 1 andvelocitydispersionsalongandnormalto c In the opposite limiting case of a very high-magnification thediskplaneofσ =30kms- 1 andσ =20kms- 1,respec- k ⊥ event (A ≫ 1.0), the numerator on the right side of equa- tively.Theresultingdistributionofthelens-sourcetransverse tion(3) become(A+ηR)/(A+ηH)→1, andthe colorshiftis velocity from the combinationsof the bulge and disk veloc- approximatedas ities is listed in Table 1 of Han&Gould (1995), specifically 1+η thenon-rotatingbarredbulgemodel. ∆(R- H)∼2.5log R . (6) 1+η Weassignthesourcestarbrightnessbyusingtheluminosity (cid:18) H(cid:19) functionofHoltzmanetal.(1998). TheHoltzmanluminosity Ifthelensisveryfaint(i.e.,η ≪1.0),equation(6)isfurther k function is expressed in terms ofV band. Once theV-band simplifiedas absolutemagnitudeofeachstaris chosenfromthe luminos- ∆(R- H)∼2.5log[1+(η - η )]. (7) R H ity function, we determine the R and H band magnitude by Consideringthatthelens/sourcefluxratioissmall,ηR- ηH ≪ usingthecolorinformationlistedinCox(1999). Theappar- 1.0 and thus the expectedcolor shift is also small. This im- entmagnitudesarethendeterminedconsideringthedistance plies that high magnification is not a sufficient condition to tothesourcestarandextinction.Theextinctionisdetermined produce noticeable color shift. To produce noticeable color suchthatthesourcestarfluxdecreasesexponentiallywiththe shift,itisadditionallyrequiredthatthelensshouldbebright. increaseofthedustcolumndensity.Thedustcolumndensity Inthelimitingcasewherethelensdominatesoverthesource is computed on the basis of an exponentialdust distribution starinbrightness(i.e.,ηk≫1.0),thecolorshiftisrepresented modelwith a scale heightof hz=100pc, i.e. ∝exp(- |z|/hz) as (Drimmel&Spergel2001). We set the normalizationof the ∆(R- H)∼2.5log ηR ≡(R- H) - (R- H) , (8) extinctionintheindividualpassbandssuchthatAR=1.8and where (R- H) and (R- H(cid:18))ηHr(cid:19)epresenttheScolorsofLthe lens AtaHrg=et0fi.8elfdo.rastarlocatedatadistanceDS=8kpctowardthe L S Themassofthelensisassignedbasedonthemassfunction andsource,respectively.Thisimpliesthatthecolorshiftcor- ofGould(2000).Themodelmassfunctioniscomposedofnot respondstothedifferencebetweenthecolorsofthelensand onlystars but also browndwarfs(BDs) and stellar remnants source.Underthiscondition,thecolorshiftismaximized. ofwhitedwarfs(WDs),neutronstars(NSs),andblackholes 1WechooseRandHpassbandsbecausetheMPFsurveyplanstoobserve (BHs). The model is constructed under the assumption that inthesebands.Seedetailsin§4. bulgestarsformedinitiallyaccordingtoa doublepower-law PARK&HAN 3 distributionoftheform widepassbandspanningthefull600–1700nmrangeandthe dN M γ othertwonarrowbandsateachendoftherange(Bennettetal. =k , (10) 2004).Theverywidefilterhasnoequivalenceinstandardfil- dM 0.7M (cid:18) ⊙(cid:19) ter,butweassumeitcorrespondstoJ filterbecausethecen- whereγ=- 2.0forM≥0.7M andγ=- 1.3forM<0.7M . tral wavelengthmatchesthat of the J filter. The two narrow ⊙ ⊙ TheseslopesareconsistentwithZoccallietal.(2000)except filters are approximatedby the R and H filters. The observ- thattheprofileisextendedbelowtheirlowerlimitof0.15M ing strategy for MPF is to do most of the observationswith ⊙ down to a BD cutoff of M=0.03 M . Based on this initial theverywidefilterandasmallnumberofobservationsinthe ⊙ mass function, remnants are modeled by assuming that the RandH filters. We choosecolorismeasuredonthe images stars with initial masses 1 M <M <8 M , 8 M <M < takeninRandH filtersbecauselargercolorshiftisexpected ⊙ ⊙ ⊙ 40M ,andM>40M haveevolvedintoWDs(withamean asthewavelengthgapbetweenthefiltersbecomeswider. We mass⊙hMi∼0.6M ),⊙NSs(withhMi∼1.35M ), andBHs assume that MPF can detect 14.3 and 5.0 photons s- 1 for a ⊙ ⊙ (with hMi∼5 M ), respectively. Then, the resulting mass 22magnitudestarintheRandH bands,respectively(Bessel ⊙ fractions of the individual lens populations are stars: BD : 1979;Campinsetal.1985). WD:NS:BH=62:7:22:6:3. Oncethemassofthelensis Fortheindividualevents,wecalculatethemaximumcolor set,itsbrightnessesinRandHbandsaredeterminedbyusing shift by using equation (3). The MPF plans to take images the mass-M relation and the colorinformationpresentedin with 100 sec exposure at a 2 min interval and combine the V Cox(1999).WenotethatBDandremnantlensesaredarkand imagestomakea10minexposureimage,resultinginadata thuseventscausedbythemdonotproducecolorshift. acquisitionrateof∼3–5imageshr- 1or∼100imagesday- 1. With all the assigned physical parameters of the lens and If20%oftheobservationsaredoneinthenarrowfilters,each source, we then produce lensing events. We do this under of the R and H-band image is obtained every 2.4 hrs. This theassumptionthattheimpactparametersofthelens-source rateisfrequentenoughtocoverthepeakofnearlyalllensing encounterare randomlydistributed. Sincethe lensfluxdoes eventsduringwhichthecolorshiftismaximized.Weassume notparticipateinlensingmagnification,itlowerstheapparent thatcolorshiftisdetectableonlyifthecolorshiftmeasuredat magnificationoftheevent,i.e. thepeakoftheeventisfivetimesgreaterthantheuncertainty AF +F u +2 inthecolor-shiftmeasurement,i.e.5σdetection. A = S L; A= 0 , (11) We determine the uncertainty of the color shift measure- app F +F u (u +4)1/2 S L 0 0 ment as follows. Let us define R as the ratio between the F whereu istheimpactparameterofthelens-sourceencounter fluxratiosofaneventmeasuredintwopassbandsduringand 0 normalizedbytheEinsteinradiusofthelens. We definede- beforelensing,i.e., tectable events as those with apparentmagnificationshigher F /F thanathresholdvalueofAth=3/51/2,thatcorrespondstothe RF = R H . (14) F /F magnification when the source star just enters the Einstein R,0 H,0 ring of the lens, i.e. u =1.0. The apparent magnification 0 Accordingtothestandarderroranalysis,thefractionaluncer- varies dependingon the observedpassband. We use the ap- taintyinthemeasurementofRisestimatedas parentmagnificationmeasured in J band as the criterion for eovbesnertvdaettieocnta(bseileitybebleocwa)u.seWietiasstshuemmeatihnaptatshsebraenidsonfothbeleMndPeFd σRF ≃ σFR/FH 2+ σFR,0/FH,0 2 1/2, (15) flux other than the flux from the lens. We restrict that the RF "(cid:18)FR/FH(cid:19) (cid:18)FR,0/FH,0(cid:19) # surveymonitorsstarswithapparentmagnitudesbrighterthan J =22.5, which correspondsto early M-type main-sequence wheretheindividualtermsontherightsideare stars. σ 2 σ 2 σ 2 Onceeventsareproduced,therateoftheindividualevents FR/FH ≃ FR + FH , (16) areweightedbythefactor F /F F F (cid:18) R H(cid:19) (cid:18) R (cid:19) (cid:18) H (cid:19) Γ∝ρ(D )D2ρ(D )r v, (12) and S S L E σ 2 σ 2 σ 2 whereρ(D)isthematterdensity,DL andDSarethedistances FR,0/FH,0 ≃ FR,0 + FH,0 . (17) tothelensandsource,respectively,thefactorD2S isincluded (cid:18)FR,0/FH,0(cid:19) (cid:18)FR,0(cid:19) (cid:18)FH,0(cid:19) toaccountfortheincreaseofthenumberofsourcestarswith Under the assumption that the photometry is photon domi- theincreaseofdistance,r istheEinsteinradiuswhichcorre- E nated, i.e. σ =F1/2, equations (16) and (17) are approxi- spondstothecross-sectionofthelens-sourceencounter,and F matedas v is the lens-source transverse speed. The Einstein radius is relatedtothephysicalparametersofthelensandsourceby σ 2 1 1 F +F FR/FH ∼ + = R H, (18) r = 4GMDL(DS- DL) 1/2. (13) (cid:18)FR/FH(cid:19) FR FH FRFh E (cid:20) c2 DS (cid:21) and From the simulation, we find that 66% and 34%of the total σFR,0/Fh,0 2∼ 1 + 1 = FR,0+FH,0. (19) eventsarecausedbythelenseslocatedinthebulgeanddisk, F /F F F F F respectively. Wealsofindthateventscausedbystellarlenses (cid:18) R,0 H,0(cid:19) R,0 H,0 R,0 H,0 comprise48%andothersare producedbydarklenscompo- Then,fromequation(15),(18),and(19),onefinds nents. TheMPFsurveyplanstoobserveinthewavelengthrange σRF ≃ FR+FH +FR,0+FH,0 1/2. (20) ∼600–1700nminthreepassbands. Theseconsistofavery R F F F F F (cid:18) R H R,0 H,0 (cid:19) 4 MICROLENINGCOLORSHIFT FIG.1.—Colorshiftdistributionofeventsexpectedtobedetectedfromthe futureMPFlensingsurvey. Darkershaderegionrepresentsthedistribution foreventswherethecolorshiftcanbedetectedat5σlevel. The uncertainty in units of magnitude is related to the frac- tionaluncertaintyσ /R by RF F σ σ σ∆(R- H)=2.5loge RF ∼1.1 RF . (21) R R (cid:18) F (cid:19) (cid:18) F (cid:19) Then,thecolor-shiftuncertaintyisexpressedas F +F F +F 1/2 σ∆(R- H)∼1.1 R H + R,0 H,0 . (22) F F F F (cid:18) R H R,0 H,0 (cid:19) 4. RESULT InFigure1,wepresentthecolorshiftdistributionofevents expectedtobedetectedfromtheMPFsurvey.Fromthedistri- FIG.2.—Toppanelshowsthedistributionoftheapparentbrightnessofthe combinedimageofthesourcestarandlens. Secondandthirdpanelsarethe bution,wefindthatcolorshiftcanbemeasuredfor∼12%of brightnessdistributionsoftheseparatesourcestarsandlenses,respectively. the total events. Consideringthateventsproducedby stellar BottompanelshowsthedistributionoftheH-bandlenslightfraction. The lensescomprise∼48%ofthetotalevent,thiscorrespondsto lenslightfractionis1.0whentheobservedfluxispurelyfromthelens.Dark ∼23%ofalleventsproducedbystellarlenses. We findthat shaderegionsrepresentthedistributions foreventswherethecolorshiftis detectableat5σlevel. thefractionsofcolor-shiftedeventsamongthediskandbulge eventsare∼18%and9%, respectively. Thefractionforthe havehighmagnifications.Weestimatethatthefractionofthe disk-lenseventsishigherbecausethelensesarelocatedcloser color-shiftedeventswithimpactparameterslessthanu =0.1 0 totheobserverandthustheyarebrighter. (orA&10)is∼31%. Ontheotherhand,thefractionofthe We investigate the properties of the color-shifted events. color-shiftedeventsamongthose with u >0.5 (or A<2.4) 0 First,weexaminethebrightnessofthesourcestarsandlenses. ismerely∼10%. Theseresultsimplythatcolorshiftswillbe In Figure 2, we present the H-band brightness distributions detectedmainlyfromhigh-magnificationevents. ofthesource+lenscombinedimages(toppanel),andseparate Third,weinvestigatetheeventtimescales. Theeventtime sourcestarsandlenses(secondandthirdpanels,respectively). scaleisdefinedasthetimerequiredforthesourcestartocross From the distributions, we find that the color-shifted events theEinsteinradiusofthelens,i.e.t =r /v.Themiddlepanel E E haveapparentbrightnessdistributedintherangeof17.H. ofFigure3showsthedistributionofthetimescale. Bycom- 21.Wealsofindthatthesourceandlensstarsofcolor-shifted paringthedistributionwiththatofallevents,wefindthatthe eventshave similar brightnessrangesof 18.H .22. This timescalesofthecolor-shiftedeventstendtobelongerthan implies that color shift occurs when the lens brightness is the events without color shifts. The most frequent value of equivalent to that of the source star. This can also be seen the time scale for the color-shifted events is ∼18 days. On inthebottompanelofFigure2, wherewepresentthedistri- theotherhand,themodevalueofalleventsis∼6days. We butionoftheH-bandlenslightfraction. Wefindthat∼45% find this tendency is because the lenses of the color-shifted ofthecolor-shiftedeventswillbeproducedbylensesbrighter eventstendtobebrighterandthusheavierthanthelensesof thansourcestarsintheH bandand∼11%ofthemwillhave eventswithoutcolorshifts.Wefindthatthelensesresponsible lenslightfractionsgreaterthanF /(F +F )=0.9. forthecolor-shiftedeventshavemasses locatedin therange H,L H,S H,L Second, we investigate the magnifications of the color- of 0.2 M .M .1.0 M . These correspond to stars with ⊙ ⊙ shifted events. For this, we construct the distribution of the spectral types from G down to mid M-type main-sequence impactparametersofthelens-sourceencounter.Thedistribu- stars. Color shift measurement for events produced by late tionispresentedinthetoppanelofFigure3. Fromthedistri- spectral-type lens stars is possible because the MPF survey bution,wefind,asexpected,thatcolor-shiftedeventstendto will observe in near infrared through which the lens/source PARK&HAN 5 Therefore,itwouldbepossible tocharacterizethehoststars of planets from color-shift measurements for an important fractionof planetaryevents. For some cases, the sourceand lens stars may have similar colors resulting in small color shifts. Inthiscase, the lensstarscan still bedetectablewith space-based follow-up observations conducted several years aftertheevent(BennettAnderson&Gaudi). 5. CONCLUSION We investigatedthe usefulnessof futurespace-basedlens- ing surveys in measuring color shifts of microlening events caused by the flux from the lens. By conductingsimulation ofgalactic microlensingeventsbased onthe specification of the proposedMPF survey, we estimated that the shift in the color of R- H would be measured at 5σ level for ∼12% of events that would occur on source stars with apparent mag- nitudes brighter than J =22.5. Color-shifted events tend to have high magnifications and the lenses would have bright- nessesequivalenttothoseofsourcestars. We estimatedthat ∼31%ofthecolor-shiftedeventswouldhavemagnifications A>10 and the lenses of ∼45% of the color-shifted events would be brighter than source stars. The time scales of the color-shiftedeventswouldbelongerthanthosewithoutcolor shiftsbecausetheseeventstendtobebrighterandthusheav- ierthanthosewithoutcolorshifts. Weestimatedthatthemost FIG. 3.—Distributionsofthenormalizedimpactparametersofthelens- frequenttimescaleofthecolor-shiftedeventswouldbe∼18 sourceencounter(top),eventtime-scale(middle),andlensmasses(bottom) days,whilethemodevalueofalleventswouldbe∼6days. ofeventstobedetectedbythefutureMPFlensingsurvey.Darkshaderegion Thespectraltypeofthelensstarsofthecolor-shiftedevents representsthedistributionforeventswherethecolorshiftisdetectableat5σ would extenddown to mid M type because the MPF survey level. will observe in near infrared through which the lens/source fluxratioisnotnegligible. fluxratioisnotnegligible. Beingabletoextractinformation Theselectioneffectofcolor-shiftmeasurementsthatfavors about the lens from the measured color shift, future space- eventswithhighermagnificationsandlongertimescalesim- based lensing surveys would be able to better constrain the plies that the fraction of planetary microlensing events with lenspopulationofgalacticmicrolensingevents. color-shiftmeasurementswould be substantially higherthan theaveragevalueofallevents. Thisisbecauseplanetdetec- tion has a similar selection effect of preferring events with This work was supported by the Basic Research Fund of higher magnifications and longer time scales (Han 2007). ChungbukNationalUniversity. REFERENCES Bennett,D.P.,etal.2004,Proc.SPIEInt.Soc.Opt.Eng.,5487,1453 Han,C.2007,ApJ,661,1202 Bennett,D.P.,Anderson,J.,&Gaudi,B.S.2007,ApJ,660,781 Han,C.,&Gould,A.1995,ApJ,447,53 Bennett,D.P.,&Rhie,S.H.2002,ApJ,574,985 Han,C.,&Gould,A.2003,ApJ,592,172 Bessel,M.S.1979,PASP,91,589 Holtzman,J.A.,Watson,A.M.,Baum,W.A.,Grillmair,C.J.,Groth,E.J., Buchalter,A.,Kamionkowski,M.,&Rich,R.M.1996,ApJ,469,676 Light,R.M.,Lynds,R.,&O’Neil,E.J.1998,AJ,115,1946 Campins,H.,Reike,G.H.,&Lebofsky,M.J.1985,AJ,90,896 Kamionkowski,M.1995,ApJ,442,L9 Cox, A. N., 1999, Allen’s Astrophysical Quantities (4th Ed.; New York: Sumi,T.2004,MNRAS,349,193 Springer) Zoccali,M.S.,Cassisi,S.,Frogel,J.A.,Gould,A.,Ortolani,S.,Renzini,A., Drimmel,R.,&Spergel,D.N.2001,ApJ,556,181 Rich,R.M.1999,&Stephens,A.2000,ApJ,530,418 Dwek,E.,etal.1995,AJ,445,716 Gould,A.2000,ApJ,535,928