Colloid and Interface Science in Pharmaceutical Research and Development Colloid and Interface Science in Pharmaceutical Research and Development Hiroyuki Ohshima Kimiko Makino AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON (cid:129) NEW YORK (cid:129) OXFORD PARIS (cid:129) SAN DIEGO (cid:129) SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Elsevier Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK Firstedition2014 Copyright#2014ElsevierB.V.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartment inOxford,UK:phone(þ44)(0)1865843830;fax(þ44)(0)1865853333;email: permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlinebyvisitingthe Elsevierwebsiteathttp://elsevier.com/locate/permissions,andselectingObtaining permissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsor propertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperation ofanymethods,products,instructionsorideascontainedinthematerialherein.Because ofrapidadvancesinthemedicalsciences,inparticular,independentverificationofdiagnoses anddrugdosagesshouldbemade BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ForinformationonallElsevierpublications visitourwebsiteatstore.elsevier.com/ PrintedandboundinUK 14 15 16 13 12 11 10 9 8 7 6 5 4 3 2 1 ISBN:978-0-444-62614-1 CHAPTER 1 Interaction of colloidal particles Hiroyuki Ohshima FacultyofPharmaceuticalSciences,TokyoUniversityofScience,2641 Yamazaki,Noda,Chiba278-8510,Japan CHAPTER CONTENTS 1.1 Introduction ........................................................................................................2 1.2 PotentialDistributionAroundaChargedSurface:thePoisson–Boltzmann equation ............................................................................................................2 1.2.1 HardParticle .....................................................................................3 1.2.2 SoftParticles ....................................................................................6 1.3 ElectricalDoubleLayerInteractionBetweenTwoParticles ....................................8 1.3.1 LinearSuperpositionApproximation ....................................................9 1.3.2 Derjaguin’sApproximation ................................................................11 1.3.2.1 TwoSpheres ........................................................................12 1.3.2.2 TwoCylinders ......................................................................13 1.4 vanderWaalsInteractionBetweenTwoParticles ...............................................14 1.4.1 TwoMolecules.................................................................................15 1.4.2 AMoleculeandaPlate ....................................................................16 1.4.3 TwoParallelPlates ..........................................................................17 1.4.4 TwoSpheres ...................................................................................18 1.4.5 TwoCylinders ..................................................................................19 1.4.6 TwoParticlesImmersedinaMedium ................................................20 1.4.7 TwoParallelPlatesCoveredwithSurfaceLayers.................................21 1.5 DLVOTheoryofColloidStability .........................................................................23 1.5.1 TotalInteractionEnergyBetweenTwoSphericalParticles ...................23 1.5.2 PositionsofaPotentialMaximumandaSecondaryMinimum..............23 1.5.3 TheHeightofaPotentialMaximumandtheDepthofaSecondary Minimum ........................................................................................26 1.5.4 StabilityMap...................................................................................26 1.6 Conclusion........................................................................................................27 References ..............................................................................................................27 1 ColloidandInterfaceScienceinPharmaceuticalResearchandDevelopment.http://dx.doi.org/10.1016/B978-0-444-62614-1.00001-6 ©2014ElsevierB.V.Allrightsreserved. 2 CHAPTER 1 Interaction of colloidal particles 1.1 INTRODUCTION Thestabilityofcolloidalsystemsconsistingofchargedparticlescanbeessentially explained by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [1–12]. Accordingtothistheory,thestabilityofasuspensionofcolloidalparticlesisdeter- mined by the balance between the electrostatic interaction and the van der Waals interactionbetweenparticles.Inthischapterwestartwiththeelectricaldoublelayer around acharge particle inanelectrolyte solution (Figure1.1).We treatboth hard particles and soft particles, i.e., polyelectrolyte-coated particles [8, 10, 13–15] (Figure1.2).Wediscusstheelectrostaticinteractionbetweentwoapproachingpar- ticles due to the overlapping of the electrical double layers around them. We then considerthevanderWaalsinteractionbetweenparticles.Finallywediscussthesta- bilityofacolloidalsuspensiononthebasisofthetotalinteractingenergy(theelec- trostatic energy andthe vander Waals energy)between particles. 1.2 POTENTIAL DISTRIBUTION AROUND A CHARGED SURFACE: THE POISSON–BOLTZMANN EQUATION Aroundachargedcolloidalparticleimmersedinanelectrolytesolution,mobileelec- trolyteionsformanioniccloudofthickness1/k(calledtheDebyelength),kbeing the Debye–Hu¨ckel parameter (Figure 1.1). As a result of Coulomb interaction FIGURE1.1 Electricaldoublelayerofthickness1/k(Debyelength)aroundasphericalchargedparticle. 1.2 Potential distribution around a charged surface 3 FIGURE1.2 Softparticle(polyelectrolyte-coatedparticle). betweenelectrolyteionsandparticlesurfacecharges,intheioniccloudtheconcen- trationofcounterions(electrolyteionswithchargesofthesignoppositetothatofthe particlesurfacecharges)becomesmuchhigherthanthatofcoions(electrolyteions with charges of the same sign as the particle surface charges). The ionic cloud together with the particle surface charge forms an electrical double layer, which isoftencalledanelectricaldiffusedoublelayer,sincethedistributionofelectrolyte ionsintheioniccloudtakesadiffusivestructureduetothermalmotionofions.Elec- trostaticinteractionsbetweencolloidalparticlesdependstronglyonthedistributions ofelectrolyteionsandtheelectricpotentialacrosstheelectricaldoublelayeraround the particle surface [1–12]. 1.2.1 HARD PARTICLE Firstweconsiderauniformlychargedplate-likehardparticleimmersedinaliquid containingMionicspecieswithvalenceziandbulkconcentration(numberdensity) ni1 (i¼1,2...M)(inunitsofm(cid:2)3).Wetakeanx-axisperpendiculartotheplatesur- facewithitsorigin0sothattheregionx>0correspondstotheelectrolytesolution (Figure 1.3(a)). From the electroneutrality condition, we have XM zin1i ¼0 (1.1) i¼1 The electric potential c(x) at position x, measured relative to the bulk solution phase,wherecissetequaltozero,isrelatedtothechargedensityr (x)atthesame el point by the Poisson equation, viz., d2c r ðxÞ ¼(cid:2) el (1.2) dx2 EE r 0 4 CHAPTER 1 Interaction of colloidal particles + + − + − − + + + + − − + − Particle + − − Solution Particle − + + Solution surface + −−− + core + + − + − − + + + + − + + −− + − + + + + + + x − − − x 0 −d 0 Surface layer Y(x) Y(x) Y DON Y 0 Y 0 0 x 0 x −d 1/k 1/k1/k (a) (b) FIGURE1.3 Ionandpotentialdistributionsaroundahardplate(a)andasoftplate(b). whereE istherelativepermittivityoftheelectrolytesolution,andE isthepermit- r 0 tivity of a vacuum. We assume that the distribution of the electrolyte ions obeys Boltzmann’s low,viz., (cid:2) (cid:3) niðxÞ¼n1i exp (cid:2)ziekcTðxÞ (1.3) whereni(x)istheconcentration(numberdensity)oftheithionicspeciesatpositionx, eistheelementaryelectriccharge,kisBoltzmann’sconstant,andTistheabsolute temperature. Thecharge density r (x) at position xis thus given by el (cid:2) (cid:3) relðxÞ¼XM zieniðxÞ¼XM zien1i exp (cid:2)ziekcTðxÞ (1.4) i¼1 i¼1 Combining Eqs.(1.2) and (1.4) gives (cid:2) (cid:3) dd2xc2¼(cid:2)E1E XM zien1i exp (cid:2)ziekcTðxÞ (1.5) r 0i¼1 ThisisthePoisson–Boltzmannequationforthepotentialdistributionc(x),which is subject tothe following boundaryconditions: cð0Þ¼c attheparticlesurface (1.6) 0 cðxÞ!0asx!1 (1.7) 1.2 Potential distribution around a charged surface 5 Iftheinternalelectricfieldsinsidetheparticlecanbeneglected,thenthesurface charge density s of the particle is related to the potential derivative at the particle surface as (cid:4) (cid:4) dc(cid:4) s (cid:4) ¼(cid:2) (1.8) dx EE x¼0þ r 0 Ifthe potential cislow, viz., (cid:4) (cid:4) (cid:4)(cid:4)ziec(cid:4)(cid:4) (cid:4) (cid:4)(cid:3)1 (1.9) kT then Eq. (1.5) reduces to the following linearised Poisson–Boltzmann equation (Debye–Hu¨ckel equation): d2c ¼k2c (1.10) dx2 with ! XM 1=2 1 k¼ EE kT z2ie2n1i (1.11) r 0 i¼1 where k is called the Debye–Hu¨ckel parameter. The reciprocal of k (i.e., 1/k ), whichiscalledtheDebyelength,correspondstothethicknessofthedoublelayer. Notethatni1intheaboveequationsisgiveninunitsofm(cid:2)3.Ifoneusestheunitsof M (mole/litre), then ni1 must be replaced by 1000NAni1, NA being Avogadro’s number. Linearised equation(1.10) can besolvedto give cðxÞ¼c e(cid:2)kx (1.12) 0 wherethe surface potential c isrelatedto the surface chargedensity s as 0 s c ¼ (1.13) 0 EE k r 0 where Eq. (1.8) has been used. For arbitrary potentials c(x), we need to solve the nonlinear Poisson–Boltzmann equation (1.5). This equation can easily be solved for a planar surface in contact with a z–z symmetrical electrolyte solution of bulk concentration n. Inthis case Eq. (1.5) with Eq.(1.11) becomes d2y ¼k2sinhy (1.14) dx2 with (cid:2) (cid:3) 2z2e2n 1=2 k¼ (1.15) EE kT r 0 wherey(x)(cid:4)zec(x)/kTisthescaledpotential.Equation(1.14)canbesolvedtogive (cid:2) (cid:3) 2kT 1þge(cid:2)kx cðxÞ¼ ln (1.16) ze 1(cid:2)ge(cid:2)kx 6 CHAPTER 1 Interaction of colloidal particles with (cid:2) (cid:3) zec g¼tanh 0 (1.17) 4kT Thesurface potential c isrelated tothe surface charge density s as 0 (cid:2) (cid:3) 2EE kkT zec s¼ r 0 sinh 0 (1.18) ze 2kT Considertheasymptoticbehaviourofc(x)atlargex,whichwillbeusedlaterfor calculating the electrostatic interaction between two particles. It follows from Eq.(1.16) thatc(x) at large kxtakes the form (cid:2) (cid:3) 4kT 4kT zec cðxÞ¼ ge(cid:2)kx¼ tanh 0 e(cid:2)kx (1.19) ze ze 4kT ComparingEq.(1.19)withthelinearisedform(Eq.(1.12)),wefindthattheeffec- tivesurface potential c of the plate isgiven by eff (cid:2) (cid:3) 4kT kT zec c ¼ g¼ 4tanh 0 (1.20) eff ze ze 4kT Thepotentialdistributionina2–1electrolytesolutionandthatforamixedsolu- tion of 1–1 and 2–1 electrolytes are given in Refs. [16, 17]. Also, the results for a spherical particle ora cylindrical particle are given inRefs.[16–19]. 1.2.2 SOFT PARTICLES We next consider the case where the particle core is covered by an ion-penetrable surfacelayerofpolyelectrolytes,whichwetermasurfacechargelayer(or,simply, a surface layer). Polyelectrolyte-coated particles are called soft particles [8, 10, 13–15]. Soft particles serve as a model for biocolloids such as cells. Figure 1.3(b) gives schematic representation of ion and potential distributions around a soft sur- face,whichshowsthatthepotentialdeepinsidethesurfacelayerispracticablyequal to the Donnan potential c , if the surface layer is much thicker than the Debye DON length1/k.Alsowetermc (cid:4)c(0)(whichisthepotentialattheboundarybetween 0 thesurfacelayerandthesurroundingelectrolytesolution)thesurfacepotentialofthe polyelectrolyte layer. Considerasurfacechargelayerofthicknessdcoatingaplanarhardsurfaceina symmetricalelectrolytesolutionofbulkconcentrationnandvalencez.Wetreatthe casewherefullyionisedgroupsofvalenceZaredistributedatauniformdensityofN inthesurfacechargelayerandtheparticlecoreisuncharged.Wetakeanx-axisper- pendiculartothesurfacechargelayerwithitsoriginx¼0attheboundarybetween thesurfacechargelayerandthesurroundingelectrolytesolutionsothatthesurface chargelayercorrespondstotheregion(cid:2)d<x<0andtheelectrolytesolutiontox>0 (Figure1.3(b)).ThePoisson–Boltzmannequationsfortheregionsinsideandoutside the surface chargelayerare givenby d2y ¼k2sinhy, 0<x<þ1 (1.21) dx2 1.2 Potential distribution around a charged surface 7 (cid:5) (cid:6) d2y ZeN ze ¼k2sinhy(cid:2) , (cid:2)d<x<0 (1.22) dx2 EE kT r 0 WehavehereassumedthattherelativepermittivityE takesthesamevalueinthe r regionsinsideandoutsidethesurfacechargelayer.NotethatEq.(1.21)istheusual Poisson–Boltzmann equation (Eq. (1.14)) while the right-hand side of Eq. (1.22) containsthecontributionofthefixed-chargesofdensityr ¼ZeNinthepolyelec- fix trolyte layer. Now we introduce the Donnan potential c , which is obtained by DON setting the right-hand side ofEq. (1.22) tozero, (cid:2)kT(cid:3) (cid:2)ZN(cid:3) (cid:2)kT(cid:3) 2ZN ((cid:2)ZN(cid:3)2 )1=23 4 5 c ¼ arcsinh ¼ ln þ þ1 (1.23) DON ze 2zn ze 2zn 2zn then Eq.(1.22) can be rewritten as d2y ¼k2ðsinhy(cid:2)sinhy Þ, (cid:2)d<x<0 (1.24) dx2 DON where y the scaled Donnan potential y (cid:4)zec /kT. The boundary condi- DON DON DON tions for Eqs. (1.21) and (1.24) are (cid:4) (cid:4) dc(cid:4) (cid:4) ¼0 (1.25) dx x¼(cid:2)dþ (cid:4) (cid:4) (cid:4) (cid:4) cð(cid:2)0(cid:2)Þ¼cð(cid:2)0þÞanddc(cid:4)(cid:4) ¼dc(cid:4)(cid:4) (1.26) dx dx x¼(cid:2)0(cid:2) x¼(cid:2)0þ dc cðxÞ!0and !0asx!1 (1.27) dx Equation (1.25) corresponds to the situation in which the particle core is uncharged. For the case where the surface layer d is much thicker than the Debye length1/k,asimplerelationbetweenthesurfacepotentialc (cid:4)c(0)andthevolume 0 chargedensityr ¼ZeNcanbederivedasfollows.ByintegratingEqs.(1.21)and fix (1.24) once, we obtain (cid:2) (cid:3) dy 2 ¼k2½coshy(cid:2)coshyð(cid:2)dÞ(cid:2)2sinhy fy(cid:2)yð(cid:2)dÞg(cid:5), (cid:2)d<x<0 (1.28) dx DON (cid:2) (cid:3) dy 2 ¼k2ðcoshy(cid:2)1Þ, 0<x<þ1 (1.29) dx Notethatifd(cid:6)1/k,theny((cid:2)d)ispracticallyequaltothescaledDonnanpoten- tial.Byusingthisfact,evaluatingEqs.(1.28)and(1.29)atx¼0andequatingthem with the help ofEq. (1.26),we finally obtain