ebook img

Colloid and interface science in pharmaceutical research and development PDF

509 Pages·2014·27.572 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Colloid and interface science in pharmaceutical research and development

Colloid and Interface Science in Pharmaceutical Research and Development Colloid and Interface Science in Pharmaceutical Research and Development Hiroyuki Ohshima Kimiko Makino AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON (cid:129) NEW YORK (cid:129) OXFORD PARIS (cid:129) SAN DIEGO (cid:129) SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Elsevier Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK Firstedition2014 Copyright#2014ElsevierB.V.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartment inOxford,UK:phone(þ44)(0)1865843830;fax(þ44)(0)1865853333;email: permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlinebyvisitingthe Elsevierwebsiteathttp://elsevier.com/locate/permissions,andselectingObtaining permissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsor propertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperation ofanymethods,products,instructionsorideascontainedinthematerialherein.Because ofrapidadvancesinthemedicalsciences,inparticular,independentverificationofdiagnoses anddrugdosagesshouldbemade BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ForinformationonallElsevierpublications visitourwebsiteatstore.elsevier.com/ PrintedandboundinUK 14 15 16 13 12 11 10 9 8 7 6 5 4 3 2 1 ISBN:978-0-444-62614-1 CHAPTER 1 Interaction of colloidal particles Hiroyuki Ohshima FacultyofPharmaceuticalSciences,TokyoUniversityofScience,2641 Yamazaki,Noda,Chiba278-8510,Japan CHAPTER CONTENTS 1.1 Introduction ........................................................................................................2 1.2 PotentialDistributionAroundaChargedSurface:thePoisson–Boltzmann equation ............................................................................................................2 1.2.1 HardParticle .....................................................................................3 1.2.2 SoftParticles ....................................................................................6 1.3 ElectricalDoubleLayerInteractionBetweenTwoParticles ....................................8 1.3.1 LinearSuperpositionApproximation ....................................................9 1.3.2 Derjaguin’sApproximation ................................................................11 1.3.2.1 TwoSpheres ........................................................................12 1.3.2.2 TwoCylinders ......................................................................13 1.4 vanderWaalsInteractionBetweenTwoParticles ...............................................14 1.4.1 TwoMolecules.................................................................................15 1.4.2 AMoleculeandaPlate ....................................................................16 1.4.3 TwoParallelPlates ..........................................................................17 1.4.4 TwoSpheres ...................................................................................18 1.4.5 TwoCylinders ..................................................................................19 1.4.6 TwoParticlesImmersedinaMedium ................................................20 1.4.7 TwoParallelPlatesCoveredwithSurfaceLayers.................................21 1.5 DLVOTheoryofColloidStability .........................................................................23 1.5.1 TotalInteractionEnergyBetweenTwoSphericalParticles ...................23 1.5.2 PositionsofaPotentialMaximumandaSecondaryMinimum..............23 1.5.3 TheHeightofaPotentialMaximumandtheDepthofaSecondary Minimum ........................................................................................26 1.5.4 StabilityMap...................................................................................26 1.6 Conclusion........................................................................................................27 References ..............................................................................................................27 1 ColloidandInterfaceScienceinPharmaceuticalResearchandDevelopment.http://dx.doi.org/10.1016/B978-0-444-62614-1.00001-6 ©2014ElsevierB.V.Allrightsreserved. 2 CHAPTER 1 Interaction of colloidal particles 1.1 INTRODUCTION Thestabilityofcolloidalsystemsconsistingofchargedparticlescanbeessentially explained by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [1–12]. Accordingtothistheory,thestabilityofasuspensionofcolloidalparticlesisdeter- mined by the balance between the electrostatic interaction and the van der Waals interactionbetweenparticles.Inthischapterwestartwiththeelectricaldoublelayer around acharge particle inanelectrolyte solution (Figure1.1).We treatboth hard particles and soft particles, i.e., polyelectrolyte-coated particles [8, 10, 13–15] (Figure1.2).Wediscusstheelectrostaticinteractionbetweentwoapproachingpar- ticles due to the overlapping of the electrical double layers around them. We then considerthevanderWaalsinteractionbetweenparticles.Finallywediscussthesta- bilityofacolloidalsuspensiononthebasisofthetotalinteractingenergy(theelec- trostatic energy andthe vander Waals energy)between particles. 1.2 POTENTIAL DISTRIBUTION AROUND A CHARGED SURFACE: THE POISSON–BOLTZMANN EQUATION Aroundachargedcolloidalparticleimmersedinanelectrolytesolution,mobileelec- trolyteionsformanioniccloudofthickness1/k(calledtheDebyelength),kbeing the Debye–Hu¨ckel parameter (Figure 1.1). As a result of Coulomb interaction FIGURE1.1 Electricaldoublelayerofthickness1/k(Debyelength)aroundasphericalchargedparticle. 1.2 Potential distribution around a charged surface 3 FIGURE1.2 Softparticle(polyelectrolyte-coatedparticle). betweenelectrolyteionsandparticlesurfacecharges,intheioniccloudtheconcen- trationofcounterions(electrolyteionswithchargesofthesignoppositetothatofthe particlesurfacecharges)becomesmuchhigherthanthatofcoions(electrolyteions with charges of the same sign as the particle surface charges). The ionic cloud together with the particle surface charge forms an electrical double layer, which isoftencalledanelectricaldiffusedoublelayer,sincethedistributionofelectrolyte ionsintheioniccloudtakesadiffusivestructureduetothermalmotionofions.Elec- trostaticinteractionsbetweencolloidalparticlesdependstronglyonthedistributions ofelectrolyteionsandtheelectricpotentialacrosstheelectricaldoublelayeraround the particle surface [1–12]. 1.2.1 HARD PARTICLE Firstweconsiderauniformlychargedplate-likehardparticleimmersedinaliquid containingMionicspecieswithvalenceziandbulkconcentration(numberdensity) ni1 (i¼1,2...M)(inunitsofm(cid:2)3).Wetakeanx-axisperpendiculartotheplatesur- facewithitsorigin0sothattheregionx>0correspondstotheelectrolytesolution (Figure 1.3(a)). From the electroneutrality condition, we have XM zin1i ¼0 (1.1) i¼1 The electric potential c(x) at position x, measured relative to the bulk solution phase,wherecissetequaltozero,isrelatedtothechargedensityr (x)atthesame el point by the Poisson equation, viz., d2c r ðxÞ ¼(cid:2) el (1.2) dx2 EE r 0 4 CHAPTER 1 Interaction of colloidal particles + + − + − − + + + + − − + − Particle + − − Solution Particle − + + Solution surface + −−− + core + + − + − − + + + + − + + −− + − + + + + + + x − − − x 0 −d 0 Surface layer Y(x) Y(x) Y DON Y 0 Y 0 0 x 0 x −d 1/k 1/k1/k (a) (b) FIGURE1.3 Ionandpotentialdistributionsaroundahardplate(a)andasoftplate(b). whereE istherelativepermittivityoftheelectrolytesolution,andE isthepermit- r 0 tivity of a vacuum. We assume that the distribution of the electrolyte ions obeys Boltzmann’s low,viz., (cid:2) (cid:3) niðxÞ¼n1i exp (cid:2)ziekcTðxÞ (1.3) whereni(x)istheconcentration(numberdensity)oftheithionicspeciesatpositionx, eistheelementaryelectriccharge,kisBoltzmann’sconstant,andTistheabsolute temperature. Thecharge density r (x) at position xis thus given by el (cid:2) (cid:3) relðxÞ¼XM zieniðxÞ¼XM zien1i exp (cid:2)ziekcTðxÞ (1.4) i¼1 i¼1 Combining Eqs.(1.2) and (1.4) gives (cid:2) (cid:3) dd2xc2¼(cid:2)E1E XM zien1i exp (cid:2)ziekcTðxÞ (1.5) r 0i¼1 ThisisthePoisson–Boltzmannequationforthepotentialdistributionc(x),which is subject tothe following boundaryconditions: cð0Þ¼c attheparticlesurface (1.6) 0 cðxÞ!0asx!1 (1.7) 1.2 Potential distribution around a charged surface 5 Iftheinternalelectricfieldsinsidetheparticlecanbeneglected,thenthesurface charge density s of the particle is related to the potential derivative at the particle surface as (cid:4) (cid:4) dc(cid:4) s (cid:4) ¼(cid:2) (1.8) dx EE x¼0þ r 0 Ifthe potential cislow, viz., (cid:4) (cid:4) (cid:4)(cid:4)ziec(cid:4)(cid:4) (cid:4) (cid:4)(cid:3)1 (1.9) kT then Eq. (1.5) reduces to the following linearised Poisson–Boltzmann equation (Debye–Hu¨ckel equation): d2c ¼k2c (1.10) dx2 with ! XM 1=2 1 k¼ EE kT z2ie2n1i (1.11) r 0 i¼1 where k is called the Debye–Hu¨ckel parameter. The reciprocal of k (i.e., 1/k ), whichiscalledtheDebyelength,correspondstothethicknessofthedoublelayer. Notethatni1intheaboveequationsisgiveninunitsofm(cid:2)3.Ifoneusestheunitsof M (mole/litre), then ni1 must be replaced by 1000NAni1, NA being Avogadro’s number. Linearised equation(1.10) can besolvedto give cðxÞ¼c e(cid:2)kx (1.12) 0 wherethe surface potential c isrelatedto the surface chargedensity s as 0 s c ¼ (1.13) 0 EE k r 0 where Eq. (1.8) has been used. For arbitrary potentials c(x), we need to solve the nonlinear Poisson–Boltzmann equation (1.5). This equation can easily be solved for a planar surface in contact with a z–z symmetrical electrolyte solution of bulk concentration n. Inthis case Eq. (1.5) with Eq.(1.11) becomes d2y ¼k2sinhy (1.14) dx2 with (cid:2) (cid:3) 2z2e2n 1=2 k¼ (1.15) EE kT r 0 wherey(x)(cid:4)zec(x)/kTisthescaledpotential.Equation(1.14)canbesolvedtogive (cid:2) (cid:3) 2kT 1þge(cid:2)kx cðxÞ¼ ln (1.16) ze 1(cid:2)ge(cid:2)kx 6 CHAPTER 1 Interaction of colloidal particles with (cid:2) (cid:3) zec g¼tanh 0 (1.17) 4kT Thesurface potential c isrelated tothe surface charge density s as 0 (cid:2) (cid:3) 2EE kkT zec s¼ r 0 sinh 0 (1.18) ze 2kT Considertheasymptoticbehaviourofc(x)atlargex,whichwillbeusedlaterfor calculating the electrostatic interaction between two particles. It follows from Eq.(1.16) thatc(x) at large kxtakes the form (cid:2) (cid:3) 4kT 4kT zec cðxÞ¼ ge(cid:2)kx¼ tanh 0 e(cid:2)kx (1.19) ze ze 4kT ComparingEq.(1.19)withthelinearisedform(Eq.(1.12)),wefindthattheeffec- tivesurface potential c of the plate isgiven by eff (cid:2) (cid:3) 4kT kT zec c ¼ g¼ 4tanh 0 (1.20) eff ze ze 4kT Thepotentialdistributionina2–1electrolytesolutionandthatforamixedsolu- tion of 1–1 and 2–1 electrolytes are given in Refs. [16, 17]. Also, the results for a spherical particle ora cylindrical particle are given inRefs.[16–19]. 1.2.2 SOFT PARTICLES We next consider the case where the particle core is covered by an ion-penetrable surfacelayerofpolyelectrolytes,whichwetermasurfacechargelayer(or,simply, a surface layer). Polyelectrolyte-coated particles are called soft particles [8, 10, 13–15]. Soft particles serve as a model for biocolloids such as cells. Figure 1.3(b) gives schematic representation of ion and potential distributions around a soft sur- face,whichshowsthatthepotentialdeepinsidethesurfacelayerispracticablyequal to the Donnan potential c , if the surface layer is much thicker than the Debye DON length1/k.Alsowetermc (cid:4)c(0)(whichisthepotentialattheboundarybetween 0 thesurfacelayerandthesurroundingelectrolytesolution)thesurfacepotentialofthe polyelectrolyte layer. Considerasurfacechargelayerofthicknessdcoatingaplanarhardsurfaceina symmetricalelectrolytesolutionofbulkconcentrationnandvalencez.Wetreatthe casewherefullyionisedgroupsofvalenceZaredistributedatauniformdensityofN inthesurfacechargelayerandtheparticlecoreisuncharged.Wetakeanx-axisper- pendiculartothesurfacechargelayerwithitsoriginx¼0attheboundarybetween thesurfacechargelayerandthesurroundingelectrolytesolutionsothatthesurface chargelayercorrespondstotheregion(cid:2)d<x<0andtheelectrolytesolutiontox>0 (Figure1.3(b)).ThePoisson–Boltzmannequationsfortheregionsinsideandoutside the surface chargelayerare givenby d2y ¼k2sinhy, 0<x<þ1 (1.21) dx2 1.2 Potential distribution around a charged surface 7 (cid:5) (cid:6) d2y ZeN ze ¼k2sinhy(cid:2) , (cid:2)d<x<0 (1.22) dx2 EE kT r 0 WehavehereassumedthattherelativepermittivityE takesthesamevalueinthe r regionsinsideandoutsidethesurfacechargelayer.NotethatEq.(1.21)istheusual Poisson–Boltzmann equation (Eq. (1.14)) while the right-hand side of Eq. (1.22) containsthecontributionofthefixed-chargesofdensityr ¼ZeNinthepolyelec- fix trolyte layer. Now we introduce the Donnan potential c , which is obtained by DON setting the right-hand side ofEq. (1.22) tozero, (cid:2)kT(cid:3) (cid:2)ZN(cid:3) (cid:2)kT(cid:3) 2ZN ((cid:2)ZN(cid:3)2 )1=23 4 5 c ¼ arcsinh ¼ ln þ þ1 (1.23) DON ze 2zn ze 2zn 2zn then Eq.(1.22) can be rewritten as d2y ¼k2ðsinhy(cid:2)sinhy Þ, (cid:2)d<x<0 (1.24) dx2 DON where y the scaled Donnan potential y (cid:4)zec /kT. The boundary condi- DON DON DON tions for Eqs. (1.21) and (1.24) are (cid:4) (cid:4) dc(cid:4) (cid:4) ¼0 (1.25) dx x¼(cid:2)dþ (cid:4) (cid:4) (cid:4) (cid:4) cð(cid:2)0(cid:2)Þ¼cð(cid:2)0þÞanddc(cid:4)(cid:4) ¼dc(cid:4)(cid:4) (1.26) dx dx x¼(cid:2)0(cid:2) x¼(cid:2)0þ dc cðxÞ!0and !0asx!1 (1.27) dx Equation (1.25) corresponds to the situation in which the particle core is uncharged. For the case where the surface layer d is much thicker than the Debye length1/k,asimplerelationbetweenthesurfacepotentialc (cid:4)c(0)andthevolume 0 chargedensityr ¼ZeNcanbederivedasfollows.ByintegratingEqs.(1.21)and fix (1.24) once, we obtain (cid:2) (cid:3) dy 2 ¼k2½coshy(cid:2)coshyð(cid:2)dÞ(cid:2)2sinhy fy(cid:2)yð(cid:2)dÞg(cid:5), (cid:2)d<x<0 (1.28) dx DON (cid:2) (cid:3) dy 2 ¼k2ðcoshy(cid:2)1Þ, 0<x<þ1 (1.29) dx Notethatifd(cid:6)1/k,theny((cid:2)d)ispracticallyequaltothescaledDonnanpoten- tial.Byusingthisfact,evaluatingEqs.(1.28)and(1.29)atx¼0andequatingthem with the help ofEq. (1.26),we finally obtain

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.