ebook img

Collider aspects of flavour physics at high Q PDF

2.7 MB·English
by  T. Lari
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Collider aspects of flavour physics at high Q

Collider aspects of flavour physics at high Q ∗ F.delAguila1,J.A.Aguilar–Saavedra1,∗,B.C.Allanach2,∗,J.Alwall3,Yu.Andreev4,D.Aristizabal Sierra5,A.Bartl6,M.Beccaria7,8,S.Be´jar9,10,L.Benucci11,S.Bityukov4,I.Borjanovic´8,G.Bozzi12, G.Burdman13,∗,J.Carvalho14,N.Castro14,∗,B.Clerbaux15,F.deCampos16,A.deGouveˆa17, C.Dennis18,A.Djouadi19,O.J.P.E´boli13,U.Ellwanger19,D.Fassouliotis20,P.M.Ferreira21, R.Frederix3,B.Fuks22,J.-M.Gerard3,A.Giammanco3,S.Gopalakrishna17,T.Goto23, B.Grzadkowski24,J.Guasch25,T.Hahn26,S.Heinemeyer27,A.Hektor28,M.Herquet3,B.Herrmann22, 8 K.Hidaka29,M.K.Hirsch5,K.Hohenwarter-Sodek6,W.Hollik26,G.W.S.Hou30,T.Hurth31,32, 0 0 A.Ibarra33,J.Illana1,M.Kadastik28,S.Kalinin3,C.Karafasoulis34,M.Karago¨zU¨nel18, 2 T.Kernreiter6,M.M.Kirsanov35,M.Klasen22,∗,E.Kou3,C.Kourkoumelis20,S.Kraml22,31, n N.Krasnikov4,∗,F.Krauss36,∗,A.Kyriakis34,T.Lari37,∗,V.Lemaitre3,G.Macorini38,39, a M.B.Magro40,W.Majerotto41,F.Maltoni3,R.Mehdiyev42,43,M.Misiak24,31,F.Moortgat44,∗, J G.Moreau19,M.Mu¨hlleitner31,M.Mu¨ntel28,A.Onofre14,E.O¨zcan45,F.Palla11,L.Panizzi38,39, 1 1 L.Pape44,∗ S.Pen˜aranda5,R.Pittau46,G.Polesello47,∗,W.Porod48,∗,A.Pukhov49,M.Raidal28 A.R.Raklev2,L.Rebane28,F.M.Renard50,D.Restrepo51,Z.Roupas20,R.Santos21,S.Schumann52, ] h G.Servant53,54 F.Siegert52,P.Skands55,P.Slavich56,31,J.Sola`10,57,M.Spira58,S.Sultansoy59,43, p A.Toropin4,A.Tricomi60,∗,J.Tseng18,G.U¨nel53,61,∗,J.W.F.Valle5,F.Veloso14,A.Ventura7,8, - p G.Vermisoglou34,C.Verzegnassi38,39,A.Villanova delMoral5,G.Weiglein36,M.Yılmaz62 e 1 Departamento deF´ısicaTeo´ricaydelCosmosandCAFPE,Universidad deGranada, E-18071 h [ Granada,Spain; 2 DAMTP,CMS,UniversityofCambridge,Cambridge, CB30WA,UnitedKingdom, 1 v 3 CentreforParticlePhysicsandPhenomenology (CP3),Universite´ Catholique deLouvain, B-1348 0 Louvain-la-Neuve, Belgium; 0 4 Institute forNuclearResearchRAS,Moscow,117312, Russia 8 1 5 AHEPGroup,Instituto deF´ısicaCorpuscular (CSIC,UniversitatdeValencia),E–46071Vale`ncia, . 1 Spain. 0 6 Institut fu¨rTheoretische Physik,Universita¨tWien,A-1090Vienna,Austria 8 7 Dipartimento diFisica,Universita` diSalento,73100Lecce,Italy 0 : 8 INFN,SezionediLecce,Italy v 9 GrupdeF´ısicaTeo`rica,UniversitatAuto`nomadeBarcelona, E-08193Barcelona, Spain i X 10 Institut deF´ısicad’AltesEnergies, UniversitatAuto`nomadeBarcelona, E-08193Barcelona,Spain ar 11 INFNandUniversita` diPisa,Pisa,Italy 12 Institut fu¨rTheoretische Physik,Universita¨tKarlsruhe, D-76128Karlsruhe, Germany 13 Instituto deF´ısica,Universidade deSa˜oPaulo,Sa˜oPauloSP05508-900, Brazil 14 LIP-DepartamentodeF´ısica,Universidade deCoimbra,3004-516 Coimbra,Portugal 15 Universite´ LibredeBruxelles, Bruxelles, Belgique 16 Departamento deF´ısicaeQu´ımica,Universidade EstadualPaulista,Guaratingueta´ –SP,Brazil 17 Dept.ofPhysics&Astron.,Northwestern University, Evanston,IL60208,USA. 18 UniversityofOxford,DenysWilkinson Building, KebleRoad,Oxford,OX13RH,UK 19 Laboratoire dePhysiqueThe´orique, Univ. Paris-Sud,F-91405Orsay,France 20 Uni. Athens,PhysicsDept.,Panepistimiopolis, Zografou15784Athens,GREECE 21 CentrodeF´ısicaTeo´ricaeComputacional, FaculdadedeCieˆncias,Universidade deLisboa, 1649-003, Lisboa,Portugal 22 LPSC,Universite´ GrenobleI/CNRS-IN2P3,F-38026Grenoble, France 23 Theorygroup,IPNS,KEK,Tsukuba, 305-0801, Japan 24 Institute ofTheoreticalPhysics,WarsawUniversity, PL-00681Warsaw,Poland ∗Report of WorkingGroup 1of theCERNWorkshop“FlavourintheeraoftheLHC”,Geneva, Switzerland, November 2005–March2007. 1 25 Departament deF´ısicaFonamental, UniversitatdeBarcelona, E-08028Barcelona, Spain 26 Max-Planck-Institut fu¨rPhysik,D-80805Munich,Germany 27 Instituto deFisicadeCantabriaIFCA(CSIC–UC),E-39005Santander, Spain 28 NationalInstitute ofChemicalPhysicsandBiophysics, Ravala10,Tallinn10143, Estonia 29 DepartmentofPhysics,TokyoGakugeiUniversity, Koganei,Tokyo184-8501, Japan 30 DepartmentofPhysics,NationalTaiwanUniversity,Taipei,Taiwan10617 31 TheoryDivision,PhysicsDepartment, CERN,CH-1211Geneva,Switzerland. 32 SLAC,StanfordUniversity, Stanford, CA94309,USA. 33 Deutsches Elektronen-Synchrotron DESY,D-22603Hamburg, Germany 34 Institute ofNuclearPhysics,NCSR“Demokritos”, Athens,Greece 35 INRMoscow,Russia 36 IPPPDurham,DepartmentofPhysics,UniversityofDurham,DurhamDH13LE,UnitedKingdom 37 Universita´ degliStudidiMilanoandINFN,I-20133Milano,Italy. 38 Dipartimento diFisicaTeorica,Universita` diTrieste,Miramare,Trieste,Italy 39 INFN,SezionediTrieste,I-34014Trieste,Italy 40 FaculdadedeEngenharia, CentroUniversita´rioFundac¸a˜oSantoAndre´,SantoAndre´ –SP,Brazil 41 Institut fu¨rHochenergiephysik derO¨sterreichischen AkademiederWissenschaften, A-1050Wien, Austria 42 Universite´ deMontre´al, De´partementdePhysique, Montre´al,Canada. 43 Institute ofPhysics,AcademyofSciences, Baku,Azerbaijan. 44 ETHZurich,CH-8093Zurich,Switzerland 45 Univ. CollegeLondon,PhysicsandAstronomyDept.,London, UK 46 Dipartimento diFisicaTeorica,Universita` diTorinoandINFN,SezionediTorino,Italy, 47 INFN,SezionediPavia,I-27100 Pavia,Italy. 48 Institut fu¨rTheoretische PhysikundAstrophysik, Universita¨tWu¨rzburg, 97074Wu¨rzburg, Germany 49 SINPMSU,Russia, 50 Laboratoire dePhysiqueThe´orique etAstroparticules, UMR5207,Universite´ Montpellier II, F-34095Montpellier Cedex5.,France 51 Instituto deF´ısica,Universidad deAntioquia -Colombia 52 Institute forTheoretical Physics,TUDresden, Dresden,01062, Germany, 53 CERN,PhysicsDept.,CH-1211Geneva23,Switzerland 54 ServicedePhysiqueThe´orique, CEASaclay,F91191Gif–sur–Yvette, France 55 Theoretical Physics,FermiNationalAcceleratorLaboratory, Batavia,IL60510, USA, 56 LAPTH,CNRS,UMR5108,ChemindeBellevueBP110,F-74941,Annecy-le-Vieuy, France 57 HEPGroup,Dept. Estructura iConstituents delaMate`ria,UniversitatdeBarcelona, E-08028 Barcelona, Spain. 58 PaulScherrerInstitute, CH-5232VilligenPSI,Switzerland, 59 TOBBUniversityofEconomicsandTechnology, PhysicsDepartment,Ankara,Turkey, 60 Diparimento diFisicaeAstronomia, UniversitadiCatania,I-95123 Catania,Italy. 61 Univ. CaliforniaatIrvine,PhysicsandAstronomyDept.,Irvine, USA, 62 GaziUniversity, PhysicsDepartment,Ankara,Turkey. ∗ editor Abstract This chapter of the report of the “Flavour in ther era of LHC” workshop dis- cusses flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We re- viewtopquarkphysicsanddiscussflavouraspectsofseveralextensionsofthe Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of severalproperties oftheseheavystates. Wealsopresentpublicavailablecom- putational toolsrelatedtothistopic. 3 Contents 1 Introduction 1 1 TasksofWG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 TheATLASandCMSexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Flavourphenomenaintopquarkphysics 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Wtbvertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Wtbanomalous couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Measurement ofV insingletopproduction . . . . . . . . . . . . . . . . . . . . . . . . 11 tb 3 FCNCinteractions ofthetopquark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Topquarkproduction intheeffectivelagrangian approach . . . . . . . . . . . . . . . . 15 3.2 HiggsbosonFCNCdecaysintotopquarkinageneraltwo-Higgsdoubletmodel . . . . . 17 3.3 Singletopproduction bydirectSUSYFCNCinteractions . . . . . . . . . . . . . . . . . 18 3.4 ATLASandCMSsensitivity toFCNCtopdecays . . . . . . . . . . . . . . . . . . . . . 22 4 Newphysicscorrections totopquarkproduction . . . . . . . . . . . . . . . . . . . . . . 25 4.1 Potentialcomplementary MSSMtestinsingletopproduction . . . . . . . . . . . . . . . 26 4.2 Anomaloussingle-top production inwarpedextradimensions . . . . . . . . . . . . . . . 27 4.3 Non-standard contributions tott¯production . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Flavourviolation insupersymmetricmodels 34 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.1 TheMSSMwithR-parityconservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2 TheMSSMwithbroken R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3 Spontaneous R-parityviolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.4 Studyofsupersymmetry attheLHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.5 Inclusive searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6 Massmeasurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.7 Flavourstudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Effectsofleptonflavourviolation ondi-lepton invariant massspectra . . . . . . . . . . . . 44 3 Leptonflavourviolation inthelong-lived stauNLSPscenario . . . . . . . . . . . . . . . . 46 4 Neutralinodecaysinmodelswithbroken R-parity . . . . . . . . . . . . . . . . . . . . . . 47 5 Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino massmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 SUSY(s)lepton flavourstudieswithATLAS . . . . . . . . . . . . . . . . . . . . . . . . . 51 7 Usingthel+l− + E/ +jetvetosignature forsleptondetection . . . . . . . . . . . . . . 53 T 8 Using the e±µ∓ + E/ signature in the search for supersymmetry and lepton flavour T violation inneutralino decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9 Neutralinospinmeasurement withATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10 SUSYHiggs-boson production anddecay . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.1 SUSYHiggs-boson flavour-changing neutralcurrents attheLHC . . . . . . . . . . . . . 60 4 10.2 H bs¯andB-physicsintheMSSMwithNMFV . . . . . . . . . . . . . . . . . . . . . 63 → 11 Squark/gaugino production anddecay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.1 Flavour-violating squark-andgaugino-production attheLHC . . . . . . . . . . . . . . . 65 11.2 Flavour-violating squarkandgluinodecays . . . . . . . . . . . . . . . . . . . . . . . . 67 12 Topsquark production anddecay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 12.1 Associated stop-chargino production atLHC:Alightstopscenario test . . . . . . . . . . 71 12.2 Exploiting gluino-to-stop decaysinthelightstopscenario . . . . . . . . . . . . . . . . . 73 12.3 Astudyonthedetection ofalightstopsquarkwiththeATLASdetector attheLHC . . . 75 12.4 Stopdecayintoright-handed sneutrino LSP . . . . . . . . . . . . . . . . . . . . . . . . 78 13 SUSYSearchesat√s = 14TeVwithCMS . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 Non-supersymmetricStandardModelextensions 83 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2 Newquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.1 Singlets: charge2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.2 Singlets: charge 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 − 2.3 Quarksfromextradimensions: charges 1/3and5/3 . . . . . . . . . . . . . . . . . . . 100 − 2.4 Fourthsequential generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3 NewLeptons: heavyneutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.1 Production ofheavyneutrinosinglets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.2 Heavyneutrinoproduction fromW decays . . . . . . . . . . . . . . . . . . . . . . . . 109 R 3.3 Heavyneutrinopairproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4 Newneutralgaugebosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1 Z′ bosonsinthedilepton channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2 Z′ inhadronic channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 Newchargedgaugebosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1 Discoverypotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Newscalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.1 Scalartripletseesawmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2 Thediscovery potential oftheBabu-Zeemodel . . . . . . . . . . . . . . . . . . . . . . 126 5 Tools 129 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 2 ABriefSummaryofTheSUSYLesHouchesAccord2 . . . . . . . . . . . . . . . . . . . 129 2.1 TheSLHA2Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 2.2 ExplicitProposalsforSLHA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3 SuSpect, HDECAY, SDECAYandSUSY-HIT . . . . . . . . . . . . . . . . . . . . . . . . 141 3.1 SuSpect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.2 HDECAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.3 SDECAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.4 SUSY-HIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4 FeynHiggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5 5 FchDecay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6 MSSMNMFVinFeynArtsandFormCalc . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 SPheno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8 SOFTSUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 9 CalcHepforbeyondStandardModelPhysics . . . . . . . . . . . . . . . . . . . . . . . . 149 10 HvyN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11 PYTHIAforFlavourPhysicsattheLHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12 SherpaforFlavourPhysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6 Chapter 1 Introduction 1 Tasks ofWG1 The origin of flavour structures and CPviolation remains as one of the big question in particle physics. Within the Standard Model (SM) the related phenomena are successfully parametrised with the help of theCKMmatrixinthequark sector andthePMNSmatrixinthelepton sector. Inbothsectors intensive studiesofflavouraspectshavebeencarriedoutandarestillgoingonasdiscussedinthereportsbyWG2 and WG3. Following the unification idea originally proposed by Einstein it is strongly believed that eventually both sectors can be explained by a common underlying theory of flavour. Although current SMextensions rarelyinclude atheoryofflavour, manyofthemtackletheflavourquestion withthehelp ofsomespecialansatzleading tointeresting predictions forfuturecolliderexperiments astheLHC. This chapter of the ”Flavour in the era of LHC” report gives a comprehensive overview of the theoretical and experimental status on: (i) How flavour physics can be explored in the production of heavy particles like the top quark or new states predicted in extensions of the SM. (ii) How flavour aspectsimpactthediscoveryandthestudyoftheproperties ofthesenewstates. Wediscussindetailthe physics of the top quark, supersymmetric models, Little Higgs models, extra dimensions, grand unified modelsandmodelsexplaining neutrino data. Section2discussesflavouraspectsrelatedtothetopquarkwhichisexpectedtoplayanimportant roleduetoitsheavymass. TheLHCwillbeatopquarkfactoryallowingtostudyseveralofitsproperties ingreatdetail. TheWtbcouplingisanimportantquantitywhichintheSMisdirectlyrelatedtotheCKM element V . In SM extensions new couplings can be presented which can be studied with the help of tb the angular distribution of the top decay products and/or in single top production. In extensions of the SM also sizable flavour changing neutral currents decays can be induced, such as t qZ, t qγ or → → t qg. The SM expectations for the corresponding branching ratios are of the order 10−14 for the → electroweak decays and order 10−12 for the strong one. In extensions like two-Higgs doublet models, supersymmetry or additional exotic quarks they can be up to order 10−4. The anticipated sensitivity of ATLASand CMS for these branching ratio is of order 10−5. New physics contribution will also affect single and pair production of top quarks at LHC either via loop effects or due to resonances which is discussed inthethirdpartofthissection. In section 3 weconsider flavour aspects of supersymmetric models. Thisclass of models predict partners for the SM particles which differ in spin by 1/2. In a supersymmetric world flavour would be described by the usual Yukawa couplings. However, we know that supersymmetry (SUSY)must be broken which is most commonly parameterized in terms of soft SUSY breaking terms. After a brief overview oftheadditional flavourstructures inthesoftSUSYbreaking sectorwefirstdiscuss theeffect of lepton flavour violation in models with conserved R-parity. They can significantly modify di-lepton spectra,whichplayanimportantroleinthedetermination oftheSUSYparameters,despitethestringent constraints from low energy data such as µ eγ. We also discuss the possibilities to discover super- → symmetryusingthee±,µ∓ +missingenergysignature. Leptonflavourviolationplaysalsoanimportant role inlong lived stau scenarios withthe gravitino aslightest supersymmetric particle (LSP).Inmodels with broken R-parity neutrino physics predicts certain ratios of branching ratios of the LSP in terms of neutrino mixing angle (in case of a gravitino LSP the prediction will be for the next to lightest SUSY particle). Here LHC will be important to establish several consistency checks of the model. Flavour aspects affect the squark sector in several ways. Firstly one expects that the lightest squark will be the lighteststopduetoeffectsofthelargetopYukawacoupling. Variousaspectsofitspropertiesarestudied 1 hereindifferentscenarios. Secondlyitleadstoflavourviolatingsquarkproductionandflavourviolating decaysofsquarksandgluinosdespite thestringentconstraints fromlowenergy datasuchasb sγ. → Also other non-supersymmetric extensions of the SM, such as grand unification and little Higgs or extra dimensional models, predict new flavour phenomena which are presented in section 4. Such SMextensions introduce newfermions(quarks andleptons), gaugebosons (charged and/or neutral)and scalars. We study the LHCcapabilities to discover these new mass states, paying a special attention on how to distinguish among different theoretical models. We start with the phenomenology of additional quarks and leptons, studying in detail their production at LHC and decay channels available. It turns out that particles up to a mass of 1-2 TeV can be discovered and studied. Besides the discovery reach we discuss the possibilities to measure their mixing with SM fermions. They are also sources of Higgs bosons(producedintheirdecay)andhencetheycansignificantly enhancetheHiggsdiscoverypotential of LHC. Extended gauge structures predict additional heavy gauge bosons and, depending on the mass hierarchy,theycaneitherdecaytonewfermionsorbeproducedinttheirdecay. Inparticular,theproduc- tion of heavy neutrinos can be enhanced when the SM gauge group is extended with an extra SU(2) , R whichpredicts additional W bosons. Ealsodiscuss flavouraspects forthediscovery ofthenewgauge R bosons. This is specially important for the case of an extra Z′, which appears in any extension of the SMgaugegroup, andforwhichmodeldiscrimination iscrucial. Thepresence ornotofnewW′ bosons alsohelpsidentifyadditionalSU(2)gaugestructures. Finally,severalSMextensionspredictanewscalar particles. Insomecasesthenewscalarsareinvolved intheneutrino massgeneration mechanism, e.g.in someLittleHiggsmodelsandintheBabu-Zeemodel,whicharerealisationsofthetypeIIseesawmech- anism (involving ascalar triplet). In these twocases, high energy observables, such asdecay branching ratios ofdoubly charged scalars, can be related tothe neutrino mixing parameters measured in neutrino oscillations. Last but not least computational tools play an important role in the study of flavour aspects at LHC. In section 5 we give an overview of the public available tools ranging from spectrum calculators overdecaypackagestoMonteCarloprograms. InadditionwebrieflydiscussthelatestversionofSUSY Les Houches Accord which serves as an interface between various programs and now includes flavour aspects. 2 The ATLAS andCMS experiments TheCERNLargeHadron Collider (LHC)iscurrently being installed inthe27-km ringpreviously used fortheLEPe+e− collider. Thismachinewillpushbackthehighenergyfrontierbyoneorderofmagni- tude,providing ppcollisions atacenter-of-mass energyof√s= 14TeV. Fourmainexperiments willbenefit from thisaccelerator: twogeneral-purpose detectors, ATLAS (Fig.1.1)andCMS(Fig.1.2),designed toexplore thephysicsattheTeVscale; oneexperiment, LHCb, dedicated to the study of B-hadrons and CP violation; and one experiment, ALICE, which will study heavy ion collisions. Here only the ATLAS and CMS experiments and their physics programs are dis- cussedinsomedetail. ThemaingoaloftheseexperimentsistheverificationoftheHiggsmechanismfortheelectroweak symmetry breaking and the study of the “new” (i.e. non-Standard Model) physics which is expected to manifest itselfattheTeVscaletosolvethehierarchy problem. Thedesignluminosity of1034 cm−2s−1 ofthenewaccelerator willalsoallowtocollectverylargesamplesofBhadrons, WandZgaugebosons andtopquarks, allowingstringent testsoftheStandardModelpredictions. Sincethisprogrammeimpliesthesensitivity toaverybroadrangeofsignatures andsinceitisnot known how new physics may manifest itself, the detectors have been designed to be able to detect as manyparticles andsignatures aspossible, withthebestpossibleprecision. In both experiments the instrumentation is placed around the interaction point over the whole solidangle, exceptfortheLHCbeampipe. Astheparticles leavetheinteraction point, theytraversethe 2 Fig.1.1:AnexplodedviewoftheATLASdetector. InnerTracker,whichreconstructsthetrajectoriesofchargedparticles,theElectromagneticandHadronic calorimeterswhichabsorbeandmeasurethetotalenergyofallparticlesexceptneutrinosandmuons,and the Muon Spectrometer which is used to identify and measure the momentum of muons. The presence of neutrinos (and other hypothetic weakly interacting particles) is revealed as a non-zero vector sum of theparticlemomentaintheplanetransverse tothebeamaxis. Both the Inner Tracker and the Muon spectrometer need to be placed inside a magnetic field in ordertomeasurethemomentaofchargedparticlesusingtheradiusofcurvatureoftheirtrajectories. The two experiments are very different in the layout they have chosen for the magnet system. In ATLAS, a solenoid provide the magnetic field for the Inner Tracker, while a system of air-core toroids outside the calorimeters provide the field for the Muon Spectrometer. In CMS, the magnetic field is provided by a single very large solenoid which contains both the Inner Tracker and the calorimeters; the muon chambers areembedded intheiron ofthesolenoid return yoke. Themagnet layout determines thesize, theweight(ATLASislargerbutlighter) andeventhenameofthetwoexperiments. The CMS Inner Detector consists of Silicon Pixel and Strip detectors, placed in a 4 T magnetic field. The ATLAS Inner Tracker is composed by a smaller number of Silicon Pixel and Strip detectors and a Transition Radiation detector (TRT) at larger radii, inside a 2 T magnetic field. Thanks mainly to the larger magnetic field, the CMS tracker has a better momentum resolution, but the ATLAS TRT contributes totheelectron/pion identification capabilities ofthedetector. The CMS electromagnetic calorimeter is composed by PbWO with excellent intrinsic energy 4 resolution (σ(E)/E 2 5%/ E(GeV)). The ATLAS electromagnetic calorimeter is a lead/liquid ∼ − p 3 Fig.1.2:AnexplodedviewoftheCMSdetector. argonsamplingcalorimeter. Whiletheenergyresolutionisworse(σ(E)/E 10%/ E(GeV)),thanks ∼ toaveryfinelateralandlongitudinalsegmentationtheATLAScalorimeterprovidesmorerobustparticle p identification capabilities thantheCMScalorimeter. In both detectors the hadronic calorimetry is provided by sampling detectors with scintillator or liquid argon as the active medium. The ATLAS calorimeter has a better energy resolution for jets (σ(E)/E 50%/ E(GeV) 0.03) than CMS(σ(E)/E 100%/ E(GeV) 0.05) because it is ∼ ⊕ ∼ ⊕ thickerandhasafinersamplingfrequency. p p The chamber stations of the CMSmuon spectrometer are embedded into the iron of the solenoid return yoke, while those of ATLAS are in air. Because of multiple scattering in the spectrometer, and the larger field in the Inner Tracker the CMS muon reconstruction relies on the combination of the informationsfromthetwosystems;theATLASmuonspectrometercaninsteadreconstructthemuonsin standalonemode,thoughcombinationwiththeInnerdetectorimprovesthemomentumresolutionatlow momenta. Themomentumresolution for1TeVmuonsisabout7%forATLASand5%forCMS. Muons can be unambiguously identified as they are the only particles which are capable to reach the detectors outside the calorimeters. Both detectors have also an excellent capability to identify elec- trons that are isolated (that is, they are outside hadronic jets). Forexample, ATLASexpects an electron identification efficiency of about 70% with a probability to misidentify a jet as an electron of the order of10−5 [1]. Thetau identification relies onthe hadronic decay modes, since leptonically decaying taus cannotbeseparatedfromelectronsandmuons. Thejetsproducedbyhadronicallydecayingtausaresep- aratedfromthoseproducedbyquarkandgluonssincetheyproducenarrowerjetswithasmallernumber oftracks. Thecapability oftheATLASdetectortoseparateτ-jetsfromQCDjetsisshowninFig.1.3. Theidentification ofthe flavour ofajetproduced byaquark ismoredifficult and itispractically limited to the identification of b jets, which are tagged by the vertex detectors using the relatively long lifetime of B mesons; the presence of soft electron and muon inside a jet is also used to improve the b-tagging performances. In Fig. 1.4 the probability of mis-tagging a light jet as a b jet is plotted as a functionoftheb-taggingefficiencyfortheCMSdetector[1];comparableperformances areexpectedfor ATLAS. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.