ebook img

Collective Intelligence and Digital Archives: Towards Knowledge Ecosystems PDF

252 Pages·2017·14.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Collective Intelligence and Digital Archives: Towards Knowledge Ecosystems

Collective Intelligence and Digital Archives Digital Tools and Uses Set coordinated by Imad Saleh Volume 1 Collective Intelligence and Digital Archives Towards Knowledge Ecosystems Edited by Samuel Szoniecky Nasreddine Bouhaï First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Samuel Szoniecky and Nasreddine Bouhaï to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016957668 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-060-7 Contents Chapter 1. Ecosystems of Collective Intelligence in the Service of Digital Archives . . . . . . . . . . . . . . . 1 Samuel SZONIECKY 1.1. Digital archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Collective intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Knowledge ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4. Examples of ecosystems of knowledge . . . . . . . . . . . . . . . . . . . 7 1.4.1. Modeling digital archive interpretation . . . . . . . . . . . . . . . . . 7 1.4.2. Editing archives via the semantic web . . . . . . . . . . . . . . . . . 10 1.4.3. A semantic platform for analyzing audiovisual corpuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.4. Digital libraries and crowdsourcing: a state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.5. Conservation and promotion of cultural heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.6. Modeling knowledge for innovation . . . . . . . . . . . . . . . . . . . 18 1.5. Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 2. Tools for Modeling Digital Archive Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Muriel LOUÂPRE and Samuel SZONIECKY 2.1. What archives are we speaking of? Definition, issues and collective intelligence methods . . . . . . . . . . . . . 25 2.1.1. Database archives, evolution of a concept and its functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 vi Collective Intelligence and Digital Archives 2.1.2. The exploitation of digital archives in the humanities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.3. The specific case of visualization tools . . . . . . . . . . . . . . . . . 32 2.2. Digital archive visualization tools: lessons from the Biolographes experiment . . . . . . . . . . . . . . . . . . . . 34 2.2.1. Tools for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.2. Tools for visualizing networks: DBpedia, Palladio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.3. Multi-purpose tools (Keshif, Table) . . . . . . . . . . . . . . . . . . . 40 2.3. Prototype for influence network modeling . . . . . . . . . . . . . . . . . 44 2.3.1. Categorization of relationships . . . . . . . . . . . . . . . . . . . . . . 45 2.3.2. Assisted influence network entry . . . . . . . . . . . . . . . . . . . . . 47 2.4. Limits and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4.1. Epistemological conflicts . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.2. The digital “black box”? . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.4.3. From individual expertise to group intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Chapter 3. From the Digital Archive to the Resource Enriched Via Semantic Web: Process of Editing a Cultural Heritage . . . . . . . . . . . . . . . . . . . . . 61 Lénaïk LEYOUDEC 3.1. Influencing the intelligibility of a heritage document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Mobilizing differential semantics . . . . . . . . . . . . . . . . . . . . . . . 62 3.3. Applying an interpretive process to the archive . . . . . . . . . . . . . . 63 3.4. Assessment of the semiotic study . . . . . . . . . . . . . . . . . . . . . . . 67 3.5. Popularizing the data web in the editorialization approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6. Archive editorialization in the Famille™ architext . . . . . . . . . . . . 73 3.7. Assessment of the archive’s recontextualization . . . . . . . . . . . . . . 79 3.8. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 4. Studio Campus AAR: A Semantic Platform for Analyzing and Publishing Audiovisual Corpuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Abdelkrim BELOUED, Peter STOCKINGER and Steffen LALANDE 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2. Context and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Contents vii 4.2.1. Archiving and appropriation of audiovisual data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.2. General presentation of the Campus AAR environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3. Editing knowledge graphs – the Studio Campus AAR example . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.2. Representations of OWL2 restrictions . . . . . . . . . . . . . . . . . 99 4.3.3. Resolution of OWL2 restrictions . . . . . . . . . . . . . . . . . . . . . 101 4.3.4. Relaxing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.5. Classification of individuals . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.6. Opening and interoperability with the web of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.7. Graphical interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4. Application to media analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.4.1. Model of audiovisual description . . . . . . . . . . . . . . . . . . . . 109 4.4.2. Reference works and description models . . . . . . . . . . . . . . . . 110 4.4.3. Description pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.4. The management of contexts . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.5. Suggestion of properties . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.6. Suggestion of property values . . . . . . . . . . . . . . . . . . . . . . 114 4.4.7. Opening on the web of data . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5. Application to the management of individuals . . . . . . . . . . . . . . . 116 4.5.1. Multi-ontology description . . . . . . . . . . . . . . . . . . . . . . . . 116 4.5.2. Faceted browsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5.3. An individual’s range . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.6. Application to information searches . . . . . . . . . . . . . . . . . . . . . 118 4.6.1. Semantic searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.6.2. Transformation of SPARQL query graphs . . . . . . . . . . . . . . . 120 4.6.3. Transformation of OWL2 axioms into SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.6.4. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.7. Application to corpus management . . . . . . . . . . . . . . . . . . . . . . 122 4.8. Application to author publication . . . . . . . . . . . . . . . . . . . . . . . 123 4.8.1. Publication ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.8.2. Transformation engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.8.3. Final product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.8.4. Opening on the web of data . . . . . . . . . . . . . . . . . . . . . . . . 129 4.8.5. Graphical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.10. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 viii Collective Intelligence and Digital Archives Chapter 5. Digital Libraries and Crowdsourcing: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Mathieu ANDRO and Imad SALEH 5.1. The concept of crowdsourcing in libraries . . . . . . . . . . . . . . . . . . 136 5.1.1. Definition of crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . 136 5.1.2. Historic origins of crowdsourcing . . . . . . . . . . . . . . . . . . . . 137 5.1.3. Conceptual origins of crowdsourcing . . . . . . . . . . . . . . . . . . 140 5.1.4. Critiques of crowdsourcing. Towards the uberization of libraries? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2. Taxonomy and panorama of crowdsourcing in libraries . . . . . . . . . 141 5.2.1. Explicit crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.2. Gamification and implicit crowdsourcing . . . . . . . . . . . . . . . 145 5.2.3. Crowdfunding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3. Analyses of crowdsourcing in libraries from an information and communication perspective . . . . . . . . . . . . . . 150 5.3.1. Why do libraries have recourse to crowdsourcing and what are the necessary conditions? . . . . . . . . . . . . . . . . . . . . . 150 5.3.2. Why do Internet users contribute? Taxonomy of Internet users’ motivations . . . . . . . . . . . . . . . . . . . 153 5.3.3. From symbolic recompense to concrete remuneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3.4. Communication for recruiting contributors . . . . . . . . . . . . . . . 155 5.3.5. Community management for keeping contributors . . . . . . . . . . 155 5.3.6. The quality and reintegration of produced data . . . . . . . . . . . . 156 5.3.7. The evaluation of crowdsourcing projects . . . . . . . . . . . . . . . 157 5.4. Conclusions on collective intelligence and the wisdom of crowds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Chapter 6. Conservation and Promotion of Cultural Heritage in the Context of the Semantic Web . . . . . . . . . . . . . . . . 163 Ashraf AMAD and Nasreddine BOUHAÏ 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.2. The knowledge resources and models relative to cultural heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.2.1. Metadata norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.2.2. Controlled vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2.3. Lexical databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.2.4. Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Contents ix 6.3. Difficulties and possible solutions . . . . . . . . . . . . . . . . . . . . . . 174 6.3.1. Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.3.2. Information modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.3.3. Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.3.4. Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Chapter 7. On Knowledge Organization and Management for Innovation: Modeling with the Strategic Observation Approach in Material Science . . . . . . . . . . . . . . . . . 207 Sahbi SIDHOM and Philippe LAMBERT 7.1. General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.2. Research context: KM and innovation process . . . . . . . . . . . . . . . 210 7.2.1. Jean Lamour Institute . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 7.2.2. Technology and Knowledge Transfer Office (or CC-VIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3. Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.3.1. Observation and accumulation of knowledge for innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.3.2. Strategic observation and extraction of knowledge: towards an ontological approach . . . . . . . . . . . . . . . 215 7.3.3. Creation of a class hierarchy (of knowledge) . . . . . . . . . . . . . 224 7.4. Conceptual modeling for innovation: technological transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.4.1. Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.4.2. Corpus specificities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4.3. NLP engineering applied to the corpus . . . . . . . . . . . . . . . . . 228 7.4.4. “Polyfunctionalities” favoring strategic observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.5. Conclusion: principal results and recommendations . . . . . . . . . . . . 233 7.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 1 Ecosystems of Collective Intelligence in the Service of Digital Archives 1.1. Digital archives The management of digital archives is crucial today and for years to come. It is estimated that every 2 days, humanity produces as much digital information as was produced during the two million years that preceded our existence. In addition to this human production is the information that machines continuously produce. With the cost of digital memory becoming ever cheaper, most of this information is stored in vast databases. In 2025, all of these “big data” will constitute nearly eight zettabytes (trillions of gigabytes) [SAD 15]. In our age, there are very few human activities that do not generate digital archives; each day we feed digital workflows even outside our use of computers, telephones or other digital devices. It is enough for us to turn on a light, run errands, take public transport or watch television to produce digital traces that, for the most part, will never be accessible to us, but which are compiled, indexed and calculated in server farms and management centers. The status of these digital archives is obviously not the same when dealing with the tweet sent automatically by a cow, the digitization of a course by Gilles Deleuze or the 3D modeling of the Citadelle Laferrière near Cap-Haïtien. Even if these archives are ultimately composed of a set of 0s and 1s and are therefore formally comparable to one another, their Chapter written by Samuel SZONIECKY. Collective Intelligence and Digital Archives: Towards Knowledge Ecosystems, First Edition. Edited by Samuel Szoniecky and Nasreddine Bouhaï. © ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 2 Collective Intelligence and Digital Archives importance is not equivalent and they particularly vary according to space, time and actor contexts that are faced with this information. The tweet sent by a digital device in relation to a cow’s activities1 is probably not important for most of us, but for the milk producer who wants to follow his herd’s movements to correlate the milk composition with the pastures grazed, it is important to know that a certain pasture has an influence on the amount of fat in the milk. Similarly, a certain passage in Gilles Deleuze’s courses where he speaks of the importance as a fundamental criterion seems to some people like an almost meaningless phrase while it takes on very great importance for the researcher interested in the relationship between ethics and ontology, but also for the reader of these lines who at this very moment is thinking about this concept just by the fact that they are reading it: “What does that mean, this category? The important. No, it is agreed; that is aggravating, but it is not important. What is this calculation? Isn’t it that? Isn’t it the category of the remarkable or the important that would allow us to establish proportions between the two intransigent meanings of the word proportion? Which depends on and results from the intensive part of myself and which rather refers to the extensive parts that I have2.” These proportions between the inner-being and the outer-having are quite easily transposed into the domain of digital archives. Due to their dynamic, upgradeable and interactive characters, digital archives are ecosystems where each element can be analyzed in terms of existence made up of “intensive parts” and “extensive parts”. The example of the digitization of the fort at Cap-Haïtien sheds light on the importance of digital archives that illustrate this “intensive/extensive” double dimension that Deleuze emphasizes to show the correlation between an exterior dimension connected to having and the material, and an interior dimension connected to being and the immaterial. In the case of this historic monument classified as a UNESCO World Heritage Site, digital archiving is the chance to develop both a material and immaterial heritage in one of the poorest countries in the world. The creation of an international research program focusing on the issues of augmented realities, the teaching and education of students on these issues, and the mobilization of artists for the innovative use of these technologies are three examples of immaterial heritage development. At the 1 http://criticalmedia.uwaterloo.ca/teattweet/ 2 http://www2.univ-paris8.fr/deleuze/article.php3?id_article=24

Description:
The digitalization of archives produces a huge mass of structured documents (Big Data). Due to the proactive approach of public institutions (libraries, archives, administrations ...), this data is more and more accessible. This book aims to present and analyze concrete examples of collective intell
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.