ebook img

Collective Dynamics of Deformable Self-Propelled Particles with Repulsive Interaction PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Collective Dynamics of Deformable Self-Propelled Particles with Repulsive Interaction

Typesetwithjpsj3.cls<ver.1.1> Letter CollectiveDynamics ofDeformableSelf-Propelled Particles withRepulsiveInteraction YuItino,TakahiroOhkumaandTakaoOhta ∗ DepartmentofPhysics,GraduateSchoolofScience,KyotoUniversity,Kyoto606-8502,Japan Weinvestigatedynamicsofdeformableself-propelledparticleswitharepulsiveinteractionwhosemag- 1 nitude depends on the relative direction of elongation of a pair of particles. A collective motion of the 1 particlesappearsintwodimensions.Howeverthisorderedstatebecomesunstablewhentheparticleden- 0 sity exceeds a certain critical threshold and the dynamics becomes disorder. We show by a mean field 2 analysisthatthisnoveltransitioncharacteristictodeformabilityoccursduetoasaddle-nodebifurcation. n a KEYWORDS: self-propelledparticle,collectivedynamics,saddle-nodebifurcation. J 8 Dynamics of self-propelled objects have been studied for with s themagnitude.Thelasttermineq.(2)standsforthe 1 i thesemorethanonedecade.Variouscollectivemotionshave interactionbetweenparticlesandisgivenby ] been found for interacting particles1–3) where the hydrody- t N f namicformulationhasbeendeveloped.4,5)Seeref.6)forare- f(i) = K F Q , (5) o ij ij s viewofexperimentalstudies.Effectsofnoiseshavealsobeen Xj=1 . investigated in various model systems to find a rich variety t where K is a positive constant, N the total number of parti- a ofcollectivedynamics.7–11) However,almostalloftheprevi- m ousstudiesassumethatobjectsarerigiddespitethefactthat cles and Fij = −∂U(rij)/∂rij with rij = ri − rj. The form of the potential U(r ) will be specified later. The other fac- - coupling between shape deformation and migration in self- ij d propulsioniscommoninbiologicalmicroorganisms12,13).In tor Qij expresses the dependence of the relative angle of a n pairofelongatedparticlessuchthatwhentheinteractingtwo thepresentpaper,weareconcernedwiththedeformationef- o particlesareparallel,therepulsiveinteractionisweaker.Itis c fectonthecollectivedynamicsofself-propelledparticles. definedby [ Quiterecently,wehaveintroducedthemodelsystemwhere the objectsare deformable.14) We have shown that deforma- Q 1 Q =1+ tr(S(i) S(j))2, (6) ij v tionproducesalotofinterestingdynamicsofindividualpar- 2 − 7 ticlessuchasrotatingmotion,zig-zagmotion,chaoticmotion whereQisapositiveparameter. 8 andhelicalmotion.14–17)Theseresultsclearlyindicatethatde- We have introduced the force (5) to take into considera- 3 formation is relevant to the dynamics. In the present paper, tion, approximately, of the excluded volume effect of elon- 3 . westudydynamicsofassemblyofdeformableself-propelled gatedparticles. Since the force dependson the variableS(i), 1 αβ particleswherethereisarepulsiveshortrangeinteractionbe- itispossiblegenerallythatthereisacountertermineq.(3). 0 1 tweenapairofparticlessuchthatthemagnitudedependson However,forsimplicity,suchacontributionisnotconsidered 1 therelativedirectionofelongation.Ourmainconcernissta- inthepresentstudy. : bilityofcollectivedynamicsduetodeformationofindividual Equation (3) implies that if the velocity is zero, v(i) = 0, v α i particles. theparticledoesnotdeformandtakesacircularshapeintwo X We consider interacting particles in two dimensions. The dimensions. One of the characteristic features of the set of r time-evolutionof the i-th particle obeysthe followingset of equations (1), (2) and (3) is that, when the interaction term a equationsforthepositionofthecenterofmassrα(i),theveloc- isabsent,theseequationsdonotcontaintheparticlesizeex- ityv(αi) andthedeformationtensorSα(iβ) plicitlyasaparameter.Thereforetheinteractionrangeinthe potentialUistheonlyfundamentallengthscaleofthesystem. d r(i) = v(i), (1) Weintroduceanorientationalorderparameterdefinedby dt α α ddtv(αi) = γv(αi)− v(i)2v(αi)−aSα(iβ)v(βi)+ fα(i), (2) Φ=(cid:12)(cid:12)N1 N e2iθj(cid:12)(cid:12), (7) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) Xj=1 (cid:12)(cid:12) ddtSα(iβ) = −κSα(iβ) (cid:12)+b(cid:12) v(αi)v(βi)− 21 v(i)2δαβ!, (3) whereθj isdefinedthroug(cid:12)(cid:12)(cid:12)(cid:12)htherelatio(cid:12)(cid:12)(cid:12)(cid:12)n n(i) = (cosθi,sinθi). (cid:12)(cid:12) (cid:12)(cid:12) In order to quantify the degree of coherentmotion, we may whereγ 0,κ 0,aandbareconstants.(cid:12)Th(cid:12)issetofequa- defineanalternativeorderparameter1) ≥ ≥ tions is an extension of a single particle case.14) The tensor S isrepresentedintermsoftheunitnormal nparalleltothe 1 N v(j) 1 N longaxisofanelongatedparticleas Φv = N (cid:12)(cid:12)(cid:12)(cid:12)Xj=1 v(j) (cid:12)(cid:12)(cid:12)(cid:12)=(cid:12)(cid:12)(cid:12)(cid:12)N Xj=1eiφj(cid:12)(cid:12)(cid:12)(cid:12), (8) Sα(iβ) = si n(αi)n(βi)− 12δαβ!, (4) wherewehaveputv(i)(cid:12)(cid:12)(cid:12)(cid:12)= v((cid:12)(cid:12)(cid:12)i) (c(cid:12)(cid:12)(cid:12)o(cid:12)(cid:12)(cid:12)(cid:12)sφ(cid:12)(cid:12)(cid:12)(cid:12)i,sinφi).In(cid:12)(cid:12)(cid:12)(cid:12) thefollowing, weshalluseΦbutweha(cid:12)vev(cid:12)erifiednumericallythatthedif- (cid:12) (cid:12) (cid:12) (cid:12) J.Phys.Soc.Jpn. Letter YuItinoTakahiroOhkumaandTakaoOhta Fig. 3. (Coloronline)Hysteresisloopfor(a)N =512,(b)N =2048and (c)N=8192 . the dilute regime ρ = 0.0032 and the intermediate regime Fig. 1. (Color online) Snapshots ofthe time-evolution ofparticles at(a) ρ = 0.0852obtainedfor N = 512. Initially the velocityand t = 256and(b)t = 512forρ = 0.075and N = 8192starting witha thepositionoftheindividualparticlesarerandom.Whenthe randominitialconfiguration.Thesefiguresdisplayonlythe1/4 1/4area ofthesystem.Thecolorsdistinguishthedirectionofelongatio×nandthe density is low, the order parameter starts to grow at around arrowsindicatethedirectionofmigration. t = 3000 and almost saturates at about t = 7000 as in Fig. 2(a). When the density is high, the transition to the ordered stateismoreabrupt.Figure2(b)indicatesthatthereisanin- cubationtimeandtheorderparameterstartstogrowataround t=1500andcompleteswithinanarrowinterval. Itseemsthatthecollectivemotionappearsasymptotically in time even for a dilute limit since once an orderedmotion appearsaftercollisions,thereisnomechanismtodestroyit.If oneaddsnoisetermsinthetime-evolutionequations,asharp transition from the disordered state in the dilute regime to the ordered state is expected to occur. However, we do not Fig. 2. (Color online) Growth of order for (a) ρ = 0.0032 and (b) ρ = carryoutsuchnumericalsimulationsbecausetherehavebeen 0.0852,andfor N = 512.Thecurvegiven byeq.(10)isshownbythe brokenlineinFig.(a). manystudiesforrigidparticleswithnoises7–11) and,further- more,thedeformabilityisexpectedtobeirrelevantinthedi- luteregime. ferencebetweenΦ andΦv is negligiblysmall in theplotsin The time-dependence of the order parameter in Fig. 2(a) Figs.2and3below. canbefittedbythefollowingfunction We shallsolveeqs.(1),(2)and(3)numerically.Hereafter weshowtheresultsforthepotential Φ(t)=γ 1 e−α(t−t0)β , (10) − h i r2 whereα=5.02 10 11,β=3,γ=0.955andt =2.25 103. U(r )=exp ij . (9) × − 0 × ij −2σ2 Ift0isputtobezero,nosatisfactoryfitispossible.However, Theparametersarechosenasa = 1andb = 0.5sothateach tthheisatbyrpueptocfhfaunngcetioshno.wTnhiisniFmigp.li2e(sbt)hcaatntnhoettbraenrseiptiroenseknitneedtibcys particletendstoelongatetothedirectionparalleltotheveloc- is quitedifferentfromthe ordinarynucleationandgrowthin ity.14) We fixtheparametersγ = κ = 1in whichtheparticle firstorderphasetransitionsinthermalequilibrium.Infact,we undergoes straight motion.14) Unless stated explicitly, other have seen that once an ordered region appear in the present parametersarechosenasσ = 1, K = 5andQ = 50.Theset self-propelled system, it spreads over the system almost in- of equationsis solved by the Euler explicit methodwith the stantaneouslywhenthedensityismoderatelyhigh. time incrementδt = 1/64.Particlesare confinedin a square Theorderedstatebecomesunstableforlargevaluesofden- areawithsizeLandtheperiodicboundaryconditionsareim- sity.Wehaveinvestigatedthedisorderingprocessbyincreas- posed.Inmostofthesimulations,wechooseN =512,butthe ing the density slowly. The compression and expansion are cases N =1024, 2048 and 8192 are also examined to check madeataconstantrate the numberdependence.The density ρ = N/L2 is varied by dρ/dt= λ, (11) changingthesystemsizeL. ± Appearanceofthecollectivemotionofself-propelledpar- where ticlesisshowninFig.1startingfromadisorderedinitialcon- λ=(ρ ρ )2 n, (12) dition.Theparticlesconstitutelocallyanapproximatehexag- 1 0 − − onal lattice such that one of the fundamental reciprocal lat- with typical values ρ = 0.07 and ρ = 0.14. The expo- 0 1 tice vectors is parallel to the propagatingdirection. Another nent n is varied. Figures 3 display the order parameter Φ as orientationofthelatticesuchthatoneoftheprimitivelattice a function of ρ for n = 14. It is evident that the ordered vectorsisparalleltothepropagatingvelocityhasnotbeenob- stateisspontaneouslybrokenwhenthedensityexceedsacer- served.Wenotethatthepropagatinglatticeisnotcompletely tainthresholdvalueandthereisahysteresisinthetransition. stationary.Eachparticleexhibitsasmalloscillation(orfluctu- Figure 3 shows the N-dependence of the hysteresis behav- ation)initscenterofmassperpendicularlytothepropagating ior. The threshold ρ for the transition from the disordered do direction. state to the ordered state by decreasing the density is less Figure 2 shows the growth of the order parameter Φ for sensitive to the system size. We note that the threshold for J.Phys.Soc.Jpn. Letter YuItinoTakahiroOhkumaandTakaoOhta Fig. 5. (Color online) Diffusive property of the disordered state for ρ = 0.14andN=512.(a)Self-intermediatescatteringfunctionforwavenum- Fig. 4. (Coloronline)Theoder-disordertransitiondensityρodasafunction berskσ=1/16,kσ=1/8,kσ=1/4,kσ=1/2andkσ=1fromtopto ofQforN=512.Thedottedlineisaguidetotheeye.Thevolumefraction bottom.Thedottedcurvesshowthefunctiongivenbyeq.(15).(b)Mean ofthetotalparticlesdefinedbyφod=πσ2ρodisalsoindicatedasthescale squaredisplacementaveragedover16independentruns. oftheverticalaxis. creasesfromβ 1.09toβ 1.3byincreasingkσfrom1/16 k k the ordered-to-disorderedstate by increasing the density oc- to1.Thisindica≈testhattheus≈ualdiffusionwiththewavenum- curs at ρ 0.132 for N = 512 = 29, ρ 0.125 for od od berdependenceβ ν 2occursforsmallvaluesofkwhereas ≈ ≈ k N = 2048 = 211 andρ 0.115for N = 8192 = 213.This ≈ od a ballistic motion is dominant in the short length scale and ≈ indicatesthatthehysteresisregionρod ρdohasatendencyto clearly excludesthe stretched exponentialwith β 1.19) It − k decreaselinearlywithlnN.However,moreaccurateanalysis ≤ isalsoverified(notshown)thatthesimpleexponentialdecay isnecessarytoobtainanydefiniteconclusion,whichisleftfor independentofthevaluesofkislesssatisfactorytofitthenu- afuturestudybecauseoftimeconsumingofnumericalsimu- merical data. The mean square displacement is displayed in lationsforlargersystem.Wehavealsocarriedoutnumerical Fig. 5(b).Thishasbeenobtainedby the averageof16 inde- simulationsforN =512forslowerchangeofthedensitywith pendentruns.Itisapproximatelyproportionaltotimeasymp- n=16andn=18.Thethresholddensityρ isapproximately od toticallywiththemagnitudeofD 0.2.Itisevidentthatthere givenbyρod = 0.132forn = 14,ρod = 0.131forn = 16and is no regime where C(t) has a pl≈ateau due to a cage effect. ρod = 0.128forn = 18.Ontheotherhand,thethresholdρdo This also implies that the disordered state is different from isgivenbyρdo = 0.0840forn= 14,ρdo = 0.0891forn= 16 theusualglassstate18) . and ρ = 0.0902 for n = 18. Therefore, as expected, the do We have shown that the coherent ordered state of the de- hysteresisregiontendstoshrinkforslowerdensitychange. formableself-propelledparticlesbecomesunstable for suffi- Thetransitionbetweentheorderedanddisorderedstatesin cientlylargedensityandadisorderedstateappears.Wehave the high density regime has not been observed in any rigid verified that the same transition occurs not only for the soft self-propelledsystemsandischaracteristictothedeformable potentialgivenbyeq.(9)butalsofor particles.Theorderedstateexistsirrespectiveofthevalueof theanisotropicparameterQineq.(6).However,thestability U =exp( rij/σ). (16) − limit of the ordered state depends on it. The critical density For example, the order-disorder transition occurs at around decreases as the value of Q is increased as shown in Fig. 4. ρ = 0.02fordecreasingthedensityandρ = 0.06forincreas- When the anisotropy is absent, Q = 0, the transition to the ingdensityfor N = 512keepingalltheparametersthesame disorderedstatedoesnotoccur. valuesasusedabove. We have exploredthe propertiesin the disorderedstate at Herewedescribeameanfieldanalysistoclarifytheorder- the high density regime by evaluating numerically the self- disordertransitioninthehighdensityregime.Theforceterm intermediatescatteringfunctiondefineby ineq.(2)canbewrittenas N 1 N Fs(k,t)= N *Xj=1e−ik·(rj(t)−rj(0))+. (13) v(i)· f(i) = Kv(i)Xj=1vˆ(i)·FijQij = Kv(i)NDvˆ(i)·FijQijE, (17) Themeansquaredisplacementofthe individualparticlecan wheretheunitvectorvˆ(i) = v(i)/ v(i) isregardedasastochas- beobtainedfromF (k,t)as s ticvariable.Theaverageisdefin(cid:12)eds(cid:12)uchthat (cid:12) (cid:12) ∂2F (k,t) (cid:12) (cid:12) C(t)= s = r(t) r(0)2 =4Dt, (14) 1 N ∂k2 (cid:12)(cid:12)k=0 D| − | E Xj = N Xj. (18) whereDisthediffusion(cid:12)(cid:12) constantintwodimensions. D E Xj=1 Theintermediatescatteringfunctionisshownasafunction First, we make a decoupling approximationsuch that Q in ij of time in Fig. 5(a) for several values of k = k. It is clear | | eq.(17)isreplacedbytheaverage Qij , that there is no multiple relaxation which is typical in glass D E dynamics.18) Actually, as shown in Fig. 5(a), the scattering v(i) f(i) = Kv(i)N vˆ(i) F Q . (19) ij ij functioncanbefittedby · D · ED E By a dimensional analysis, we note that N vˆ(i) F might Fs(k,t)=exp[−(t/τk)βk], (15) haveafactorσρandhaveverifiednumericallDytha·tthijiEsquan- where τ 23.46 k ν with ν = 1.85.The exponentβ in- k − k ≈ × J.Phys.Soc.Jpn. Letter YuItinoTakahiroOhkumaandTakaoOhta transitionsduetoasaddle-nodebifurcationhavebeenstudied theoreticallyinasingle-variableLangevinsystem.20) Finally we discuss some apparently related phenomena. Colloidalparticles(althoughnotself-propelled)exhibitglass behavior for high density. In this glass dynamics, motion of each particleis frozenor trappedin a cageanddoesnotun- dergoausualBrownianmotion.Thisiscontrasttothepresent result in Fig. 5 where particles have a finite diffusion con- stantthoughtheoriginofthemotionisnotthermalbutcomes from the self-propelledenergy.A jammingtransition occurs Fig. 6. CorrelationχasafunctionofρforN=512.Themeanvaluesare ingranularmaterialsundershearflow.Thediffusionconstant indicatedbytheblackdotswhereasthestandarddeviationsareshownby is finitein the jammedstate butitis definedperpendicularly theerrorbars.Thisplotisobtainedbydecreasingthedensityslowly.The to the flow direction21) and inherently anisotropic since the transitionoccursatρ=0.082.Theinsetshowsthatχisalsonegativefor systemissubjectedtoshearflow.Thethirdrelatedsystemisa theorderedstate. trafficflowwhichalsoexhibitsajammingstatewhenparticles are dense.However,the flowis generallydirectedin onedi- tityisindeedproportionaltothedensityρsothatweput mension22,23) or anisotropicallyone-dimensionalevenin the N vˆ(i) F =ρσχ. (20) two-dimensionalspace24) andthereforethejammedstatehas ij · D E nodirectanaloguewiththepresentisotropicdisorderedstate. Theunknownquantityχisto be evaluatednumerically.An- other decoupling approximation (S )2 = S 2 is also Acknowledgements αβ αβ employed.Secondly,weeliminateDSαβ byEputtDingdESαβ/dt = ThisworkwassupportedbytheGrant-in-Aidfortheprior- 0ineq.(3).Byusingtheseapproximations,eq.(2)becomes ity area“SoftMatterPhysics”andtheGlobalCOEProgram 1 d “TheNextGenerationofPhysics,SpunfromUniversalityand w=γw gw2+χˆ√w[1+Qˆ(w v2 )2], (21) Emergence” both from the Ministry of Education, Culture, 2dt − − D E Sports,ScienceandTechnology(MEXT)ofJapan. where w = v2 0 with the superscript (i) omitted and g=1+(ab)/(2κ),≥andQˆ = Qb2/(4κ2)andχˆ = Kρχσ.Putting v2 = v 2 + (δv)2 with δv the fluctuating part, we iden- 1) T.Vicsek,A.Cziro´k,E.Ben-Jacob,I.Cohen,andO.Shochet:Phys. h i DtifyE v 2 with tDhe staEtionary stable solution of eq. (21). We Rev.Lett.75(1995)1226. h i 2) J.TonerandY.Tu:Phys.Rev.Lett.75(1995)4326. haveverifiednumericallythatχisnegativeasshowninFig. 3) N.Shimoyama, K.Sugawara, T.Mizuguchi, Y.Hayakawa, and M. 6. Therefore,we note that w = 0 is always a stable station- Sano:Phys.Rev.Lett.76(1996)3870. ary solution and that there is a pair of finite solutions, one 4) A.BaskaranandM.C.Marchetti:Phys.Rev.E77(2008)011920. of which is unstable and the other larger solution is stable. 5) S.Ramaswamy:Annu.Rev.Condens.MatterPhys.1(2010)323. For sufficiently large values of χ, this pair of solutionsdis- 6) S.J.EbbensandJ.R.Howse:SoftMatter6(2010)726. | | 7) G.Gre´goireandH.Chate´:Phys.Rev.Lett.92(2004)025702. appear. Thereforethere is a saddle-nodebifurcationat some 8) U.Erdmann,W.Ebeling,andA.Mikhailov:Phys.Rev.E71(2005) valueofρ ρ beyondwhichonlythesolutionw=0exists ≡ od 051904. andhencethisstatecorrespondstothedisorderedstate.Inthe 9) F.PeruaniandL.Morelli:Phys.Rev.Lett.99(2007)010602. disorderedbranch,weshouldput v 2 =0ineq.(21)whereas 10) S.vanTeeffelen,U.Zimmermann,andH.Lo¨wen:SoftMatter5(2009) h i the stable finite stationary solution should be equated to v 4510. h i 11) F.Ginelli,F.Peruani,M.Ba¨r,andH.Chate´:Phys.Rev.Lett.104(2010) intheorderedbranch.Thefactthatχ < 0isessentialforthe 184502. saddle-nodebifurcation.However,aquantitativecomparison 12) L.Li,S.F.Nørrelykke,E.C.Cox,andM.Hatakeyama:PLoSONE3 is impossible with the present crude approximation.For ex- (2008)e2093. ample,we haveto requireχ = 0.57(χ = 0.73)to realize 13) Y.T.Maeda,J.Inose,M.Y.Matsuo,S.Iwaya,M.Sano,andM.Isalan: − − ρ = 0.12 (ρ = 0.082), which are substantially different PLoSONE3(2008)e3734. od do fromthevaluesinFig.6.Notealsothatthecoefficientofthe 14) T.OhtaandT.Ohkuma:Phys.Rev.Lett.102(2009)154101. 15) T.Ohta,T.Ohkuma,andK.Shitara:Phys.Rev.E80(2009)056203. w5/2 termwhichisdominantforlargevaluesofwineq.(21) 16) T. Hiraiwa, K. Shitara, and T. Ohta: Soft Matter (2011) DOI: has a factor ρQ. This implies that, if χ and (δv)2 are not 10.1039/c0sm00856g. stronglydependenton Q,thethresholdρ deDcreaseEsas Qis 17) T.Hiraiwa,M.Y.Matsuo,T.Ohkuma,T.Ohta,andM.Sano:Europhys. od increased,whichisconsistentqualitativelywithFig.4. Lett.91(2010)20001. 18) K.BinderandW.Kob:Glassymaterialsanddisorderedsolids(World Wementionthattheabovemeanfieldtheorydoesnotpre- scientific,Singapore,2005). dict the intrinsic hysteresis behavior of the transition in the 19) O. Dauchot, G. Marty, and G. Biroli: Phys. Rev. Lett. 95 (2005) slow limit of the density change and the N limit. 265701. → ∞ We need to take account of the stochasticity which is self- 20) M.IwataandS.Sasa:Phys.Rev.E82(2010)011127. generated from the nonlinear interaction among the self- 21) P.Olsson:Phys.Rev.E81(2010)040301. 22) O.J.O’Loan,M.R.Evans,andM.E.Cates:Europhys.Lett.42(1998) propelledparticles. 137. Weemphasizethatthiskindoforder-disordertransitionhas 23) A.Nakayama, M.Fukui, M.Kikuchi, K.Hasebe, K.Nishinari, Y. notbeenobserved,toourknowledge,inanyrigidrod-shaped Sugiyama,S.Tadaki,andS.Yukawa:NewJ.Phys.11(2009)083025. particlesandhenceitisacharacteristicfeatureofdeformable 24) O.Biham, A.Middleton, and D.Levine: Phys.Rev. A 46 (1992) softparticles.Itismentionedherethatnonequilibriumphase R6124.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.