Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2September2015 (MNLATEXstylefilev2.2) Cold Dust Emission from X-ray AGN in the SCUBA-2 Cosmology Legacy Survey: Dependence on Luminosity, Obscuration & AGN Activity 5 1 0 Manda Banerji1,2⋆, R. G. McMahon1,2, C. J. Willott3, J. E. Geach4, C. M. Harrison5, S. 2 g Alaghband-Zadeh1, D. M. Alexander5, N. Bourne6, K. E. K. Coppin4, J. S. Dunlop6, D. u Farrah7, M. Jarvis8,9, M. J. Michałowski6, M. Page10, D. J. B. Smith4, A. M. Swinbank5, A M. Symeonidis10, P. P. Van der Werf11 1 3 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK. 2KavliInstituteforCosmology,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK. ] 3HerzbergInstituteofAstrophysics,NationalResearchCouncil,5071WestSaanichRd,Victoria,BCV9E2E7,Canada. A 4CentreforAstrophysicsResearch,UniversityofHertfordshire,CollegeLane,Hatfield,HertfordshireAL109AB,UK. G 5CentreforExtragalacticAstronomy,DepartmentofPhysics,DurhamUniversity,SouthRoad,DurhamDH13LE,UK. 6InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,EdinburghEH93HJ,UK. . h 7DepartmentofPhysics,VirginiaTech,Blacksburg,VA24061,USA p 8OxfordAstrophysics,DepartmentofPhysics,KebleRoad,OxfordOX13RH,UK. - 9PhysicsDepartment,UniversityoftheWesternCape,Bellville7535,SouthAfrica. o 10MullardSpaceScienceLaboratory,UniversityCollegeLondon,HolmburyStMaryDorking,SurreyRH56NT,UK. tr 11LeidenObservatory,LeidenUniversity,POBox9513,NL-2300RALeiden,theNetherlands. s a [ 1 2September2015 v 8 1 ABSTRACT 0 0 Westudythe850µmemissioninX-rayselectedactivegalacticnuclei(AGN)inthe∼2 0 deg2COSMOSfieldusingnewdatafromtheSCUBA-2CosmologyLegacySurvey.Wefind . 9 nineteen 850µm bright X-ray AGN in a “high-sensitivity” region covering 0.89 deg2 with 0 flux densities of S850=4-10 mJy. The 19 AGN span the full range in redshift and hard X- 5 ray luminosity covered by the sample - 0.7 . z . 3.5 and 43.2 . log10(LX) . 45. We 1 reporta highlysignificantstacked 850µmdetectionof a hardX-rayflux-limitedpopulation : v of 699 z > 1 X-ray AGN - S850=0.71±0.08mJy.We explore trends in the stacked 850µm i flux densities with redshift, finding no evolution in the average cold dust emission over the X redshiftrangeprobed.ForType1AGN,thereisnosignificantcorrelationbetweenthestacked r 850µmfluxandhardX-rayluminosity.However,inType2AGNthestackedsubmillimeter a fluxisafactorof2higherathighluminosities.WhenaveragingoverallX-rayluminosities, nosignificantdifferencesarefoundinthestackedsubmillimeterfluxesofType1andType2 AGNaswellasAGNseparatedonthebasisofX-rayhardnessratiosandoptical-to-infrared colours.However,atlog10(L2−10 / ergs−1 > 44.4),dependencesin averagesubmillimeter flux on the optical-to-infraredcolours become more pronounced. We argue that these high luminosityAGNrepresenta transitionfromaseculartoamerger-drivenevolutionaryphase where the star formationrates and accretionluminosities are more tightly coupled.Stacked AGN 850µm fluxes are compared to the stacked fluxes of a mass-matched sample of K- bandselectednon-AGNgalaxies.Wefindthatat10.5<log10(M∗/M⊙)<11.5,thenon-AGN 850µmfluxesare1.5−2×higherthaninType2AGNofequivalentmass.Wesuggestthese differences are due to the presence of massive dusty, red starburst galaxies in the K-band selectednon-AGNsample,whicharenotpresentinopticallyselectedcataloguescoveringa smallerarea. Keywords: galaxies:active,submillimetre:galaxies,X-rays:galaxies ⋆ E-mail:[email protected] (cid:13)c 0000RAS 2 M. Banerjiet al. 1 INTRODUCTION crucial information for the most luminous, high-redshift galaxies and AGN. Recently, the SCUBA-2 bolometer on the JCMT has Studyingtheconnectionbetweenstarformationingalaxiesandac- providedasubmillimetermapat850µmovertheentire2deg2field cretion onto the supermassive black-hole is of prime importance aspart of theSCUBA-2Cosmology LegacySurvey (Geachetal. in understanding galaxy formation (e.g. see Alexander&Hickox 2013). The 850µm data offers several advantages over Herschel 2012forarecentreview).Thediscoverythatsupermassiveblack- observations over the same region. Firstly, the superior angular holesareubiquitouswiththeirmassconnectedtightlytothestel- resolution and smaller beam size relative to Herschel mean that larbulgemassofgalaxies(Magorrianetal.1998;Kormendy&Ho sourceblendingislessofanissuewheninferringtheaveragesub- 2013) has led to the realisation that these active galactic nuclei millimeterpropertiesofAGN(seeFig.1).Secondly,thenegative (AGN)playafundamentalroleinregulatingthegrowthofgalaxies. k-correctionatthesewavelengthsatz > 1(Blainetal.2002),en- Sophisticatedgalaxyformationsimulationsnowincorporatefeed- suresthatwearesensitivetoroughlyconstantdustluminosityfor backfromtheAGN,whichisshowntobecriticalinordertoex- essentiallyallhighredshiftgalaxiesinan850µmflux-limitedsam- plaintheobservednumbersofmassivegalaxies(e.g.Springeletal. ple.Furthermore,evenintheHerschel-SPIREbands,therecanbe 2005; Crotonetal. 2006; DiMatteoetal. 2005). In these simu- asignificantcontributionfromAGNdustheatinginthecaseofthe lations, massive galaxies are assembled through gas-rich mergers mostluminousquasars(e.g.Rosarioetal.2012).Thesubmillime- whichinduceluminousburstsofobscuredstarformation.Starfor- ter dust emission at 850µm is much less prone to such contami- mationandblack-holeaccretionarefuelledbyacommongassup- nationfromtheAGN.Althoughitcouldpotentiallybemorecon- plyandthestarformationisinitiallydust-obscured.Asthegasand taminatedbysynchrotronemission,thisisunlikelytobeanissue dustareexpelledfromthegalaxye.g.viaAGN-drivenwinds,the forthemajorityofAGNwhichareradio-quietThedustemission accretingblack-holeemergesasanX-ray/UVluminousquasar.In at850µmcanthereforemoresafelybeattributedtoheatingbystar suchapictureofgalaxyformation,luminousstarburstgalaxies,ob- formation.Atshorter wavelengthsitbecomes necessarytodisen- scuredandunobscuredAGNarelinkedthroughawell-definedevo- tangle the relative contributions of starburst and AGN heating to lutionarysequence.WithinunifiedAGNmodels(Antonucci1993; thetotalinfraredfluxandlinkingthetwophenomena istherefore Urry&Padovani 1995), the obscuration of the central accreting morecomplicated,withpotentialbiasesarisingtoderivedstarfor- sourcecanalsobeexplainedpurelyasaresultoforientationeffects mation rates due to different assumptions regarding the intrinsic andthedistinctionbetweenunobscuredType1AGNandobscured AGNmodel. Type2AGNisattributedtothelineofsightthroughwhichtheyare The aim of this paper is to study the 850µm properties of viewed. bothunobscured(type1)andobscured(type2)AGNintheCOS- Obscuration in AGN almost certainly results from a com- MOS field where statistically significant numbers of these popu- bination of orientation and evolution driven factors. One way to lationsnow exist. Welook for dependences of thissubmillimeter distinguish between these is to look for evidence for obscured emissionontheAGNhostgalaxypropertiesandcomparetonon- AGN having excess star formation in their host galaxies rela- AGNgalaxies.Assuch,ouranalysisisintendedtoprovidethefirst tive to their unobscured counterparts. Several early studies of X- SCUBA-2 Cosmology Legacy Survey 850µm view of the X-ray ray luminous AGN using the SCUBA bolometer on the James AGNpopulationathighredshift.Throughoutthispaperweassume Clerk Maxwell Telescope (JCMT) showed this to be the case aflatconcordancecosmologywithH =70kms−1Mpc−1. 0 (Pageetal. 2001, 2004; Stevensetal. 2005). More recently, new data at far infrared wavelengths from the Herschel Space Ob- servatory, has been used to study the connection between star formation in galaxies and accretion onto the central AGN (e.g. 2 DATA Bonfieldetal.2011;Lutzetal.2008;Shaoetal.2010;Pageetal. 2.1 SCUBA-2850µm 2012; Harrisonetal. 2012; Mullaneyetal. 2012; Rovilosetal. 2012; Rosarioetal. 2012; Santinietal. 2012; Azadietal. 2014; OurprimarydatasetusedinthisanalysisistheSCUBA-2850µm Stanleyetal.2015).Lutzetal.(2010)havealsoconductedastudy mapintheCOSMOSfieldobtainedaspartoftheSCUBA-2Cos- of the 870µm properties of z ∼ 1 AGN using LABOCA. There mologyLegacySurvey(S2CLS;Geachetal.2013).Thewide-field isnowagrowingconsensusthatmoderateluminosityAGNtendto mapcoversatotalareaof∼2deg2 imagedusinga4×45′ PONG occupystar-forminghostgalaxiesandthatthestarformationrateis scanningpattern.Thebasicprincipleofthedatareductionistoex- independentofAGNX-rayluminosityinthisregime.AGNactiv- tract astronomical signal from the timestreams recorded by each ityingalaxiesoccursonverydifferentspatialaswellastemporal bolometerintheSCUBA-2arrayandmapthemontoatwodimen- scalesrelativetostarformation,whichmeansthattheinstantaneous sional celestial projection. We have used the Dynamical Iterative starformationrateingalaxiesisunlikelytobetightlycoupledtothe Map-Maker(DIMM)withintheSub-MillimetreCommonUserRe- instantaneousaccretionrate(Hickoxetal.2014).However,athigh ductionFacility(SMURF;Chapinetal.2013).Wereferreadersto luminosities, major-merger driven evolution can lead to a tighter Chapinetal.(2013)foradetailedoverviewofSMURF,anddetailed couplingbetweenAGNactivityandstarformation. datareductionstepswillbegiveninGeachetal.(inpreparation) StudyingtheconnectionbetweenstarformationandAGNac- butdescribethemainstepshere. tivityathighluminositiesrequiresmulti-wavelengthdatafromthe Flat-fieldsareappliedtothetime-streamsusingflatscansthat X-ray to submillimeter wavelengths over reasonably wide fields. bracket each observation, and a polynomial baseline fit is sub- TheCOSMOSfieldisamong themost well-studiedextragalactic tracted from each bolometer’s time-stream. Each time-stream is fields witha plethora of multi-wavelength photometric and spec- cleanedforspikesandDCstepsareremovedandgapsfilled.After troscopicdata.X-raydataisavailablefromboththeXMM-Newton cleaning, the DIMMentersaniterativeprocessthataimstofitthe andChandraobservatoriesandthefieldhasbeenimagedatmany datawithamodelcomprisingacommonmodesignal,astronomical otherwavelengths,inparticularwithSpitzerandHerschel.More- signalandnoise.Next,afilteringstepisperformedintheFourier over,thewideareacoveredbymanyofthesedatasetsnowprovides domain,whichrejectsdataatfrequenciescorrespondingtoangular (cid:13)c 0000RAS,MNRAS000,000–000 Cold DustEmissionfromX-RayAGNin S2CLS 3 Herschel-SPIRE250µm Herschel-SPIRE500µm SCUBA-2850µm S / mJy S / mJy S / mJy 250 500 850 14 5.4 1.2 40 13 40 5.35 40 1 12 20 11 20 5.3 20 0.8 ∆ Dec / arcsec−200 8910 ∆ DEC / arcsec−200 555...12255 ∆ DEC / arcsec−200 00..46 7 0.2 6 5.1 −40 −40 −40 0 5 5.05 4 −0.2 −6−06 0 −40 −20 0 20 40 −6−06 0 −40 −20 0 20 40 −6−06 0 −40 −20 0 20 40 ∆ RA / arcsec ∆ RA / arcsec ∆ RA / arcsec Figure1.Stacked250µm(left),500µm(middle)and850µm(right)imagesof2865radiosourcesintheCOSMOSfieldfromSchinnereretal.(2010).The superiorspatialresolutionandangularscaleoftheSCUBA-2dataisapparentrelativetoHerschel.Forthe850µmstack,weconfirmthatthepeakemission isclearlycomingfromthecentralpixelsdemonstratingthattheastrometryofthemapsisaccurateatthesub-pixellevel.Thenegative“bowling”aroundthe brightcentralsourceseenintheSCUBA-2850µmimage,isanartefactofthefilteringprocedureemployedtogeneratethemap. scalesθ>150′′andθ<2′′.Thenextstepistoestimatetheastro- 2.2 AGNCatalogue nomicalsignal,whichissubtractedfromthedata.Finally,anoise The aim of this paper is to study the submillimeter properties of modelisestimatedforeachbolometerbymeasuringtheresidual, a statistically significant and homogenous sample of AGN. The whichisthenusedtoweightthedataduringthemappingprocess COSMOSfield(Scovilleetal.2007)providesthelargestandmost inadditional steps. Theiterativeprocessabove runsuntil conver- well characterised AGN sample overlapping the new SCUBA-2 genceismet.Inthiscase,weexecuteamaximumof20iterations, CLSdata.TheAGNparentsampleisacatalogueofXMM-Newton orwhenthemaptolerancereaches0.05. detected X-ray point sources, which goes down toa fluxlimit of 9.3e-15 erg/s/cm2 in the 2-10 keV band over 90% of the area. Thefinal850µmmapintheCOSMOSfieldhasnon-uniform dσe8p50th∼w4ithmJtyypiincatlheRMothServahlaulefsanodf σσ885500 ∼∼12mmJJyyininthoenecenhtarlafl, Tarhee5fleu-1x6liemrgi/ts/fcomr2thaendfai2n.t5ees-t1s5ouerrgc/ess/cdme2tecintedthein0t.h5e-2ckaetaVloagnude 2-10keVbandsrespectively.WeonlyconsiderX-raysourceswith region.An850µmcataloguecontaining360sourceshasbeenpro- robust multi-wavelength optical and infrared cross-identifications ducedfromthismapbysearchingforallsourcesabove3.5σinre- fromBrusaetal.(2010),whichcorrespondsto∼98%oftheX-ray gionswithσ850 <2mJy(Geachetal.inpreparation).This850µm catalogue covers an area of 0.89 deg2. Our search for AGN that sources. We make use of the latest spectroscopic and photomet- ric redshifts for these AGN (Bongiornoetal. 2012; Salvatoetal. areindividuallydetectedat850µmcoversthissmallerarea,higher 2011) together with the corresponding spectroscopic and photo- sensitivityregion.However,whenstudyingthestackedproperties metric classifications1. The Type 1 and Type 2 samples specifi- oftheAGN,weutilisethefullareainordertogetthelargestAGN callyconstituteAGNwithbroademissionlinesinthecaseofthe samplespossible.Asstackedfluxesareweightedbythenoise(see spectroscopicType1sandnarrowemissionlinesinthecaseofthe Section 4), AGN in lower RMS regions are automatically down- spectroscopic Type 2s. For the AGN with photometric redshifts, weightedwhencalculatingaverage850µmfluxes. Type1AGNareconsidered tobethosefitbytemplates19-30 in Salvatoetal. (2011) whereas Type 2 AGN are those fit by tem- Webeginbycheckingtheastrometryofthis850µmmapby plates1-18or>100(whichcorrespondtogalaxytemplates).The stacking a sample of 2865 radio sources in the COSMOS field (Schinnereretal.2010)inthismap.Thestackingprocedureisde- photometricredshiftaccuracyisingeneralverygoodσ∆z/(1+z) scribedinmoredetailinSection4andthestacked850µmimagefor =0.014foriAB < 22.5and0.015foriAB < 24.5(Salvatoetal. 2009).Photometryatmidinfra-redwavelengthsisfromtheSpitzer theseradiosourcesisshowninFig.1.Thepeak850µmemission hasanoffsetof1.4′′ relativetotheradioposition.TheSCUBA-2 S-COSMOSSurvey(Sandersetal.2007).Thereareatotalof1797 850µmpixelscaleis2′′.Thisconfirmsthatthemapshavethecor- AGN with multi-wavelength cross-identifications in these cata- logues.Theobservedhard-band(2-10keV)X-rayluminosityver- rectastrometryatthesub-pixellevelandcanthereforebeusedin sus redshift for both the Type 1 and Type 2 AGN can be seen in ourstackinganalysis.Wealsoshowthestackedimagesofthesame Fig. 2. These X-ray luminosities have been calculated from the radiosourcesintheHerschel-SPIRE250and500µmbandsinFig. hard-band fluxes from Brusaetal. (2010) assuming a photon in- 1.TheHerschel-SPIREdataintheCOSMOSfieldistakenfromthe dexofΓ=1.8.InthecaseoftheType1AGNthataredetectedin HerschelMulti-tieredExtragalacticSurvey(HerMES;Oliveretal. thesoft(0.5-2keV)bandbutnotinthehardband,thesoftX-ray 2012).Mapshavebeenproduced usingtheLevel2dataproducts fluxesfromBrusaetal.(2010)areusedtoestimatethehardX-ray fromtheESAarchiveasdetailedinSwinbanketal.(2014).While flux,onceagainassumingΓ=1.8.Wenotethatnoabsorptioncor- thestacked250µm emissionappearstobewellcentredatthera- rection has been applied to these luminosities as the X-ray data dio position, the 500µm emission shows an offset relative to the for the entiresample isin general of insufficient quality toallow radioposition.Thesuperiorspatialresolutionandpixelscaleofthe full spectral fitting. The Type 1 AGN have negligible absorption SCUBA-2datarelativetoHerschel-SPIRE,areclearlyapparentin this plot. The longer wavelength SCUBA-2 850µm observations arethereforeextremelycomplementarytoalreadypublishedHer- schelobservationsofAGNinthisfield. 1 http://www2011.mpe.mpg.de/XMMCosmos/xmm53 release/ (cid:13)c 0000RAS,MNRAS000,000–000 4 M. Banerjiet al. andinthecaseoftheType2COSMOSAGNthataredetectedin of850µmfluxdensitiesonawiderangeofAGNandhostgalaxy thehardX-ray,Lussoetal.(2011)estimatetheaverageshiftinthe properties.TheseSEDfitsincorporatephotometryatoptical,near hardX-rayluminosityintroducedbyanabsorptioncorrectiontobe infraredaswellasmidinfraredwavelengths. Around80percent < ∆log(L2−10) >= 0.04±0.01. In Appendix A we compare ofthesourcesaredetectedintheSpitzerMIPS24µmband.Inad- thehardX-rayluminositiesderivedinthispaper tothosederived dition, several of the AGN are also detected in the MIPS 70µm byBrightmanetal.(2014)forasubsetoftheCOSMOSAGNwith band as well as in the Herschel-PACS 100µm and 160µm bands Chandradataandwherecomplexabsorptionspectralmodelscan (Bongiornoetal. 2012). All of this multi-wavelength photometry befit,demonstratingthattherearenosignificantbiasesintheX-ray isusedintheSEDfittingandbothpureAGNandpuregalaxytem- luminositiesusedinthispaper. platesareallowedinthefits.Thegalaxytemplatesconstituteaset In the majority of the analysis presented in this paper we of Bruzual&Charlot (2003) stellar population synthesis models consider the average stacked submillimeter fluxes of AGN as with a Chabrier (2003) initial mass function and assuming expo- a function of various properties. For these stacking studies, we nentially declining star formation histories with varying amounts construct flux-limited populations of AGN restricted to sources of dust reddening. The AGN template is the mean quasar SED with S>2.5×10−15 erg s−1 cm−2 in the hard (2-10 keV) band fromRichardsetal.(2006),againwithvaryingamountsofredden- (Lussoetal.2011).Aspreviouslymentioned,Type1AGNthatare ing.ThischoiceofAGNtemplateisappropriatefortheluminous detectedinthesoftband butnot inthehardband, havehad their XMM-COSMOSAGNinvestigatedinthiswork.Bongiornoetal. hardbandfluxesestimatedfromthesoftX-rayfluxusingaΓ=1.8 (2012)havealreadydiscussedtheaccuracyofthestellarmassesti- power-lawSED.Type2AGNthataredetectedinthesoftbandonly matesforboththeType1andType2AGNsamplesandwhencon- havebeendiscarded forthemajorityofthestackinganalysis due sideringthepropertiesoftheAGNasafunctionofstellarmass,we to their essentially unknown dust columns and therefore intrinsic onlyconsider thoseAGNthathaverobuststellarmassesasspec- luminosities. These soft band detected Type 2 AGN are however ifiedby theflags parameter. Asexpected, > 99.5 per cent of the includedwhensearchingforAGNthatareindividuallydetectedat Type2AGNhaverobuststellarmassestimates. 850µminSection3.Thehard-bandX-rayfluxlimitisillustratedin Fig.2andcorrespondstoLX &1043 erg/satz >1,wheretheX- rayluminosityshouldbecompletelydominatedbyAGNactivity. WealsorestrictourselvestoonlythoseAGNatz > 1forallthe 2.2.1 LimitationsoftheX-rayAGNCatalogue stackinganalysis.Atz>1,the850µmfluxisessentiallyinvariant Inthisanalysisweconsiderthesubmillimeterpropertiesofahard withredshiftforagivendustluminosityandthereforestarforma- X-ray flux limited catalogue of AGN. However, before proceed- tionrate,allowingustoaveragethesubmillimeterfluxesofAGN ing it is important to highlight the selection biases and incom- overrelativelywideredshiftbinsinordertoimprovethestatistical pletenessesofanAGNcatalogueselectedinthisway.Donleyetal. significanceofourresults.The850µmdatadoesnothowevertrace (2012) have used a mid infrared IRAC selection for AGN candi- thepeakofthedustSEDattheseredshiftsandtherecouldpoten- datesintheCOSMOSfielddemonstratingthatonly∼38%ofthese tiallybebiasesinhoweffectivelythissubmillimeterfluxistracing AGNcandidateshaveX-raycounterpartsduetotherelativelyshal- starformationduetovariationsinthetemplateSEDsoverthisrest- lowfluxlimitoftheXMM-COSMOShardX-raydata.Hence,we framewavelengthrange.InSection4.1wewillthereforeexplicitly maypotentiallybemissingasignificantpopulationofheavilyob- checkthedependenceof850µmfluxonstarformationrates. scured to mildly Compton thick AGN in this analysis. Recently Finally,thereisaconcernthatthe850µmfluxcouldbecon- Lacyetal.(2015)havealsousedmidinfra-redselectedAGNsam- taminated by synchrotron emission for populations of radio-loud plestodemonstratethatX-raysurveysbegintobecomeincomplete AGN.ThefractionofradioloudAGNinX-rayselectedAGNsam- atz &1.6whereadeficitintheX-rayluminosityfunctionisseen plesisexpectedtobesmall(.5%forType1AGNfromHaoetal. relativetothemidinfra-redluminosityfunctioneveninthehighest 2014).Nevertheless,wematchtheX-rayAGNsampletotheVLA luminositybins.Wereferreaderstothesepapersforadetailedcon- radio catalogue (Schinnereretal. 2010) and remove all sources siderationoftheincompletenessinhardX-rayselectedsamplesof with S1.4GHz >0.5 mJy. This removes 10 Type 1 and 7 Type 2 AGN at z > 1 from the sample, which represents ∼2% of both AGN. theType1andType2samples2.Theradiofluxlimitimposedcor- responds toa synchrotron 850µm fluxof <0.01 mJy assuming a synchrotron spectral index of 0.7. Therefore we can be confident 2.3 Non-AGNGalaxyCatalogue thatthe850µmstacksthatwestudyarecompletelydominatedby thermal dust emission. Our final z > 1AGNsample usedinthe Finally,asacontrolsampletocomparetheAGNpropertiesto,we stacking analysis, totals 699 AGN. These are comprised of 428 alsoutiliseagalaxysamplefromtheUltraVISTAsurveyDataRe- Type1AGN(314 spectroscopic, 114photometric) and271 Type lease 1 (McCrackenetal. 2012) over the same region. We work 2AGN(46spectroscopic,225photometric). with the K-band flux limited sample from Muzzinetal. (2013), Bongiornoetal.(2012)haveusedspectralenergydistribution which essentially represents a mass-limited sample of galaxies. (SED) fits to the multi wavelength COSMOS photometry, in or- Corresponding photometric redshifts, stellar masses and other der toestimatestellarmasses, star formationratesand other host SED-fitting parameters are also taken from Muzzinetal. (2013). galaxyparametersfortheseType1andType2AGN.Bothgalaxy An advantage of using a galaxy catalogue that is selected in the andAGNcomponentsarefitallowingustostudythedependence redderK-band,isthatthesecataloguesarepotentiallymoresensi- tivetodustygalaxiesthatwouldbedetectedat850µmcompared togalaxycataloguesconstructedusingdataatopticalwavelengths. 2 Including these radio-detected AGN in the 850µm stacking does not Wenotethatseveralpreviousstudiesthatwecompareourresults changetheaverage850µmfluxderivedforoursampleinSection4towithin tointhispaper,haveusednon-AGNgalaxysamplesselectedusing 0.1mJy flux-limitedsurveysatbluer(optical)wavelengths. (cid:13)c 0000RAS,MNRAS000,000–000 Cold DustEmissionfromX-RayAGNin S2CLS 5 Type 1 Type 2 45.5 45.5 45 45 44.5 44.5 −1s) 44 −1s) 44 g g er 43.5 er 43.5 L / 2−10 43 L / 2−10 43 g(1042.5 g(1042.5 o o l l 42 42 Spectroscopic Spectroscopic Photometric 41.5 Photometric 41.5 41 41 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 Redshift Redshift Figure2.Redshiftversusobservedhard(2-10keV)bandluminosityforType1AGN(left)andType2AGN(right).Bothspectroscopicandphotometric AGNareshown.Thecirclesmarkactualdetections whereasthedownwardtrianglesrepresentupperlimitsinthecaseoftheType2AGNandhard-band luminositiesestimatedfromthesoft-bandfluxinthecaseoftheType1AGN.Thesolidlinesdenotethefluxlimitappliedtothedatatogeneratehomogenous populationsofthetwopopulationsforourstackinganalysis.Theverticaldashedlinescorrespondtoz >1whichistheredshiftcutappliedbeforestacking suchthatthe850µmfluxisinvariantwithdustluminosityasafunctionofredshift. 3 850µmDETECTEDAGN 1%) of being chance associations (see Table 1). The 19 sources arecomprisedof6spectroscopicallyconfirmedbroad-lineAGN,1 We begin by looking for AGN that are detected at >3.5σ in the spectroscopically confirmed narrow-line AGN, 3 AGN withpho- SCUBA-2CLS850µmcatalogues. Asstatedabove, onlyregions tometric redshifts that are best fit by Type 1 AGN templates and with σ850 < 2mJy were used in the construction of the 850µm 9 AGN with photometric redshifts that are best fit by Type 2 catalogue,whichthereforedoesnotcovertheentirefield.Amatch- AGN or galaxy templates. Thus out of a sample of 360 850µm ingradiusof7.5′′ isusedtoassociate850µm cataloguedsources bright sources, we find that ∼5% are associated with X-ray lu- withourAGNsample.TheAGNpositionsinallcasescorrespond minous AGN. The XMM-COSMOS data used in this work cor- totheopticalpositionsfromBrusaetal.(2010),whichhavemuch responds to relatively bright AGN X-ray flux limits as can be smalleruncertaintiesthantheXMM-NewtonX-raypositions.Given seeninFig. 2. Wangetal. (2013) identify theX-raycounterparts theerrorsontheopticalpositionsarelikelytobenegligible,wefol- toALMA detectedsubmillimeter bright galaxiesintheExtended lowIvisonetal.(2007)andassumethatforasignal-to-noiseratio Chandra Deep Field South (E-CDFS). Chandra observations are (SNR)of3.5,thepositionaluncertainty,σpos=0.6×FWHM/SNR. usedtogodowntoX-rayluminositiesof∼7×1042 erg/sandthe For a FWHMof 14.5′′ at 850µm, σpos is therefore 2.5′′ and the authors find a larger AGN fraction of ∼17% among the submil- 7.5′′ matching radius corresponds to 3σpos and is therefore ex- limeter galaxies. However as can be seen in their figure 10, this pectedtoencompass>99.7%oftruecounterparts. AGN fraction decreases as a function of increasing X-ray lumi- Thereareatotalof19850µmsourcesthatliewithin7.5′′ of nosity.DowntosimilarX-rayluminositiesasWangetal.(2013), anX-rayAGNandtherearenoinstancesofmultiplesubmillimeter Symeonidisetal.(2014)findanAGNfractionof18%amongin- sourcesmatchedtothesameX-rayAGN.All19matchesarepre- fraredluminous galaxies intheCDF-N andCDF-Sfieldsat z < sentedinTable1andweestimatethecorrectedPoissonprobability, 1.5. Alexanderetal. (2005) have used ultra-deep X-ray observa- dpeconrsritoyfotfheaslelXbe-rinaygAchGanNcethaastshoacviaetiflounxsebsabseridghotnerththeabnatchkegrtoarugnedt tions inthe CDF-N tostudy the AGN fraction in S850 & 4 mJy sub-mm bright galaxies at z > 1, finding that the majority host beingconsidered.Specifically: AGNactivity.However,theX-raydatafromChandrausedinthat work, is an order of magnitude fainter than our XMM-COSMOS praw =1−exp πr2N(>S) sample. In Fig 3 we plot the redshift versus hard (2-10 keV) X- pdet =1−exp πr2ma(cid:0)xN(>Slim)(cid:1) (1) arasywleulmlainsoAsilteyxafnodretrheetsaul.b(m2i0l0li5m)eatnerddWetaencgteedtaAl.G(N201in3)t.hWisewaolsrko pcorr =1−exp praw 1(cid:0)+ln praw (cid:1) showherethesubmillimeterdetectedX-rayabsorbedquasarsfrom (cid:18) (cid:18) (cid:18)pdet(cid:19)(cid:19)(cid:19) Stevensetal.(2005),whichwereselectedusingX-raysurveyswith where r is the separation between the submillimeter source and ROSAT, XMM-Newton and Chandra and followed up at submil- the X-ray AGN, rmax is the maximum search radius and N(>S) limeter wavelengths using SCUBA. The Wangetal. (2013) ob- and N(>Slim) represent the background surface density of AGN served 0.5-8 keV luminosities have been converted to 2-10 keV brighter than the source being considered and brighter than the luminositiesassumingtheintrinsicphotonindicesderivedforeach flux limit of the survey respectively. We estimate N(>S) us- object in that paper whereas conversions from 0.5-2 keV fluxes ing the source counts in the soft and hard X-ray bands from inStevensetal. (2005) assume Γ = 1.8. Our work can immedi- Cappellutietal. (2009) and assume S =5e-16 erg/s/cm2 and atelybeplaceinthecontextofthesepreviousstudies.Whileboth lim 2.5e-15 erg/s/cm2 in the 0.5-2 keV and 2-10 keV bands respec- Alexanderetal.(2005)andWangetal.(2013)probesignificantly tively. Given the low surface density of X-ray AGN and submil- fainterintermsofX-rayluminosity,oursamplefillsintheluminos- limeter sources, all 19 matches have very small probabilities (. itygapbetween thesestudiesandtheindividual follow-upobser- (cid:13)c 0000RAS,MNRAS000,000–000 46 Alexander+05 Wang+13 45.5 Stevens+05 This Work 45 1) − s g 44.5 er / 0 44 1 − L2 (043.5 1 g o l 43 42.5 42 0.5 1 1.5 2 2.5 3 3.5 4 Redshift Figure3.RedshiftversusobservedhardX-ray(2-10keV)luminosityfor theX-rayAGNthatareindividuallydetectedatsubmillimeterwavelengths in this work and compared to individually detected submillimeter bright X-rayAGNfromAlexanderetal.(2005)andWangetal.(2013)andsub- millimeterdetectedquasarsfromStevensetal.(2005).Downwardtriangles denoteupperlimits.ThehardX-rayfluxlimitandz>1redshiftlimitap- pliedpriortoourstackinganalysis,aredenotedbythedashedlines.Both Alexanderetal. (2005)and Wangetal. (2013)probe fainter X-ray lumi- nosities comparedtoourwork,whiletheX-rayAGNfromStevensetal. (2005)thatwereindividuallyfollowedup,probeveryhighX-rayluminosi- ties.Ourstudyisusefulinbridgingthegapbetweenthesedifferentdatasets. vationsofX-raybrightquasarsbyStevensetal.(2005).TheX-ray brightest sub-mm AGN in our sample isbrighter than any of the X-rayAGNdetectedinthesub-mmbyAlexanderetal.(2005)and Wangetal. (2013). It corresponds to XID18 and is an extremely redAGNwithevidenceforoutflowinggaswithvelocitiesof∼300 km/s (Brusaetal. 2015). This class of objects will be discussed laterinSection4.4. Herschelfluxesforall850µmdetectedsourcesareextracted fromthecataloguesofSwinbanketal.(2014)bymatchingtheop- ticalpositionsoftheAGNinourcataloguetothe24µmpositionsin theHerschelcatalogues,usingamatchingradiusof3′′.TheHer- schel catalogues have already been corrected for blending using the 24µm positional priors (Swinbanketal. 2014). These fluxes arepresentedinAppendixBtogetherwithotherderivedproperties forthesesubmillimeterbrightX-rayAGN.AstheHerschelfluxes havebeenextractedbySwinbanketal.(2014)usingthe24µmpo- sitionalpriors,all24µmdetectedsourceshavemeasuredHerschel fluxeswhereassourcesnotdetectedat24µmarenotintheHerschel catalogues. Table1.SummaryofX-rayAGNwithpotential850µmbrightidentificationsintheCOSMOSfield.ThecorrectedPoissonprobabilityofachanceassociation isquotedascalculatedfromthesoftX-rayfluxandthehardX-rayfluxrespectively.Sourceswithphotometricredshiftsaremarkedwithapz.Sourceswith hardX-rayluminositiesmarkedwithanasteriskareType1AGNthatareonlydetectedinthesoftbandandwherethehardbandluminosityhasbeencalculated assumingΓ=1.8. XID RA Dec Redshift log10(L2−10) Separation S0.5−2keV p0.5−2keV S2−10keV p2−10keV S850 ergs−1 ′′ ergs−1cm−2 ergs−1cm−2 mJy 13 150.00924 2.2755119 0.850 43.95 3.42 2.11e-14 0.0006 2.9e-14 0.0009 4.5±1.1 18 150.13304 2.3032850 1.598 44.92 5.92 1.80e-14 0.002 6.04e-14 0.0009 4.4±1.2 139pz 150.04184 2.6294839 0.739 43.69 3.30 9.52e-15 0.001 2.22e-14 0.001 7.4±1.7 160 150.15839 2.1396031 1.825 44.28 1.48 2.39e-15 0.001 1.02e-14 0.0008 8.1±1.2 246pz 150.05100 2.4938550 2.342 44.56 3.65 8.81e-16 0.008 1.09e-14 0.003 6.4±1.7 250 150.06455 2.3290511 2.446 44.14∗ 3.04 2.41e-15 0.004 <3.78e-15 – 4.0±1.1 270pz 150.10612 2.0144781 1.883 <44.13 1.83 1.17e-15 0.003 <6.64e-15 – 9.8±1.7 278pz 150.09308 2.1014100 2.269 <44.46 2.61 1.46e-15 0.004 <9.39e-15 – 5.0±1.4 353 150.08438 2.2904881 1.112 43.70 2.04 2.34e-15 0.002 8.57e-15 0.002 4.7±1.0 402pz 150.25226 2.2619131 1.078 43.57 2.86 2.22e-15 0.003 6.82e-15 0.003 5.7±1.5 415pz 149.96981 2.1834869 1.558 43.33∗ 2.90 1.04e-15 0.005 <8.31e-15 – 5.5±1.4 469pz 150.09685 2.0215000 3.362 <44.45 2.22 1.08e-15 0.004 <3.73e-15 – 6.6±1.7 10675 150.19262 2.2198489 3.090 43.92∗ 0.28 8.45e-16 0.0001 <1.73e-15 – 5.7±1.2 10809pz 150.20758 2.3816111 1.288 <44.15 1.79 1.12e-15 0.003 <1.7e-14 – 6.5±1.5 30182pz 150.12541 2.6978931 0.742 43.23 6.00 6.26e-15 0.005 7.52e-15 0.009 6.9±1.7 53922 150.09454 2.7029131 0.850 43.38 1.81 2.25e-15 0.002 7.74e-15 0.001 8.6±1.8 54440pz 150.06308 1.9446778 1.947 43.91 4.39 1.13e-15 0.009 <3.74e-15 – 7.7±1.7 60070pz 150.22719 2.2324781 2.066 <44.01 1.93 7.33e-16 0.003 <4.11e-15 – 5.8±1.4 60490pz 150.10544 2.1852681 1.089 43.42 5.33 <7.57e-16 – 4.76e-15 0.011 6.9±1.1 4 AVERAGE850µmEMISSIONFROMSTACKED SUB-SAMPLES ThemajorityoftheX-rayAGNarenotindividuallydetectedinthe 850µm catalogue, which goes down to a 3.5σ flux limit of ∼3.5 mJy in the highest sensitivity regions. To understand the average submillimeter properties of the AGN we therefore have to study stacked 850µm maps. We begin by constructing an inverse vari- ance weighted stacked image at 850µm for all 699 z > 1 AGN (428Type1and271Type2)thatwillbeusedfromhereoninour stackinganalysis.Specifically: Sij = ΣNkΣ=1NkP=1ijP×i,jf/ik(jσ/ik(jσ×ikjσ×ikjσ)ikj) (2) whereSijrepresentsthestacked850µmimage,Pij isthepointre- sponsefunctionofSCUBA-2at850µmgeneratedbystackingall >10σ sourcesinthemap,fij arethe40×40pixel(80×80′′)flux imagesofeachoftheN sourcesgoingintothestacksandσij are thecorrespondingRMSimages.Stackedimagesgeneratedinthis way can be seen inFig. 4 for both the AGN sample and a set of random points in the map, where any random points within7.5′′ ofacatalogued850µmsource,havebeenremoved.Fig.4clearly demonstratesthepresenceofastatisticallysignificant850µmsig- nalfromthez > 1X-rayAGNrelativetotherandompoints.The typicalRMSnoiseinthemapsiswellabovetheconfusion limit. Asstatedin Section2.1, the noiseisnon-uniform over thefull 2 deg2 map. Out of the699 z > 1 sources being stacked, 80% lie in regions with RMS noise <3.5 mJy. From the 850µm source counts presented in Caseyetal. (2013), we estimate that the in- tegral source count at thisRMS noise level isonly ∼630 deg−2. Assuming a beam FWHMof 14.5′′ for SCUBA-2at 850µm, the beam density is∼78,000 deg−2. Hence only 1in 120 beams are expectedtobeaffectedbyconfusionatthisRMSnoise.Inthelow- estRMSregionsinourmap(σ=1mJy),theintegralsourcecounts reach∼3000deg−2 and1in25beamsareaffectedbyconfusion, whichisstillasmalleffect. Before investigating the dependence of the 850µm emission ontheAGNproperties,wefirstdescribeourmethodologyforcal- Figure4.80×80′′ weighted,stacked850µmimagescentredontheposi- culating the stacked 850µm fluxes. Throughout this analysis the tionsofthe699z > 1X-rayAGNinourfluxlimitedsample(top)and stacked 850µm flux ismeasured asthe median or mean value of centredonexactlythesamenumberofrandompoints(bottom).TheAGN the central pixel in 100 bootstrapped inverse variance weighted stackincludes428Type1AGNand271Type2AGN.Thecolourscaling isthesameinbothimages.Thecontoursareat1-5σandthesolidcontours stacked images (see Eq. 2). We have already checked in Section correspond to positive fluxes whereas thedashed contours correspond to 2.1thattheastrometryoftheSCUBA-2mapisaccuratetowithin negativefluxes.Weclearlyobserveastatisticallysignificant850µmdetec- apixelsothiscentralpixelfluxprovidesthemostconservativeand tionfromtheAGNrelativetotherandompoints. unbiasedestimateoftheaverageflux.Thecentralpixelfluxismea- suredtobe0.71±0.08mJyforall699AGN.Themedianredshift ofthesampleisz = 1.66andthemedianhardX-rayluminosity islog10(L2−10)=44.2.WeemphasisethattheseX-rayluminosi- wefindthattheaveragefluxfallsto0.60±0.07mJy,whichisstill tiescorrespondtothemostluminousAGNinthe“quasar”regime. a>8σdetection. Forcomparison, theaverage870µmfluxoftheLutzetal.(2010) Wehavecheckedthatthemedianandmeanstackedfluxesare AGN is 0.49±0.04mJy. The Lutzetal. (2010) sample has both a verysimilarinbothcases.Theerroronthefluxiscalculatedusing lowermedianredshift(z = 1.17)andalowermedianhardX-ray 100bootstrapsamples.Wealsocalculatestackedfluxesusingthe luminosity-log10(L2−10)=43.6calculatedfromthemedianhard publiclyavailablecodeSIMSTACK(Vieroetal.2013).Thecodeis X-rayfluxinthatpaperandusingourassumedvalueofΓ = 1.8 designed tocorrectlyaccount for clusteringof sourceswithinthe asdescribedinSection2.2.Giventhesedifferencesinthemedian scale of the SCUBA-2 beam which is assumed to be 14.5′′. The propertiesofthetwosamplesaswellasthecorrectionfrom870µm methodessentiallyinvolvesperformingaregressionofthetrueflux to850µmforatypicalsingletemperaturegreybody SEDandthe mapwitha‘hits’map,wherethe‘hits’mapiscreatedbycounting statisticalerrorsinbothmeasurements,ourresultsarebroadlycon- thenumberofsourcestobestackedthatcontributetoeachpixelin sistentwiththoseofLutzetal.(2010).Excludingtheindividually themap.Westackthe699flux-limitedz>1AGNwiththez<1 detected850µmX-rayAGNdescribedinSection3fromthestacks, AGN.Ifthephotometricredshiftsareaccurate,thereshouldbeno clusteringbetweenthehighandlowredshiftAGNpopulations.The Inluminous,unobscuredType1AGN,thebigbluebumptypically stacked850µmfluxforthe699z >1AGNis0.82±0.02mJyfrom seeninquasarspectramaymimictheUVbumpfrommassivestars SIMSTACKwhichisslightlyhigherthanourcentralpixelfluxmea- sostarformationratesbasedonSEDfittingarenolongerreliable. surement.Thehigher SIMSTACKfluxislikelyduetothefactthat HenceType1AGNarenotconsideredinthistest. thepeak850µmemissioninFig.4isoffsetfromthecentralpixel. We split the Type 2 AGN into two SFRSED bins at The SIMSTACKerrorsreflect the regression errorsand do not ac- SFR>10M⊙yr−1andSFR<10M⊙yr−1.Themedianredshiftsare count for anyerrorsduetosamplevariance. Our bootstraperrors z =1.36andz=1.77forthelowandhighSFRSEDsub-samples are therefore more conservative. The SIMSTACK results demon- respectively.Themedianstarformationratesare1.5M⊙yr−1 and stratethatthecentralpixelfluxrepresentsaconservativeestimate 33M⊙yr−1 while the mean star formation rates are 1.1M⊙yr−1 and is not biased up due to clustering. For the rest of the analy- and 46M⊙yr−1 in the two bins. The average 850µm fluxes for sis,wethereforeusethecentralpixelfluxtomeasuretheaverage thesesub-samplesare0.3±0.1mJyand1.0±0.2mJyrespectively submillimeter emission for all the sub-samples we construct. As and are therefore clearly higher in the higher SFR bin. The ex- afinalcheck,giventhatsomeregionsofthe850µmwideS2CLS cess 850µm flux in the high SFR bin is significant at the ∼3σ COSMOSmapsaresignificantlynoisierthanothers(Section2.1), level.Severalpreviousstudieshaveinsteadusedthe250µmfluxes wealsorestrictourstacksonlytotheregionswithσ850 <2mJyto asaproxyforSFR.WethereforealsocalculateaverageHerschel mitigateagainsttheeffectsoffluxboosting.Thereare341z>1X- 250µmfluxesfortheType2AGNinthesetwoSFRbinsalthough rayAGNinourflux-limitedsampleinthesehighsensitivityregions we caution that the bins encompass AGN over a relatively broad andthemeanfluxisS850=0.69±0.10mJy,consistentwiththere- range of redshifts, which could be adding scatter to the 250µm sultsderivedusingtheentire850µmwidemap.Wewilltherefore fluxes. The250µm fluxesarecalculated byinjectingtheAGN in proceed withusing the 850µm data over thefull COSMOSwide each SFRbin in turninto the Herschel SPIRE250µm map from areaforallthestackinganalysisthatfollows. Swinbanketal.(2014),whichhashadall24µm detectedsources Beforecontinuing,itisimportanttohighlighttheassumptions removed. The maps are then stacked at the AGN position and inherent in our work. Throughout this paper, we assume that the the average flux is once again measured as the value at the cen- 850µm flux is tracing the total amount of cool dust emission in tral pixel. Note that we have also checked the astrometry of the theAGNhost galaxiesandthat thiscool dust isprimarilyheated 250µm map in Section 2.1. The 250µm fluxes in these two SFR bystarformationandhasanegligiblecontributionfromtheAGN. bins are 2.0±0.3 mJy and 5.3±0.6 mJy respectively. In order to Giventhatthe850µmfluxisinvariantwithredshiftatz > 1,we check whether the 250µm and 850µm stacks are consistent with canaveragethesefluxesoverrelativelybroadredshiftbinswithout each other, we fit a single temperature greybody with β=2.0 to bias. Note that this is not the case for Herschel fluxes for exam- thesedata points inthe twoSFRbins. Thedust temperatures are ple,whichtracethepeakofthedust SEDatz ∼ 1−3,andare 24±6Kand27±5Krespectively,consistent withasingletemper- expectedtobevaryingmorestronglywithredshift.Aswedonot atureinbothSFRbins.Fromtheintegralunderthegreybody, we havelargeenoughAGNsamplestobeabletosplitourAGNinto canthencalculatethefarinfraredluminosity(between60–300µm narrow redshift bins, werestrictour analysistothe850µm prop- toeliminateanycontributionsfromtheAGN)andaveragestarfor- erties only rather than constructing full SEDs from the Herschel mation rate for each stack. These are log10(LFIR/L⊙)=10.9±0.3 and 850µm data. The 850µm emission can also only be used as correspondingtoSFR=12±161M⊙yr−1 forthelowSFRstackand a proxy for the star formation rate provided the dust temperature log10(LFIR/L⊙)=11.5±0.2correspondingtoSFR=60±3200M⊙yr−1 is not varying significantly between AGN sub-samples, and also forthehighSFRstack.Inbothcasesthestarformationratesde- assuming thatthedust heatingatthesewavelengths isdominated rivedfromtheHerscheland850µmdataarehigherthanthemean byrecentstarformationratherthanbeingdominatedbycolddust starformationratesfromBongiornoetal.(2012)althoughtheer- heatedbyoldstarsandtheinterstellarmedium(e.g.Bourneetal. rorbarsandscatterinbothaverageSFRmeasurementsarelarge. 2013). We therefore begin by testing how the 850µm flux varies In Appendix B where we have shown best-fit far infrared SEDs withstarformationrate. for our X-ray AGN that are individually detected at 850µm, we alsoshow that thefar infraredluminosity and star formation rate asmeasuredfromthesebest-fitSEDs,correlateswellwithboththe 4.1 StarFormationRate 250 and 850µm fluxes (Fig. B2). In Appendix B, the dust mass Bongiornoetal. (2012) have estimated the star formation rates fromfullSEDfittinghasalsobeenplottedagainstboththe250and for the COSMOS AGN using SED-fitting to the available multi- 850µmfluxesandingeneralshowsaweakercorrelationwiththe wavelength photometry (Brusaetal. 2010) - SFR hereafter. infra-redandsub-mmfluxdensitiescomparedtothefarinfra-red SED Thesecanbeusedtocheckthedependenceofthe850µmfluxden- luminosity.Wewillthereforeproceedbyassumingthatthestacked sityon star formation rate. As described inSection 2.2, theSED 850µmfluxinourz >1AGNisgivingusadirectestimateofthe basedstar-formationratesincludephotometryintheSpitzerIRAC averagestarformationrate,withthecaveat thatforgalaxieswith aswellasMIPS24µmbandsinmostcases.Insomecases,theSED lowlevelsofstarformation,theremayalsobeacontributiontothe fitsalsoincludelonger wavelengthphotometryatMIPS70µmas dustheatingat850µmfromoldstarsandtheinterstellarmedium. well as at Herschel 100 and 160µm. We select only the Type 2 z > 1 AGN with robust star formation rate estimates as speci- 4.2 Redshift fied by the flags parameters in Bongiornoetal. (2012). We note that soft X-raydetected Type 2AGN that are not detected inthe Thesizeofourcurrentsamplenecessitatesstackingoverrelatively hardbandarealsoincludedinthisanalysistoimprovethestatis- broadredshiftbins.Evolutionaryeffectscouldthereforeinfluence tics. Hereweare primarilyconcerned withchecking whether the any derived results and introduce differences in stacked 850µm 850µmfluxescorrelatewithotherindependently derivedstarfor- fluxes between different sub-samples. Before looking for trends mationrateconstraintsandknowledgeofthetruedustcolumnsand withotherAGNpropertieswethereforefirstconsidertheredshift therefore intrinsicX-rayluminositiesof the AGN isnot relevant. evolutionofthe850µmfluxesoverthefullredshiftrangeconsid- 1.2 Type 1 1.6 Type 1 1.1 Type 2 Type 2 1 1.4 0.9 1.2 y 0.8 y J J m m 1 / 00.7 / 0 5 5 S80.6 S80.8 0.5 0.6 0.4 0.4 0.3 0.2 0.2 1.2 1.4 1.6 1.8 2 2.2 2.4 43.8 44 44.2 44.4 44.6 44.8 Redshift log (L / erg s−1) 10 2−10 Figure5.Average850µmfluxversusredshiftforbothType1andType2 Figure6.Average850µmfluxversushardX-rayluminosityforbothType AGN. 1andType2AGN. eredinourstackedanalyses.Inordertodothis,wesplitthez >1 AGNinthreeX-rayluminositybins-43.5< log10(L2−10) < 44, Type1andType2AGNintothreeredshiftbinsandconsidertheir 44.0<log10(L2−10)<44.4andlog10(L2−10)>44.4.TheAGN stacked 850µm fluxes. The results are illustrated in Fig. 5. Both that are individually detected at 850µm (see Section 3) are also theType1andType2AGNsubmillimeterfluxesshowlittleevolu- included inthestack.Thereareonly 7X-rayAGNout of the19 tionwithredshiftovertheredshiftrangeprobedinthiswork.Inall thatsatisfyboththehard X-rayfluxlimitand thez > 1redshift threeredshiftbins,theType1andType2AGN850µmfluxesare cut and we have checked that inclusion of these AGN does not consistentwitheachothergiventheerrorbars.Whenconsidering change the stacked fluxes quoted withinthe error bars. Note that trends in AGN submillimeter fluxes with luminosity, obscuration thelowestX-rayluminositybinisincompleteatz & 2sothere- andAGN activityinthefollowing sections, wewillthereforeas- sultshereshouldbeinterpretedwithcaution.Theaverage850µm sume that the 850µm fluxes do not evolve with redshift over the fluxesarepresentedinTable2andillustratedinFig.6.Whilethe redshiftrangeconsidered. Type1submillimeterfluxappearstobefairlyindependentofX-ray luminosity, there is some evidence that the most X-ray luminous Type2AGNhavehighersubmillimeterfluxes.TheType2AGNat 4.3 X-rayLuminosity log10(L2−10)>44.4have850µmfluxesthatare∼2σhigherthan Wenowexploretrendsinthese850µmfluxeswiththehardX-ray in the previous X-ray bin although the numbers of Type 2 AGN luminosity, which can be used as a proxy for the energy emitted at such high X-ray luminosities are small so the results could be bythecentralaccretingpowersource.Severalrecentstudieshave affectedbysmallnumberstatistics. foundareasonablyflatrelationshipbetweenAGNluminosityand In the highest X-ray luminosity bin, the AGN are expected star formation rate (e.g. Harrisonetal. 2012; Rosarioetal. 2012; to have a relatively narrow Eddington ratio distribution based on Azadietal.2014;Stanleyetal.2015).AtmodestX-rayluminosi- themodelsofAirdetal.(2013).TheseAGNthereforelikelycorre- tieswherelargesamplesofX-rayAGNwithfarinfraredandsub- spondtohigh-massblack-holeshostedinmassivegalaxies.IfAGN millimeterdatanow exist,theseresultsarenow robust.However, werepreferentiallyfoundinstar-forminggalaxiesonthemainse- the situation is less clear at very high X-ray luminosities. While quence, thesemassivegalaxieswouldbeexpectedtohavehigher Pageetal.(2012)havesuggested that thefar infra-redfluxesand starformationrates.ThehighX-rayluminositybinsmaytherefore therefore star formation rates of AGN withhigh X-ray luminosi- bedominated byalargerfractionofquiescent hostsfor theType ties,aresuppressedrelativetoAGNoflowerluminosity,Lutzetal. 1 AGN, which would naturally explain the lower 850µm fluxes. (2010)andRosarioetal.(2012)insteadfindanincreaseinstarfor- X-rayluminous Type1AGNcould alsorepresent askewed pop- mationrateathighX-rayluminosities,withtheresultsbeingmore ulation of highly accreting black-holes seen during a brief phase pronouncedforlowredshiftAGNinRosarioetal.(2012).There- of black-hole growth. Assuch, their host galaxies maybe under- sultsfromrecenthydrodynamicalsimulationssuggestthatthereisa massive relative to their black-hole masses, and this could once largescatterintheL -SFRrelationoverthedynamicrangeprobed againexplainthelowerdustluminositiesandthereforestarforma- X by current surveys (Sijackietal. 2014),which may explain some tionratesinthesesources. ofthediscrepanciesbetweenpreviousstudies. The Type 2 AGN show a more marked increase in average The SCUBA-2 photometry presented in this paper now al- submillimeterfluxwithX-rayluminositywiththemostX-raylu- lowsanindependentinvestigationoftherelationbetweenstarfor- minousAGNhavinghigherstarformationrates.Ascanbeseenin mation and AGN luminosity with the advantage that the submil- Fig.2,foraflux-limitedsample,themedianredshiftincreaseswith limeterfluxislesscontaminated byAGNemissionthantheHer- increasingX-rayluminosity. However,wehaveshowninSection schel fluxes in the case of the most luminous quasars. As illus- 4.2thatthe850µmfluxdoesnotevolvesignificantlywithredshift tratedinFig.2,atz > 1,theCOSMOSfieldisonlycompleteat in the Type 2 AGN population. Therefore the trend observed in relatively high X-ray luminosities. We select Type 1 and Type 2 Fig.6isunlikelytobedrivenbyredshift.Evidenceofhigherstar
Description: