LEMATEMATICHE Vol.LXIII(2008)–Fasc.I,pp.205–222 COHOMOLOGICALSUPPORTLOCIFOR ABEL-PRYMCURVES S.CASALAINAMARTIN-M.LAHOZ-F.VIVIANI ForanAbel-PrymcurvecontainedinaPrymvariety,wedeterminethe cohomologicalsupportlociofitstwistedidealsheavesandthedimension ofitstheta-dual. Introduction Thepurposeofthispaperistostudythetheta-dualandthecohomologicalsup- port loci for the twisted ideal sheaves of an Abel-Prym curve contained in the Prym variety associated to an e´tale double cover of smooth projective non- hyperellipticcurves. Recall that given a coherent sheaf F on a smooth projective variety X, the i-thcohomologicalsupportlocusofF is Vi(F):={α ∈Pic0(X)|hi(X,F⊗α)>0}⊂Pic0(X). These loci have been studied in a number of contexts, and were considered for example by Green-Lazarsfeld (see [5, 6]) in order to prove a generic vanish- Entratoinredazione22febbraio2008 AMS2000SubjectClassification:14H40,14K12,14F17 Keywords: Prym varieties, Abel-Prym curves, cohomological support loci, generic vanishing, theta-dual ThefirstauthorwaspartiallysupportedbyNSFMSPRFgrantDMS-0503228.Thesecondauthor hasbeensupportedbyMinisteriodeEducacio´nyCiencia,becadeFormacio´ndelProfesorado Universitario,MTM2006-14234-C02and2005SGR-00557. 206 SEBASTIANCASALAINAMARTIN-MART´ILAHOZ-FILIPPOVIVIANI ing theorem for the canonical sheaf of irregular complex varieties. More pre- \ cisely, they proved that if the Albanese morphism a:X →Alb(X)∼=Pic0(X) hasgenericfiberofdimensionk,then codim Vi(ω )≥i−k. Pic0(X) X In a sequence of articles ([11, 17, 18] cf. [16])), G. Pareschi and M. Popa have studied similar questions, and have introduced the notion of a GV sheaf k (seealso[7]): Definition. AcoherentsheafF issaidtobeGV forsomek∈Z(whichstands k forgenericvanishingoforderk)if codim Vi(F)≥i−k foralli>0. (*) Pic0(X) ObservethatwehavethenaturalinclusionsbetweentheGV -sheaves: k (W)IT =GV ⊂···⊂GV =M⊂GV =GV ⊂···⊂GV =Coh(F)1, 0 −d −1 0 d where the sequence becomes stationary outside the interval [−d,d] for d = dim(X). With this terminology, the result of M. Green and R. Lazarsfeld says thatiftheAlbanesemorphismhasgenericfiberofdimensionk,thenω isGV . X k The above condition (∗) can be expressed in terms of the Fourier-Mukai transform with respect to the kernel P =(a,id)∗(L)∈D(X×Aˆ), where L is the Poincare´ line bundle on A×Aˆ (suitably normalized) and A = Alb(X). G. Pareschi and M. Popa use this to study vanishing in a variety of contexts, and in particular when F is an adjoint linear series or an ideal sheaf suitably twisted;thishasproducedmanyinterestingapplications(see[12–14,17,18]). When X = A is an abelian variety, the case we will be considering here, Pic0(A) is canonically isomorphic to Ab, and soVi(F) can be considered as a subspace inside the dual abelian variety. Moreover, in the case of a principally polarizedabelianvariety(A,Θ),whichwewillabbreviatebyppavinthesequel, wecanviewthecohomologicalsupportlociassubspacesoftheoriginalabelian varietyusingtheisomorphismϕ :A→∼ Aˆ. Inthissetting,Pareschi-Popaintro- Θ duced the following definition of theta-dual (see [18, Def. 4.2]), which can be viewedasthecohomologicalsupportlocusofatwistedidealsheaf. 1In the above chains of inclusions we have also indicated some other names that are used intheliterature, namely: thesheavessatisfyingGV arealsocalledGV-sheaves(whichstands 0 for generic vanishing sheaves), the GV−1-sheaves are called M-regular sheaves (which stands Mukai regular sheaves) and the GV -sheaves are called (W)IT -sheaves because they satisfy −d 0 Vi(F)=0/ foralli>0,orinotherwordstheysatisfiesthe(weak)indextheoremwithindex0in Mukai’sterminology. COHOMOLOGICALSUPPORTLOCIFORABEL-PRYMCURVES 207 Definition. Given a closed subscheme X of a ppav (A,Θ), the dual theta-dual V(X)ofX istheclosedsubset2 definedby: V(X):=V0(IX(Θ))={α ∈Aˆ |h0(A,IX(Θ)⊗α)6=0}⊂Ab∼=Pic0(A). Observethat,viatheprincipalpolarizationΘ,thetheta-dualV(X)canbecanon- icallyidentifiedwiththelocus{a∈A|X ⊂Θ =t∗Θ}oftheta-translatescon- a a tainingX (heret :A→Aisthetranslationmap). a More generally, we will be interested in the cohomological support loci of the formVi(I (nΘ)). In particular, in this paper we consider the cohomolog- X ical support loci associated to the ideal sheaves of Abel-Prym curves. To fix some notation, let P be the Prym variety of dimension g−1 associated to the e´tale double cover Ce→C of irreducible smooth projective non-hyperelliptic curvesofgenusg˜=2g−1andg≥3,respectively. LetΞbethecanonicalprin- cipal polarization. SinceCeis not hyperelliptic, there is an embeddingCe,→P, unique up to translation. We denote by I the ideal sheaf ofCeinside P (see Ce section1forthedefinitionandthestandardnotations). Ourmainresultis(com- biningTheorems2.2,3.1,4.2): Theorem A. Let Ce be a non-hyperelliptic Abel-Prym curve embedded in its Prymvariety(P,Ξ). Thenwehave: 1. Thetheta-dualofCehasdimension dim(V(Ce))=dimP−3=g−4. 2. ThecohomologicalsupportlociofI (Ξ)canbe(non-canonically) Ce identifiedwith V0(I (Ξ))=V1(I (Ξ))=V(Ce), Ce Ce V2(I (Ξ))=P, Ce V≥3(I (Ξ))=0/. Ce 3. ThecohomologicalsupportlociofI (2Ξ)canbe(non-canonically) Ce identifiedwith ( P ifg≥4, V0(I (2Ξ))= Ce {0} ifg=3, V1(I (2Ξ))=V2(I (2Ξ))={0}, Ce Ce V≥3(I (2Ξ))=0/. Ce 2It is possible to put a canonical schematic structure onV(X) (see [18, Def. 4.2]), which howeverwillneverplayaroleinthispaper. 208 SEBASTIANCASALAINAMARTIN-MART´ILAHOZ-FILIPPOVIVIANI The above theorem follows by combining Theorems 2.2, 3.1, 4.2 together with the identifications that we make in formulas (1) and (2) below. As an immediateCorollaryweobtain: CorollaryB. WiththenotationoftheaboveTheorem,thefollowinghold (i) I (Ξ)isnotGV. Moreprecisely,itisGV butnotGV . Ce 2 1 (ii) I (2Ξ)isGV,butnotIT . Moreprecisely,itisGV butnot Ce 0 −(g−2) GV . −(g−1) (iii) I (mΞ)isIT foreverym≥3. Ce 0 Statements (i) and (ii) follow by direct inspection from the theorem, while part(iii)followsfrompart(ii)andthegeneralfactthatifF isaGV-sheafthen F(Θ)isIT (see[18,Lemma3.1]). 0 These results should be compared to the case of an Abel-Jacobi curve. Recall that for any non-rational curve C, the Abel-Jacobi map gives a non- canonical embedding of C in its canonically polarized Jacobian (J(C),Θ). In this case, the cohomological support loci can be (non-canonically) identified with(combine[12,Thm. 4.1,Prop. 4.4]and[18,Lem. 3.3,Exa. 4.5]) V(C)=V0(I (Θ))=V1(I (Θ))=W , C C g−2 V0(I (nΘ))=J(C)forn≥2, C V≥2(I (Θ))=V≥1(I (nΘ))=0/ forn≥2, C C whereW =W0 is the Brill-Noether locus of line bundles of degree g−2 g−2 g−2 withnon-trivialglobalsections. Fromtheabovedescription,wegetthatforan Abel-Jacobicurve (i) I (Θ)isGV,butnotIT . C 0 (ii) I (mΘ)isIT foreverym≥2. C 0 (iii) dim(V(C))=g−2=dimJC−2. In[18],Pareschi-Popahaveprovedthattheabovecondition(i)characterizes Abel-Jacobicurvesamongthenon-degeneratecurvesinsideappav. Moreover, theyhavefurtherconjecturedthattheconditions(ii)and(iii)shouldalsoprovide newcharacterizationsofAbel-Jacobicurves3. 3Wereferto[18]foranalogousconjecturesconcerningthesubvarietiesofappavofminimal cohomologicalclass. COHOMOLOGICALSUPPORTLOCIFORABEL-PRYMCURVES 209 The results in this paper show that this conjecture is not violated by Abel- Prymcurves,whichinasensearethecurvesinsideappavclosesttotheAbel- Jacobicurves. Inaddition,fromtheresultsonAbel-Prymcurvesabove,andthosecitedfor Abel-Jacobicurves,itseemsnaturaltoaskfortherelationbetweenthefollow- ingconditionsonacurveX onappav(A,Θ)ofdimensiong: (1) I (eΘ)isGV,butnotIT . X 0 (2) I ((e+1)Θ)isIT ,butI (eΘ)isnot. X 0 X (3) dimV(X)=g−e−1. (4) X isanAbel-Prym-TyurincurvewithPrym-Tyurinvariety(A,Θ)⊂(JX, Θ )ofexponente,thatis[X]= e[Θ]g−1. X (g−1)! Prym-Tyurin varieties of exponent 1 are precisely the Jacobians (by the Matsusaka-Ran criterion), so that the Pareschi-Popa conjecture states that the aboveconditionsareallequivalentfor e=1. Inthenextcase, itisknown(see [20]) that the closure inside the moduli space A of ppav’s of dimension g of g the Prym-Tyurin varieties of exponent 2 has a unique component of maximal dimension (which is 3g), namely the closure of the classical Prym varieties4. Therefore,ourresultsinTheoremAshowthat“most”oftheAbel-Prym-Tyurin curvesofexponent2satisfiestheconditions(1),(2)and(3). Ontheotherhand,AndreasHoeringhaspointedouttousthatcondition(3) ismuchweakerthancondition(4): anycurveX onasubvarietyY withdim(Y)> 1anddimV(Y)=g−e−1willhavedimV(X)≥g−e−1. SinceY willcontain curves of arbitrarily high degree with respect to Θ, one can construct curves satisfying (3) but not (4). As a concrete example, consider a curve X lying on a W (1 < d < e+1) inside a Jacobian or on the Fano surface inside the d intermediateJacobianofacubicthreefold. Thusweproposeanalternateversion of(3),whichmaybemorecloselyrelatedtotheotherconditions (30) dimV(X)=g−e−1 and X is not contained in a subvarietyY with 1< dim(Y)<e+1anddimV(Y)=g−e−1. SinceanAbel-PrymcurveoftheintermediateJacobianofacubicthreefold lies on the Fano surface F, which has class [Θ]3/3! and dimV(F)=g−3, (4) doesnotimply(30),andsowesuggestthefollowingmodificationof(4)aswell: 4AmongthePrym-Tyurinppavofdimensiongandexponent2,theclassicalPrymvarieties canalsobecharacterizedasthoseforwhichthecurveX issmoothofmaximalarithmeticgenus, namely2g+1. 210 SEBASTIANCASALAINAMARTIN-MART´ILAHOZ-FILIPPOVIVIANI (40) X isanAbel-Prym-TyurincurveofexponenteandX isnotcontainedin asubvarietyY with1<dim(Y)=d<e+1andclass[Y]=α[Θ]g−d with (g−d)! α <e. The paper is organized as it follows. In section 2, we review the definition of the Prym variety (P,Ξ) associated to an e´tale double coverCe→C in order to fix the notation used throughout the paper. In section 3, we prove that the theta-dual of an Abel-Prym curveCeinside P can be set-theoretically identified with the Brill-Noether locus V2 defined in [19]. General results about these Brill-Noether ([2, 4]) give the inequality dimV(Ce)≥dim(P)−3. Using ideas from[10, sections6, 7],weshowthattheequalityholds(Theorem2.2), which proves part (1) of the Main Theorem A. In section 4 and 5, we compute the cohomologicalsupportlociforthetwistedidealsheavesI (Ξ)(Theorem3.1) Ce and I (2Ξ) (Theorem 4.2), proving explicitly parts (2) and (3) of the Main Ce TheoremA. 1. Notationandbasicdefinitions Throughoutthispaper,weworkoveranalgebraicallyclosedfieldkofcharacter- isticdifferentfrom2. ThebasicresultscitedhereareduetoMumford[9]. Let π :Ce→C be an e´tale double cover of irreducible smooth projective curves of genusg˜andg,respectively. BytheHurwitzformula,wegetthatg˜=2g−1. We denotebyσ theinvolutiononCeassociatedtotheabovedoublecover. Consider thenormmap Nm:Pic(Ce) −→ Pic(C) OCe(∑jrjpj) 7−→ OC(∑jrjπ(pj)). Thekernelofthenormmaphastwoconnectedcomponents kerNm=P∪P0⊂Pic0(Ce), wherePisthecomponentcontainingtheidentityelementandis,bydefinition, thePrymvarietyassociatedtothee´taledoublecoverπ. Theabovecomponents PandP0 havethefollowingexplicitdescription n o P= O (D−σ(D))|D∈Div2N(Ce),N ≥0 , Ce n o P0= O (D−σ(D))|D∈Div2N+1(Ce),N ≥0 . Ce ItisoftenusefultoconsidertheinverseimageofthecanonicallinebundleofC viathenormmap. Thisalsohastwoconnectedcomponents Nm−1(ωC)=P+∪P−⊂Pic2g−2(Ce)=Picg˜−1(Ce), COHOMOLOGICALSUPPORTLOCIFORABEL-PRYMCURVES 211 whichhavethefollowingexplicitdescription P+=(cid:8)L∈Nm−1(ω )|h0(L)≡0 mod2(cid:9), C P−=(cid:8)L∈Nm−1(ω )|h0(L)≡1 mod2(cid:9). C TheabovevarietiesP0,P+ andP− areisomorphictothePrymvarietyPand,in thiswork,wewillpassfrequentlyfromonetoanother. ThereisaprincipalpolarizationΞ∈NS(P)inducedbytheprincipalpolar- ization ΘCe∈NS(JCe). In fact, ΘCe|P =2Ξ. One of the primary motivations for consideringP+ istheexistenceofacanonicallydefineddivisorΞ+ whoseclass intheNeron-SeverigroupofPisΞ: n o Ξ+= L∈P+⊂Picg˜−1(Ce)|h0(L)>0 ⊂P+. Ontheotherhand,thecanonicalAbel-Prymmapisdefinedas i:Ce −→ P0 p 7−→ σ(p)−p. If Ce is hyperelliptic then the image of Ce via the Abel-Prym map is a smooth hyperellipticcurveDandthePrymvarietyPisisomorphictotheJacobianJ(D) of D ([3, Cor. 12.5.7]). On the other hand, if C is hyperelliptic but Ce is not, thenthePrymvarietyPistheproductoftwohyperellipticJacobians(see[10]). Therefore, since we are mostly interested in the case of an irreducible non- Jacobianppav,wewillassumethroughoutthispaperthatC isnothyperelliptic (and in particular g≥3). Note that under this hypothesis, the Abel-Prym map isanembedding([3,Cor. 12.5.6]). SincetheAbel-PrymcurveCe⊂P0 andthepolarizationΞ+⊂P+ liecanon- ically in different spaces, the cohomological support loci for the twisted ideal sheafI (nΞ+)isonlydefineduptoatranslationsincewehavetochooseaway Ce to translateCeand Ξ+ inside the Prym variety P. For this reason, we introduce thefollowingauxiliary(canonicallydefined)loci Vei(I (nΞ+))={E ∈P−|hi(P0,I (nΞ+)>0}⊂P−, (1) Ce Ce E where I is the ideal sheaf of Ce inside P0 and for E ∈ P− ⊂ Picg˜−1(Ce), we Ce denote by Ξ+ ⊂P0 the translate of the canonical theta divisor Ξ+ by E−1. The E relation between Vei(I (nΞ+)) and Vi(I (nΞ)) is easy to work out. In fact Ce Ce thereisachoiceoftranslateofCe⊂PandΞ⊂Psothatundertheisomorphism ψ : P− −→ P E 0 E 7−→ E⊗E−1 0 212 SEBASTIANCASALAINAMARTIN-MART´ILAHOZ-FILIPPOVIVIANI inducedbyalinebundleE ∈P−,wehave 0 Vi(I (nΞ))=Vei(I (nΞ+))⊗n⊗E⊗−n:={(E⊗E−1)⊗n|E ∈Vei(I (nΞ+))}. Ce Ce 0 0 Ce For this reason, we will also identify the cohomological support loci with thefollowingcanonicalloci: Vi(I (nΞ))=Vei(I (nΞ+))⊗n⊂Nm−1(ω⊗n)⊂Picn(g˜−1)(Ce). (2) Ce Ce C For later use, we end this section with the following Lemma, which de- scribes the restriction of the translates of the theta-divisor to the Abel-Prym curve. Lemma1.1. GivenanyE ∈P−,thereisanisomorphismoflinebundles OP0(Ξ+E)|Ce∼=E. Moreover,ifE ∈P−−V(Ce)andDistheuniquedivisorin|E|,thenwehavean equalityofdivisors (cid:0)Ξ+(cid:1) =Ce∩Ξ+=D. E |Ce E Proof. This is standard, we include a proof for the convenience of the reader. Suppose first that E ∈P−−V(Ce), which, by Lemma 2.1, is equivalent to the conditionh0(Ce,E)=1. Write|E|=D=p1+...+pg˜−1,where pi∈Ce. Since pi isafixedpointofthelinearseries|E|,wehavethath0(Ce,E⊗OCe(−pi+σpi))= 2,whichimpliesthat D⊂Ce∩Ξ+=(cid:0)Ξ+(cid:1) . E E |Ce UsingthatCe·Ξ+=g˜−1,wegetthedesiredsecondequality. Nowconsiderthe E maps Ce×P−(−a,→id)P0×P−−µ→P+, where a is the Abel-Prym map and µ is the multiplication map. Let P be the Poincare´ linebundleonCe×P−,trivializedoverthesection{p}×P− forsome p∈Ce. ConsiderthelinebundleonCe×P−givenbyL :=(a×id)∗µ∗OP+(Ξ+). WecantrivializeL alongthegivensection{p}×P−bytensoringwiththepull backfromP−ofthedivisorΞ+ . ItiseasytocheckthatthefibersofP and p−σ(p) L overCe×{E}aregivenby (P =E, Ce×{E} L =O (Ξ+) . Ce×{E} P0 E |Ce Bywhatwasprovedabove,ifE 6∈P−−V(Ce)thenthetwofibersagree. Bythe Seesawtheorem(e.g. [3,Lemma11.3.4]),P ∼=L andwegetthedesiredfirst equality. COHOMOLOGICALSUPPORTLOCIFORABEL-PRYMCURVES 213 2. Thetheta-dualofCe Inthissection, wewanttostudythetheta-dualofCeinthePrymvarietyP; this canbeidentifiedcanonicallywiththeset(see(2)): V(Ce):=(cid:8)E ∈P−|h0(P0,I (Ξ+))>0(cid:9)⊂P−. Ce E Infactthetheta-dualV(Ce)canbedescribedintermsofthefollowingstan- dardBrill-Noetherloci(see[19]): Vr :=(cid:8)L∈Nm−1(ω )|h0(L)≥r+1,h0(L)≡r+1 mod2(cid:9), C where Vr ⊂ P− (resp. Vr ⊂ P−) if r is even (resp. odd). We view both the thetadualandtheBrill-Noetherlociassets,althoughtheycanbeendowedwith naturalschemestructures5. Lemma2.1. Wehavetheset-theoreticequality V(Ce)=V2. Proof. AnelementE∈P−belongstoV(Ce)ifandonlyifCe⊂Ξ+,which,bythe E definitionofCe⊂P0,isequivalenttoh0(Ce,E⊗O (σ(p)−p))>0forevery p∈ Ce Ce. ByMumford’sparitytrick(see[10]),thishappensifandonlyifh0(Ce,E)≥3, thatisE ∈V2. Theorem2.2. Foranye´taledoublecoverCe→C asabovewithC nothyperel- lipticofgenusg,itholdsthat dim(V2)=dim(P)−3=g−4. For g=3, the Theorem says thatV2 =0/. We start with the following Lemma, whichissimilarto[10,Lemmap. 345]. Lemma2.3. IfZ⊆V2isanirreduciblecomponent,anddimZ≥g−3,thenfor agenerallinebundleL∈Z,thereisalinebundleM onCwithh0(M)≥2,and aneffectivedivisorF onCesuchthatL∼=π∗M⊗O (F). Ce Proof. LetZ andLbeasinthestatement. Supposethath0(L)=r+1forr≥2 even,sothatL∈Wr −Wr+1. Fromthehypothesis,wegetthat g˜−1 g˜−1 dimT Wr ∩T P−≥g−3=dim(P−)−2. (3) L g˜−1 L 5WeremarkhoweverthattheVrhavebeenconsideredwithdifferentnaturalschematicstruc- tures(compare[19]and[4]). 214 SEBASTIANCASALAINAMARTIN-MART´ILAHOZ-FILIPPOVIVIANI The Zariski tangent space toWr at L is given by the orthogonal complement g˜−1 totheimageofthePetrimap(e.g. [1,Prop. 4.2]): H0(Ce,L)⊗H0(Ce,σ∗(L))→H0(Ce,ω ), Ce where we have used that ω =π∗(ω )=L⊗σ∗(L). On the other hand, the Ce C tangentspacetothePrymisbydefinitionTLP−=H0(Ce,ωCe)−,the(−1)-eigen– spaceofH0(Ce,ω )relativetotheinvolutionσ. Therefore,itiseasytoseethat Ce the intersection of the Zariski tangent spaces T Wr ∩T P− is given as the L g˜−1 L orthogonalcomplementtotheimageofthemap v0:∧2H0(Ce,L)→H0(Ce,ωCe)− definedbyv (s ∧s )=sσ∗s −s σ∗s. 0 i j i j j i Theinequality(3)isequivalenttocodim(kerv )≤2. Ontheotherhand,the 0 decomposableformsin∧2H0(Ce,L)formasubvarietyofdimension2r−1≥3, andsothereisadecomposablevectors ∧s inkerv . Thismeansthatsσ∗s − i j 0 i j s σ∗s = 0, or in other words that sj defines a rational function h in C. We cojncluide by taking M =O ((h) ) asnid F the be the maximal common divisor C 0 between(s) and(s ) . i 0 j 0 ProofofTheorem2.2. ThedimensionofV(Ce)=V2 isatleastg−4bythethe- orem of Bertram ([2], see also [4]). Suppose, by contradiction, that there is an irreduciblecomponentZ⊆V2 suchthatdimZ=m≥g−3. Then,byapplying theprecedingLemma2.3forthegeneralelementL∈Z, L∼=π∗M⊗O (B) Ce where M is an invertible sheaf onC such that h0(M)≥2, and B is an effective divisoronCesuchthat Nm(B)∈|KC⊗M⊗−2|. Thefamily ofsuchpairs(M,B) isafinitecoverofthesetofpairs{M,F}where: • M isaninvertiblesheafonCofdegreed≥2suchthath0(M)≥2, • F is an effective divisor onC of degree 2g−2−2d ≥0, such that F ∈ |K ⊗M⊗−2|. C By Marten’s theorem applied to the non-hyperelliptic curve C (see [1, Pag. 192]),thedimensionoftheabovefamilyoflinebundlesMisboundedaboveby dim(W1)<d−2. (4) d FixingalinebundleM asabove,thedimensionofpossibleF satisfyingthe secondconditionisboundedbyClifford’stheorem, h0(K ⊗M⊗−2)−1≤g−1−d, (5) C
Description: