ebook img

Cohomological properties of unimodular six dimensional solvable Lie algebras PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cohomological properties of unimodular six dimensional solvable Lie algebras

COHOMOLOGICAL PROPERTIES OF UNIMODULAR SIX DIMENSIONAL SOLVABLE LIE ALGEBRAS 2 1 MAURAMACR`I 0 2 Abstract. InthepresentpaperwestudysixdimensionalsolvableLiealgebras n with special emphasis on those admitting a symplectic structure. We list a all the symplectic structures that they admit and we compute their Betti J numbersfindingsomepropertiesaboutthecodimensionofthenilradical. Next, 0 we consider the conjecture of Guan about step of nilpotency of a symplectic 2 solvmanifoldfindingthatitistrueforallsixdimensionalunimodularsolvable Liealgebras. Finally,weconsidersomecohomologiesforsymplecticmanifolds ] introduced byTsengand Yauinthe context of symplecticHogde theory and G we use them to determine some six dimensional solvmanifolds for which the D HardLefschetzpropertyholds. . h t a m Introduction [ A solvmanifold M = G/Γ is a compact homogeneous space of a solvable Lie 2 group G, i.e. a compact quotient of a solvable Lie group G by a lattice Γ. A v special class of solvmanifolds, called nilmanifolds, was introduced by Malcev [10] 8 and corresponds to the particular case when G is a nilpotent Lie group. 5 Both classesof manifolds have been particularly importantfor producing exam- 9 5 ples of compact symplectic manifolds which do not admit any K¨ahler structure. . Hence the study of the topology of solvmanifolds (and in particular their coho- 1 mological properties) is particularly interesting, especially when they are endowed 1 1 withasymplecticstructure. Inthiscontext,theHardLefschetzproperty,formality 1 and symplectic Hodge theory play an important role (see for instance [3]). : v Hence one needsto compute the de Rhamcohomologyofa solvmanifold,which, i in some situations can be done using invariant differential forms, i.e. by the X Chevalley-Eilenberg cohomology H∗(g) of g. This is the case if the Mostow con- r a dition holds, namely, the algebraicclosures A(AdG(G)) and A(AdG(Γ)) are equal, [11]and[14,Corollary7.29]. Specialinstancesareprovidedbynilmanifolds[13]and completely solvable Lie groups G [7], i.e., the adjoint representation ad : g → g X have only real eigenvalues for all X ∈g. Unlike nilpotent Lie groups there is no simple criterion to understand whether a solvable Lie group G admits a lattice, but a necessary condition is that G is unimodular, i.e., for all X ∈g, trad =0, where g is the Lie algebra of G. X Nilpotent Lie algebras and solvable Lie algebras have been classified up to di- mension 5 (see for instance [1]). In dimension 6, the number of possible solvable Lie algebras is very large. A complete classification can be obtained by using the results in the papers [1, 12, 16]. In this paper we improve some classifications, considering only the case of six dimensional solvable unimodular Lie algebras. 2000 Mathematics Subject Classification. 53C30;17B30. 1 SIX DIMENSIONAL LIE ALGEBRAS 2 Solvmanifolds up to dimension six admitting an invariant symplectic structure (invariant means that it comes from a symplectic form on the Lie algebra) were studied by Bock [1]. In particular, he considered the conditions of being cohomo- logically symplectic, formality and Hard Lefschetz property. Inthepresentpaperwestudysixdimensionalunimodularsolvable(non-nilpotent) Lie algebras with special emphasis on those admitting a symplectic structure. Six dimensional nilpotent Lie algebras admitting symplectic structures were classified in [15]. InSection1welistallthesymplecticstructuresthatsixdimensionalunimodular solvable (non-nilpotent) Lie algebras admit (Table 3) and we consider the conjec- ture of Guan [6] about steps of a symplectic solvmanifold [6], namely that if a solvmanifoldG/Γ admits a symplectic structure then G is at most 3-step solvable. We find that this is true for a six dimensional Lie group whose Lie algebra is uni- modular,indeed this holds for all six dimensional unimodular solvable Lie algebra, also those which do not admit symplectic structures, (see Proposition 1). In Section 2 we compute their Betti numbers (i.e., the dimensions of their Chevalley-Eilenberg cohomology) finding some properties about the codimension ofthe nilradical. Recallthatthe nilradical ofaLiealgebragisits largestnilpotent ideal. Namely, in Section 2 we prove as main result Theorem 1. Let g be a six dimensional unimodular, solvable, non-nilpotent Lie algebra • if it admits a symplectic structure, then it has positive, non zero, second Betti number, i.e., b (g)>0. 2 • if b (g)=1, then its nilradical has codimension 1 and b (g)=0 if and only 1 2 if b (g)=0. 3 • ifitsnilradicalhascodimensiongreaterthen1,thenb (g)≥2andb (g)=1 1 2 if and only if b (g)=0. 3 The Betti numbers of the 6-dimensionalLie algebras with 5-dimensionalnilrad- ical were also computed by M. Freibert and F. F. Schulte-Hengesbach [4]. Finally, we consider the Hard Lefschetz property and some cohomologies for symplecticmanifoldsintroducedbyTsengandYau[18]inthecontextofsymplectic Hogde theory. In particular, we show that these cohomologies can be computed using invariant forms, provided this is the case for the Rham cohomology (see Theorem3 in Section 3). We apply this result, together with the list of symplectic structures on solvable Lie algebras (Table 3), to show that some solvmanifolds satisfy the Hard Lefschetz property (Theorem 4). In the Appendix we include two Tables. In Table 2 we list all the solvable, non- nilpotentunimodularsixdimensionalLiealgebras,indicatingthedifferentialofthe generators of the dual algebra. This list is based on the classifications given in [1], [12] and [16] and has the same notation for the Lie algebras. In Table 3 we list all the symplectic structures on six dimentional solvable unimodular Lie algebras. Acknowledgements. I would like to thank Antonio Otal and Anna Fino for the precious help given in the last version of the paper. SIX DIMENSIONAL LIE ALGEBRAS 3 1. Symplectic Structures LetgbearealLiealgebraofdimension2n. Werecallthatasymplectic structure ong is a closed2-formω in g∗ such that ωn 6=0. Let g be a six dimensionalreal solvableunimodular Lie algeVbraandlet {X1,...,X6} be an orderedbasis ofg, then a 2-formω is associatedin a natural way to a matrix M =(ω )∈M(6,R), where ij ω :=ω(X ,X ), and ωn 6=0⇔detM 6=0. ij i j By direct computation we prove Theorem 2. The six dimensional real solvable, non-nilpotent unimodular Lie al- gebras admitting a symplectic structure are the following: g0,−1=(−26,−36,0,−46,56,0), 6.3 g0,0 =(−26,−36,0,−56,46,0), 6.10 g21,−1,0 =(−23+ 1.16,−1.26,36,−46,0,0), 6.13 2 2 g−1,21,0 =(−23+ 1.16,26,−1.36,−46,0,0), 6.13 2 2 g−1 =(−23,−26,36,−26−46,−36+56,0), 6.15 g−1,−1=(−23,26,−36,−36−46,56,0), 6.18 g0 =(−23,0,−26,−46,56,0), 6.21 g0,0,ε =(−23−ε.56,0,−26,−36,0,0), ε6=0 6.23 g0,0,ε =(−23−ε.56,0,0,−36,−46,0), 6.29 g0,0 =(−23,0,−26,56,−46,0), 6.36 g0 =(−23,36,−26,−26+56,−36−46,0), 6.38 g0,−1=(−35−16,−45+26,−36,46,0,0), 6.54 g0,0 =(−35+26,−45−16,46,−36,0,0), 6.70 g =(−25+16,−45,−24−36−46,−46,56,0), 6.78 g0,±1,−1 =(−25+16,15+26,∓45−36,±35−46,0,0), 6.118 n±1 =(−45,−15−36,−14+26∓56,56,−46,0), 6.84 gp,−p,−1⊕R=(−15,−p.25,p.35,45,0,0), 5.7 g−1⊕R=(−25,0,−35,45,0,0), 5.8 g0 ⊕R=(−25,0,−45,35,0,0), 5.14 g0,0,r⊕R=(−25,15,−r.45,r.35,0,0), 5.17 gp,−p,±1⊕R=(−p.15−25,15−p.25,p.35∓45,±35+p.45,0,0), 5.17 g0,0,±1⊕R=(−25,15,∓45,±35,0,0), 5.17 g0 ⊕R=(−25−35,15−45,−45,35,0,0), 5.18 g−2,2⊕R=(−23+15,−25,+2.35,−2.45,0,0), 5.19 g−12,−1⊕R=(−23− 1.15,−25,−1.35,45,0,0), 5.19 2 2 g−1⊕3R=(−13,23,0,0,0,0), 3.4 g0 ⊕3R=(−23,13,0,0,0,0), 3.5 g ⊕g−1 =(−23,0,0,−46,56,0), 3.1 3.4 g ⊕g0 =(−23,0,0,−56,46,0), 3.1 3.5 g−1⊕g−1 =(−13,23,0,−46,56,0), 3.4 3.4 g−1⊕g0 =(−13,23,0,−56,46,0), 3.4 3.5 g0 ⊕g0 =(−23,13,0,−56,46,0), 3.5 3.5 where the parameters ε,p and r are real numbers. To explain this notation,for example g0,0,r⊕R=(−25,15,−r.45,r.35,0,0) means 5.17 that there is a basis (α ,...,α ) of the dual of the Lie algebra g0,0,r⊕R such that 1 6 5.17 dα = −α ,dα = α ,dα = −rα ,dα = rα ,dα = 0,dα = 0, where by α 1 25 2 15 3 45 4 35 5 6 ij we denote α ∧α . i j SIX DIMENSIONAL LIE ALGEBRAS 4 Proof. To construct the symplectic form we take the generic element ω ∈ kerd ⊂ 2(g∗) and we impose it to be not degenerate, that is ω3 6=0. VWiththis directcomputationwe canseethatthe six dimentionalsolvableunimod- ularLie algebrasnotlistedbelowhavealwaysω3 =0foreveryω ∈kerd⊂ 2(g∗). In Table 3 (Appendix) we list the symplectic structures admitted. V (cid:3) Describingnilmanifoldsandsolvmanifoldswithsymplecticstructurebecameim- portantafterthe workofThurston,[17]. Forthisreasonin[6],Guanstudiedprop- erties about the steps of nilmanifolds, showing that if a nilmanifold G/Γ admits a symplectic structure then G has to be at most two step as a solvable Lie group. He also conjectured that the Lie group of a solvmanifold admitting a symplectic structure is at most 3-step solvable. We show by direct computation that this is true for all six dimensional uni- modular solvable Lie algebra, also for those which do not admit any symplectic structure. Proposition 1. Every six dimensional unimodular, solvable, non-nilpotent Lie al- gebra g is 2 or 3-step solvable, in particular • if its nilradical has codimension 1, it is 3-step solvable unless it is almost abelian, or g is one of the following Lie algebras: ga,0 , g , g0,0 , g , g0 , g0,0,ε, g−1,0, g0,0,ε, 6.14 6.17 6.18 6.20 6.21 6.23 6.25 6.29 g0,0 , g0,−1, g , g0,0 , g0,0 , g0,0,0. 6.36 6.54 6.63 6.65 6.70 6.88 • if its nilradical has codimension greater then 1, it is 2-step solvable unless g is one of the following Lie algebras: g , g , g ⊕R, g ⊕R, g ⊕R, g ⊕R, g ⊕ 6.129 6.135 5.19 5.20 5.23 5.25 5.26 R, g ⊕R, g ⊕R, g ⊕2R, g ⊕2R. 5.28 5.30 4.8 4.9 2. Betti numbers of 6-dimensional unimodular solvable non-nilpotent Lie algebras InthisSectionwecomputethesecondandthirdBettinumberofsixdimensional solvable Lie algebras. The interest in determining solvable Lie algebras with the propertythatb (g)=b (g)comesfromaclassofmanifoldsendowedwithaclosed3 2 3 form,calledStringgeometry,consideredin[9]. Stronggeometryisanimportantex- ampleofconnectionbetweenmathematicsandphysics,inparticularmulti-moment maps are used in string theory and one-dimensional quantum mechanics, [9]. LetM be amanifold,then(M,γ)isaStrong geometry ifγ is aclosed3-formon M. Suppose there is a Lie group G that acts on M preserving γ, then we denote by P the kernel of the map 2g→g induced by the Lie bracket of g. g A Multi-moment map is an eVquivariant map ν : M → Pg∗ such that dhν,pi = ipγ, for any p∈P , (where i denotes the interior product) [8]. g p We refer to [8] and [9] for details on strong geometry. In particular Madsen and Swann [9] proved that if b (g)=b (g)=0, then there exists a multi-moment map 2 3 for the action of G on the manifold M. Because of this result they listed the Lie algebraswithtrivialsecondandthirdBettinumbers,uptodimensionfive. Weadd to their classification the Betti numbers of 6-dimensional solvable, non-nilpotent unimodular Lie algebras. SIX DIMENSIONAL LIE ALGEBRAS 5 Remark 1. Every Lie algebra g whose Lie group is solvable has b (g)>0, [1]. 1 Next we list 6-dimensional unimodular, solvable, non-nilpotent Lie algebra g togetherwiththeir first, secondandthird Bettinumber. The Bettinumbers ofthe 6-dimensionalLiealgebraswith5-dimensionalnilradicalwerealsocomputedbyM. Freibert and F. F. Schulte-Hengesbach [4]. Looking at this list and comparing with Table 3 yields Theorem 1. Table 1: Betti numbersof 6 dimensional unimodular, solvable, non-nilpotent Lie algebras 1 g b b b 1 2 3 g 1 0 if a6=−1, b6=−1, b6=−a, 0 if a6=−1, b6=−1, b6=−a, 6.1 c6=−a, c+b6=−1, c6=−b, c6=−a, c+b6=−1, c6=−b, a+b6=−1, a+c6=−1 a+b6=−1, a+c6=−1 1 if a=−1, or if b=−a, 2 if a=−1, or if b=−a, orifb=−c,orifa+b6=−1 orifb=−c,orifa+b6=−1 2 if b=−1, 4 if b=−1, orifc=−aorifc=−1−a, orifc=−aorifc=−1−a, or if a=−1 and b=1, or if a=−1 and b=1, orifa=−1andb+c=−1, orifa=−1andb+c=−1, or if b=c=−a, or if b=c=−a, or if b=−c=±a, or if b=−c=±a, or if b=−c=±(1+a), or if b=−c=±(1+a), or if b=c=−1−a or if b=c=−1−a 3 if a=−1 and b=−c=±1 6 if a=−1 and b=−c=±1 2 2 2 2 or if a=b=c− 1 or if a=b=c− 1 2 2 4 if a=−b=c= 1 5 if a=−b=c= 1 2 2 g 1 if a6=0 0 if a6=0, c6=−1, e6=−c, 0 if a6=0, c6=−1, e6=−c, 6.2 c−e6=±1, c+e6=1, c−e6=±1, c+e6=1, 2 if a=0 1 if c=−1, 2 if a=0 or if c=−1 or if e=−c, or if e=c+1, or if e=−c, or if e=c+1, or if e=±(1−c), or if e=±(1−c), 2 if a=0 or if c=−e=±1 4 if c=−e=±1 2 2 or if e=−1, or if e=−1, or if c=−e=−1 or if c=−e=−1 g 1 if a6=−1 0 if a6=−1,1 0 if a6=−1,1 6.3 2 2 2 if a=−1 1 if a= 1 2 if a= 1 2 2 3 if a=−1 4 if a=−1 g 1 0 0 6.4 g 1 if a6=−1 0 if a6=−1,−1 0 if a6=−1,−1 6.6 2 2 2 2 if a=−1 1 if a=−1 2 if a=−1 2 2 if a=−1 2 if a=−1 2 2 1InTable1weimposeconditions whichbecomeateverystepmorerestrictive. Itistherefore implicitthatthepreviousconditionsholdonlywhenthemorerestrictiveonesarenotsatisfied. SIX DIMENSIONAL LIE ALGEBRAS 6 g b b b 1 2 3 g 1 0 0 6.7 g 1 0 if a+b6=0, a+c6=0, 0 if a+b6=0, a+c6=0, 6.8 b+c6=0, p6=0 b+c6=0, p6=0 1 if a+b=0 , 2 if a+b=0, or if b+c=0, or if b+c=0, or if p=0 or if p=0 2 if a=−b=c, 4 if a=−b=c , or if a+c=0 or if a+c=0 g 1 if b6=0 0 if bp6=0, a+b6=0 0 if bp6=0, a+b6=0 6.9 2 if b=0 1 if p=0 or if a+b=0 2 if bp=0 or if a+b=0 2 if b=0 g 1 if a6=0 0 if a6=0 0 if a6=0 6.10 2 if a=0 3 if a=0 4 if a=0 g 1 0 if pq6=0 0 if pq6=0 6.11 1 if pq=0 2 if pq=0 g 1 0 0 6.12 g 1 if bh6=0 0 if a6=−1, b6=−1, 0 if a6=−1, b6=−1, 6.13 a+b6=0, 2a+b6=0, a+b6=0, 2a+b6=0, a+2b6=0, a+2b+16=0, a+2b6=0, a+2b+16=0, b+2a+16=0 b+2a+16=0 2 if b=0 1 if a=−1 or if b=−1 2 if a=−1 or if b=−1 or if h=0 or if a+b=0 or if a+b=0 or if a+2b=0,−1 or if a+2b=0,−1 or if b+2a=0,−1 or if b+2a=0,−1 2 if a=−1 and b=2 4 if a=−1 and b=2 or if b=−1 and a=2 or if b=−1and a=2 or if a= 1 and b=−2 or if a= 1 and b=−2 3 3 3 3 or if a=−2 and b= 1 or if a=−2 and b= 1 3 3 3 3 or if a=b=−1,−1 or if a=b=−1,−1 3 3 3 if a= 1 and b=−1 4 if a= 1 and b=−1 2 2 or if a=−1 and b=0,1 or if a=−1 and b=0,1 2 2 or if a=−b=±1 6 if a=−b=±1 g 1 if a6=−1 0 if a6=−1,−2,−1,1,2 0 if a6=−1,−2,1,2 6.14 3 3 3 3 3 3 3 3 2 if a=−1 1 if a=−1,−2,−1,1,2 2 if a6=−1,−2,1,2 3 3 3 3 3 3 3 3 g 1 2 4 6.15 g 2 2 1 6.17 g 1 if a6=0 0 if a6=0,−1,−1,−2,−3 0 if a6=−1,−1,−2,−3 6.18 2 2 2 if a=0 1 if a=0,−1,−2,−3 2 if a=−1,−2,−3 2 2 2 if a=−1 4 if a=−1 g 1 0 0 6.19 g 2 1 0 6.20 g 1 if a6=0 0 if a6=0,−1,−1 0 if a6=0,−1,−1 6.21 3 3 2 if a=0 1 if a=−1,−1 2 if a=−1,−1 3 3 3 if a=0 4 if a=0 g 1 0 0 6.22 g 1 if a6=0 0 if a6=0 0 if a6=0 6.23 3 if a=0 5 if a=0 6 if a=0 g 1 if 0 if b6=0,−1,−1,1 0 if b6=0,−1,−1,1 6.25 2 2 b6=0,−1 2 if 1 if b=−1,1 2 if b=0,−1,−1,1 2 2 b=0,−1 2 if b=0,−1 SIX DIMENSIONAL LIE ALGEBRAS 7 g b b b 1 2 3 g 2 2 2 6.26 g 1 1 2 6.27 g 1 0 0 6.28 g 1 if b6=0 2 if b6=0 2 if b6=0 6.29 3 if b=0 5 if b=0 and ε6=0 6 if b=0 and ε6=0 6 if b=0 and ε=0 8 if b=0 and ε=0 g 1 ifa6=−h,−h 0 if a6=0,−h,−h 0 if a6=0 6.32 2 6 2 6 2 ifa=−h,−h 1 if a=0,−h,−h 2 if a=0 2 6 2 6 g 1 if a6=0 0 if a6=0 0 if a6=0 6.33 3 if a=0 3 if a=0 1 if a=0 g 1 if a6=0 0 if a6=0 0 if a6=0 6.34 3 if a=0 3 if a=0 1 if a=0 g 1 if ab6=0 0 if c6=0,a6=0,−2b, 0 if c6=0,a6=−2b, 6.35 b6=0,−2a b6=−2a 2 if a=0 1 ifa=0orifb=0orifc=0 2 if c=0 or if a=−2b or b=0 or if a=−2b or if b=−2a or if b=−2a g 1 if a6=0 0 if a6=0 0 if a6=0 6.36 2 if a=0 3 if a=0 4 if a=0 g 1 0 if a6=0 0 if a6=0 6.37 1 if a=0 2 if a=0 g 1 2 4 6.38 g 1 if h6=0 0 if h6=0,−1,−1,−2,−3 0 if h6=−1,−1,−2,−3 6.39 2 2 2 if h=0 1 if h=0,−1,−1,−2,−3 2 if h=−1,−1,−2,−3 2 2 g 1 0 0 6.40 g 1 1 2 6.41 g 1 0 0 6.42 g 1 0 0 6.44 g 2 1 0 6.47 g 1 if l6=−1, 0 if l6=0,−1,−1,−2,−3,−2 0 if l6=0,−1,−3,−2 6.54 2 2 2 3 2 3 −1,−2 1 if l=0,−1,−2,−3,−2 2 if l=0,−3,−2 2 2 3 2 3 2 if l=−1, 3 if l=−1 4 if l=−1 2 −1,−2 g 1 0 0 6.55 g 1 0 0 6.56 g 1 0 0 6.57 g 1 0 0 6.61 g 2 2 2 6.63 g 1 if l6=0 0 if l6=0 0 if l6=0 6.65 3 if l=0 5 if l=0 6 if l=0 g 1 if p6=0 0 if p6=0 0 if p6=0 6.70 2 if p=0 3 if p=0 4 if p=0 g 1 0 0 6.71 g 1 1 1 6.76 g 1 1 2 6.78 g 1 if l6=0 1 if l6=0 2 if l6=0 6.83 3 if l=0 5 if l=0 6 if l=0 g 2 2 2 6.84 g 1 if µ6=0 or 1 if µν 6=0 2 µν 6=0 6.88 ν 6=0 3 if µ6=0 and ν =0 6 if µ6=0 and ν =0 5 if µ=0 and or if µ=0 and ν 6=0 or if µ=0 and ν 6=0 ν =0 9 if µ=0 and ν =0 10if µ=0 and ν =0 SIX DIMENSIONAL LIE ALGEBRAS 8 g b b b 1 2 3 g 1 if sν 6=0 1 if sν 6=0 2 if sν 6=0 6.89 2 if s6=0 3 if s6=0 and ν =0 or if s6=0 and ν =0 or ν 6=0 or if s=0 and ν 6=0 or if s=0 and ν 6=0 5 if ν =0 9 if s=0 and ν =0 10if s=0 and ν =0 and s=0 g 1 if ν 6=0 1 if ν 6=0 2 6.90 3 if ν =0 3 if ν =0 g 1 1 2 6.91 g 1 if µν 6=0 3 if µν 6=0 4 if µν 6=0 6.92 2 if µ6=0 5 if µ6=0and ν =0 6 if µ6=0 and ν =0 or if ν 6=0 or if µ=0 and ν 6=0 or if µ=0 and ν 6=0 5 if ν =0 9 if µ=0and ν =0 10if µ=0 and ν =0 and µ=0 g∗ 1 3 6 6.92 g 1 if ν 6=0 1 if ν 6=0 2 if ν 6=0 6.93 3 if ν =0 3 if ν =0 2 if ν =0 g 1 1 2 6.94 g 2 1 if a6=−2 or b6=−1 0 if a6=−2 or b6=−1 6.101 2 if a=−2 and b=−1 1 if a=−2 and b=−1 g 2 1 0 6.102 g 2 1 0 6.105 g 2 1 0 6.107 g 2 1 if a6=0 or b6=−1 0 if a6=0 or b6=−1 6.113 3 if a=0 and b=−1 2 if a=0 and b=−1 g 2 2 if a6=±2 2 if a6=±2 6.114 3 if a=±2 3 if a=±2 g 2 1 0 6.115 g 2 1 0 6.116 g 2 1 if b6=±1 0 if b6=±1 6.118 3 if b=±1 4 if b=±1 g 2 2 2 6.120 g 2 2 2 6.121 g 2 1 0 6.129 g 2 1 0 6.135 n 1 1 2 6.83 n 1 1 1 6.84 n 1 if b6=0 1 if b6=0 2 6.96 3 if b=0 3 if b=0 g ⊕R 2 1 if r6=−1 0 if r6=−1 5.7 3 if r=−1 and q6=−1 4 if r=−1 and q6=−1 5 if r=−1 and q=−1 8 if r=−1 and q=−1 g ⊕R 3 5 6 5.8 g ⊕R 2 if p6=0 1 if p6=0,−1 0 if p6=0,−1 5.9 3 if p=0 3 if p=0,−1 2 if p=0 4 if p=−1 g ⊕R 2 1 0 5.11 g ⊕R 2 1 if q6=0 0 if q6=0 5.13 3 if q=0 4 if q=0 g ⊕R 2 5 6 5.14 SIX DIMENSIONAL LIE ALGEBRAS 9 g b b b 1 2 3 g ⊕R 2 3 4 5.15 g ⊕R 2 1 0 5.16 g ⊕R 2 1 if p6=0 and r6=±1 0 if p6=0 and r6=±1 5.17 3 if p=0 and r6=±1 4 if p=0 and r6=±1 or if p6=0 and r=±1 or if p6=0 and r=±1 5 if p=0 and r=±1 8 if p=0 and r=±1 g ⊕R 2 3 4 5.18 g ⊕R 2 if p6=0 1 if p6=0,−1,−2 0 if p6=0,−1,−2 5.19 2 2 3 if p=0 3 if p=0,−1,−2 2 if p=0 2 4 if p=−1,−2 2 g ⊕R 3 3 3 5.20 g ⊕R 2 1 0 5.23 g ⊕R 2 1 0 5.25 g ⊕R 3 3 2 5.26 g ⊕R 2 1 0 5.28 g ⊕R 2 1 0 5.30 g ⊕R 3 3 2 5.33 g ⊕R 3 3 1 5.35 g ⊕2R 3 3 2 4.2 g ⊕2R 3 3 2 4.5 g ⊕2R 3 3 2 4.6 g ⊕2R 3 3 2 4.8 g ⊕2R 3 3 2 4.9 g ⊕3R 4 7 8 3.4 g ⊕3R 4 7 8 3.5 g ⊕g 3 5 6 3.1 3.4 g ⊕g 3 5 6 3.1 3.5 g ⊕g 2 3 4 3.4 3.4 g ⊕g 2 3 4 3.4 3.5 g ⊕g 2 3 4 3.5 3.5 3. Hard Lefschetz property of 6 dimensional unimodular non-nilpotent solvmanifolds L.S. Tseng and S.T. Yau introduced some classes of finite dimensional coho- mologies for symplectic manifolds [18]. These cohomology classes depend on the symplectic formand are in generaldistinct from the de Rham cohomology,so that they provide new symplectic invariants. As shown in [18] (cf. also Proposition 3 below), these new invariants actually agree with the de Rham cohomology if and only if the Hard Lefschetz property holds. In this Section we discuss these cohomological invariants, proving that they can be computed using invariant forms, provided this is the case for the Rham cohomology (see Theorem 3). This result will allow us to go through the list of symplecticstructuresonsolvableLiealgebras(Table3),toseewhichsolvmanifolds satisfy the Hard Lefschetz property (Theorem 4). SIX DIMENSIONAL LIE ALGEBRAS 10 Let (M,ω) be a symplectic manifold of dimension 2n, one defines the Lefschetz operator L:Ωk(M)→Ωk+2(M) η 7→η∧ω its dual operator Λ : Ωk(M) → Ωk−2(M), and the symplectic star operator ∗ :Ωk(M)→Ω2n−k(M), such that for any γ,β ∈Ωk(M), s γ∧∗ β :=(ω−1)k(γ,β)dvol. s Remark 2. (see [18]) (1) ∗ ∗ =1. s s (2) Using coordinates (x ,..,x ) on M the above operatorsare defined in the 1 2n following way: 1 Λ(η):= (ω−1)iji i η 2 ∂xi ∂xj where i is the interior product, 1 ωn γ∧∗sβ := k!(ω−1)i1j1(ω−1)i2j2...(ω−1)ikjkγi1i2...ikβj1j2...jk n!. Using Λ one can construct two other differential operators: d∧ :=(−1)k+1∗ d∗ =dΛ−Λd and dd∧ s s with which one can define the following cohomologies kerdΛ∩Ωk(M) Hk (M):= dΛ imdΛ∩Ωk(M) ker(d+dΛ)∩Ωk(M) Hk (M):= d+dΛ imddΛ∩Ωk(M) kerddΛ∩Ωk(M) Hk (M):= ddΛ imd∩Ωk(M)+imdΛ∩Ωk(M) ker(d+dΛ)∩Ωk(M) Hk (M):=Hk∩Hk =Hk ∩Hk = d∩dΛ d dΛ d+dΛ ddΛ imd∩Ωk(M)+imdΛ∩Ωk(M) 0 0 where Ωk(M) is kerddΛ∩Ωk(M). 0 We refer to [18] for details and for the following propositions Proposition2. (Tseng-Yau)Theoperator∗ givesanisomorphismbetweenHk(M) s d and H2n−k and between Hk (M) and H2n−k. dΛ d+dΛ ddΛ Proposition 3. (Tseng-Yau) On a compact symplectic manifold (M,ω) the fol- lowing properties are equivalent: • the Hard Lefschetz property holds. • the canonical homomorphism Hk (M)→Hk(M) is an isomorphism for d+dΛ d all k. • the canonical homomorphism Hk (M) →Hk (M) is an isomorphism d∩dΛ d+dΛ for all k. WeareinterestedintheLiegroupsassociatedtothesixdimensionalunimodular solvablenon-nilpotentLiealgebraswhichadmitalatticeandforwhichthedeRham cohomologycanbecomputedbyinvariantforms,e.g.,theyarecompletelysolvable. Indeed the following theorem holds:

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.