Cohesive Zone Modelling in Adhesively Bonded Joints Analysis on crack propagation in adhe- sives and adherends D.C. Noorman t f el D f o y t si r e v ni U al c ni h c e T C Z M OHESIVE ONE ODELLING IN A B J DHESIVELY ONDED OINTS ANALYSIS ON CRACK PROPAGATION IN ADHESIVES AND ADHERENDS by D.C.Noorman inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience inMechanicalEngineering attheDelftUniversityofTechnology, tobedefendedinSeptember,2014. Studentnumber: 1309153 Supervisor: Dr.M.Calomfirescu, AirbusDefenceandSpace Prof.dr.ir.A.vanKeulen, TUDelft Thesiscommittee: Prof.dr.ir.A. vanKeulen, TUDelft Ir.A. vanBeek, TUDelft Ir.C. Ayas, TUDelft Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. P REFACE ThisMaster’sthesisisforthoseinterestedinthestructuralmechanicsandfiniteelementanalysisofcom- positelaminatedbondedjoints.Cracks,ordamagegrowth,withintheadhesivesandadherendsareanalysed usingatechniquecalledcohesivezonemodelling.Thisthesisassumesthatthereaderpossessesabasicun- derstandingofstructuralmechanics,finiteelementanalysesandlaminatedcompositesbeforehand,asthe contentsofthisthesisexpandsonthesetopics. ThethesiswaswrittenasthefinalexaminationofthetrackSolidandFluidMechanics,intheMasterofSci- enceprogrammeofMechanicalEngineeringattheTechnicalUniversityofDelft. Thethesiswasperformed and writtenwithinandfor the departmentof Air Systems ofCassidian, whichisnow Airbus Defence and Space(Manching,Germany). Duringthethesis,Iwassupportedbynumerouspeople. Iwouldpersonallyliketothankmysupervisorat Airbus Defence and Space, Mircea Calomfirescu, who granted me this thesis and guided me throughout. Also,IwouldliketothankthedepartmentofAirSystemsfortheirfinancialsupportandtheknowledgethey sharedwithme. IalsowishtothankProf. Dr. Ir. FredvanKeulenforbeingmysupervisorontheuniversity andacceptingthisthesisasthefinalexaminationofmyMaster’sprogramme,togetherwithAntonvanBeek andCanAyas.Andfinally,Iwouldliketothankmyparents,brothers,sisterandfriendswhohavesupported methroughoutmythesis. D.C.Noorman Leiden,8thofAugust,2014 iii A BSTRACT Laminated composites is a material that is rapidly being adapted in the aircraft industry and new joining techniquesarebeingresearchedfornewstructuraldesigns.Onesuchtechniqueisadhesivebonding,which canresultindecreasedweight,fuelsavingandimprovedstrengthofaircraftcomponents. Robuststrength andfailureanalysismethodsarerequiredtoassessnewdesignsbeforehand. Oneofthesemethodsisco- hesivezonemodelling. Cohesivezonemodellingisatechniquebasedoncohesiveforcesandenergywithin amaterialorinterfaceregionwhichkeepsmaterialtogether. Damagecanbetrackedprogressivelyalonga regionwithcohesiveelementsanddamagepropagationcanbemonitoredinastructure. Thisthesiswork reliesoncohesivezonemodellingtomonitordamagepropagationofthebondlineandinbetweenpliesof simplebondedjoints,togetherwithprogressivefailurecriteriatoassessanyfailurewithinthepliesofajoint. AcompositeCrackedLapShear(CLS)specimenwastestedwithresultsofapossiblecrackjumpfrom bondlinetoadherend. Theobjectiveofthisthesiswastoassessandrecreatedamagepropagationandthe possibilityofajumpofdamagegrowthfrombondlinetoadherendintheCLSspecimen.Thiswasdonebyus- ingcohesivezonemodellingandprogressivefailurecriteriawiththefiniteelementpackageMSC.Mentatand itssolverMSC.Marc. Avalidationwithanothertestreportonmixed-modebendingandinterlaminarfailure wasperformedusingacohesivezonemodelwiththesettingsMSC.Marchastooffer. Thiswieldedaccurate resultsintermsofloadinganddamage. Withtheaidofthisvalidation,theoptionswithinthecohesivezone modelwhichhadthebestresultsinthevalidationwereusedforsimulationsoftheCLSspecimen. Cohesive zoneelementsrepresentingthebondlineandtheadhesivewithinthelaminateadherendsintheCLSmodel areusedtoassesscohesiveandinterlaminarfailure,whileprogressivefailurecriteriaareusedtoassessin- tralaminarfailure.Theresultsofthecurrentsimulationsetupswereunsatisfyingasthefailureloadandstrain resultshadlargeerrors.Furtherdetailedanalyseswillbeneededtorecreatethemultiplefailuremodesinthe CLSspecimeninMSC.Marcwithacceptableresults.Ontheotherhand,thethesishasproventhatMSC.Marc anditsowncohesivezonemodelperformwellenoughformixed-modebendingandinterlaminarfailurein simplegeometries. v L F IST OF IGURES 1.1 Buildingblockapproachintheaircraftindustry.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Overviewofcommonbondedjoints.TakenfromESA[1],Zwinderman[2]. . . . . . . . . . . . . . 5 2.2 Astressdistributioncurveusinganalyticalmethodsfordifferentoverlaplengthsinasinglelap joint.Stresspeaksattheendsdecreasethelongertheoverlaplengthbecomes.TakenfromKelly [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Differenttypesoftaperedendstoreducestresspeaks.TakenfromGleichetal.[4]. . . . . . . . . 6 2.4 Generalised depictions of stress peaks at adhesive and adherend interfaces at the joint end, denotedbystrengthpresence.TakenfromdaSilvaandCampilho[5]. . . . . . . . . . . . . . . . . 7 2.5 Tapersandroundingsatjointendsandtheirinfluencesonstresspeaksanddistribution.Smaller angledtapersresultinlowerstressesthroughoutthejointandlargerroundingsresultinamore spreadoutstressdistributionatthejointends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.6 Correct and incorrect designs of composite bonded joints with optimal fibre orientation de- pendingondifferentshearandtensileloads.TakenfromESA[1]. . . . . . . . . . . . . . . . . . . 8 2.7 Cohesivefailuremodesinbondedjoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.8 Adhesivefailuremodesinbondedjoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 Adherendfailuremodesinbondedjoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 Overviewoffailuremodeswithincompositematerial. Fractureresistancedenotion(R),fibre failure(FF)orinterfibrefailure(IFF),normalfracture(NF)orshearfracture(SF),tension(t) orcompression(c)andparallel(∥)orperpendicular(⊥)loadingtofibres. SeeTable2.3fora tabularoverview.TakenfromCuntze[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 Stresssingularitiesatcracktipsandmaterialinterfaces.TakenfromdaSilvaandCampilho[5]. . 12 2.12 ContouroftheJ-integralaroundacracktip.Thecontourenclosesthecracktipwhereplasticity occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.13 Depictionofthevirtualcrackclosuretechnique. Leftfiguredepictsaglobalsystemwhilethe rightfigureshowsthelocalsystemwherethevirtualworktakesplace.TakenfromKrueger[7]. . 14 2.14 3D coordinate system (x ,x ,x ) of UD composite element, with fibre direction x , laminate 1 2 3 1 mid-surfacex andthicknessdirectionx .Rotationfailureplaneangleθ resultsincoordinate 2 3 fp system(x ,x ,x ),withfibredirectionx ,normaldirectiontofailureplanex andtangential 1 n t 1 n directiontofailureplane x . Normalstressesσ arenotedasσ andshearstressσ asτ . t ii i ij ij TakenfromPuckandSchürmann[8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.15 FractureenvelopeforPuck’smatrixfailuremodesA,BandC,depictingthedifferentfracture resistancesandpositionsofthefailuremodesonthestresscoordinatesystem.TakenfromPuck andSchürmann[8].. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.16 Angleθ representationinPuck’scriterioninMSC.Marc. . . . . . . . . . . . . . . . . . . . . . . . 24 fp 3.1 Simpleillustrationsofacohesivezoneelementresemblingasimplifiedspring-damperconfig- urationandthedeformationofacohesivezoneelement. TakenfromKregting[9]andBosch etal.[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Positionofrelativedisplacementbetweenopposingpointpairsofaloadedbondedjointinthe tractionlaw. Exampleofabondedjointsincontinuumapproach. TakenfromKhoramishad etal.[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Reversibleandirreversiblebehaviourandtheeffectofelasticandplasticloadingandreloading. 29 3.4 Anexampleofabilineartractionlaw.CodefoundinAppendixD. . . . . . . . . . . . . . . . . . . 31 3.5 Anexampleofatrapezoidaltractionlaw.CodefoundinAppendixD. . . . . . . . . . . . . . . . . 31 3.6 Anexampleofanexponentialtractionlaw.CodefoundinAppendixD. . . . . . . . . . . . . . . . 32 3.7 A3Dcohesivezoneelementinareferenceandlocalcoordinatesystem. . . . . . . . . . . . . . . 33 3.8 Thethreedifferentfracturemodes:tensile(ModeI),shear(ModeII)andtear(ModeIII). . . . . 34 vii viii LISTOFFIGURES 3.9 3D view of a mixed-mode exponential traction law based on Ye’s criterion. Any moment in mixed-modeloadingcanbetracedtoapointonthesurfaceofthe3Dgraph. Codefoundin AppendixD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.10 Influenceofmaximumtractionandcriticalenergyreleaserate.. . . . . . . . . . . . . . . . . . . . 36 3.11 3Dinterfaceelementwithareferencesystembasedonanintegrationpoint. TakenfromMarc 2010VolumeA:TheoryandUserInformation[12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.12 MSC.Marc’sthreebuilt-intractionlaws:Bilinear(left),exponential(middle),linear-exponential (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.13 ExampleofMSC.Marc’sbuiltinmixed-modecalculationbetweenpureModesIandIIforan exponentialtractionlaw.CodefoundinAppendixD. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.14 3Dviewofamixed-modeexponentialtractionlawbasedonMSC.Marc’salgorithm. Therela- tionsβ andβ arehighlightedasredarrowstodistinguishtheirinfluenceinthemixed-mode 1 2 surfacegraph.CodefoundinAppendixD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1 MMBtestsetups.TakenfromTuronetal.[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 SimplifiedmodelofMMBspecimenwithlengthx,widthy,totalthickness2z,adhesiveregion aandinitialcrackregiona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0 4.3 Graphicaloverviewofnumericalandexperimentalresultsofallfivesetups. TakenfromTuron etal.[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 MSC.Marcmodelofthe0%fracturemode,orDCB,setup. . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 MSC.Marcmodelofthe50%fracturemodesetup. Leverlengthc differsfor20%and80%frac- turemoderatios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.6 MSC.Marcmodelofthe100%fracturemode,orENF,setup. . . . . . . . . . . . . . . . . . . . . . . 48 4.7 MSC.Marcmodelofthe0%fracturemode,orDCB,setup. . . . . . . . . . . . . . . . . . . . . . . . 50 4.8 MSC.Marcmodelofthe50%fracturemodesetup. Leverlengthc differsfor20%and80%frac- turemoderatios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.9 MSC.Marcmodelofthe100%fracturemode,orENF,setup. . . . . . . . . . . . . . . . . . . . . . . 52 4.10 DamagelevelsinfirstCZEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.11 DamageandtractioninaCZE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 SimpledrawingofCLSspecimen,withstrap(1),bondlines(2),lap(3),foot(4),clamps(5),strain gauges(6)andtrigger(7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Reallifespecimenwithstraingauges(orange),bottomview. Footislocatedontheright,and twoofthethreestraingaugescanbeseen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Tractionlawsofthecohesivepropertiesoftheadhesives. Notethatthelaminateadhesiveis strongerinbothmodesthanthebondlineadhesive. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4 SimplifieddrawingofCLSspecimenwithstraingauges:straptopgauge(1),strapbottomgauge (2)andlapgauge(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.5 Real life CLS experiment results, retrieved with data from the strain gauges and the loading mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.6 ModelviewsoftheCLSspecimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7 ViewofstrapwithreducedelementsizetohighlighttheCZE(blue)betweenthepliesandbulk region(purple)inthestrapadherend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.8 Close-upsideviewofconstraintsonbothends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.9 Viewoftriggerrestingonlap.Strapismadeinvisible.Notethatthetriggersymbolisestheinitial crackregiona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 0 5.10 Strain-LoadresultsofPuckmodel.Thedropinstrainofthelapgaugeindicatesthefailureload. 69 A.1 ContactTablePropertiesfor2Dand3Dmodels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.2 Rigidleverasinthe50%moderatiosimulations.Greycircle(1)isthenodewithdisplacement. Bluecircles(2)arenodesthataretied.Greencircles(3)arenodesthatshareDOF.Theredlines onthemodelarenodesthataretiedbyDOFtothemiddlenodes. . . . . . . . . . . . . . . . . . . 79 A.3 3Dmodelsindeformedshape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A.4 Resultsofthe0%fracturemodesetupfor2Dsimulations1through8withvaryingcohesivezone modelsettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A.5 Resultsofthe0%fracturemodesetupfor2Dsimulations1through14. . . . . . . . . . . . . . . . 82
Description: