Vol. 14 Since its fi rst experimental demonstration in 1999, Coherent X-Ray Diffractive Göttingen Series in Imaging has become one of the most promising high resolution X-Ray imaging techniques using coherent radiation produced by brilliant synchrotron storage X-ray Physics rings. The ability to directly invert diffraction data with the help of advanced algo- rithms has paved the way for microscopic investigations and wave-fi eld analyses on the spatial scale of nanometres without the need for ineffi cient imaging lenses. X-Ray phase contrast which is a measure of the electron density is an important contrast mode of soft biological specimens. For the case of many dominant ele- ments of soft biological matter, the electron density can be converted into an Robin Niklas Wilke effective mass density offering a unique quantitative information channel which Coherent X-ray diffractive imaging may shed light on important questions such as DNA compaction in the bacterial nucleoid through ‚weighing with light‘. on the single-cell-level of microbial samples In this work X-Ray phase contrast maps have been obtained from different bio- logical samples by exploring different methods. In particular, the techniques Pty- chography and Waveguide-Holographic-Imaging have been used to obtain two- Ptychography, tomography, nano-diffraction and dimensional and three-dimensional mass density maps on the single-cell-level of waveguide-imaging freeze-dried cells of the bacteria Deinococcus radiodurans, Bacillus subtilis and Bacillus thuringiensis allowing, for instance, to estimate the dry weight of the bacterial genome in a near native state. On top of this, reciprocal space informa- g tion from coherent small angle X-Ray scattering (cellular Nano-Diffraction) of the n gi fi ne structure of the bacterial cells has been recorded in a synergistic manner and a m has been analysed down to a resolution of about 2.3/nm exceeding current limits of -i of direct imaging approaches. Furthermore, the dynamic range of present detector el de tfaercfih enlodl odgifyf rbacetiinogn odnaeta o hfa tsh bee mena jsoigr nliimfi ciatinntgly fiancctroerass eodf .p Otyvcehrcoogmraipnhgi cth pish pasroinbgle omf ell-levavegui for the case of the very intense X-Ray beam produced by Kirkpatrick-Baez mirrors cw has been explored by using semi-transparent central stops. gle-nd na sin n the ractio g odiff n- gino mana e iy, vh ctiap ar rg diffmo nt X-ray raphy, to eg oherycho e Cs: pt ke Wilpl n Niklas obial sam bicr Romi ISBN 978-3-86395-190-0 Universitätsverlag Göttingen Universitätsverlag Göttingen ISSN 2191-9860N: Robin Niklas Wilke Coherent X-ray diffractive imaging on the single-cell-level of microbial samples: ptychography, tomography, nano-diffraction and waveguide-imaging This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Published in 2015 by Universitätsverlag Göttingen as volume 14 in the series „Göttingen series in X-ray physics“ Robin Niklas Wilke Coherent X-ray diffractive imaging on the single-cell-level of microbial samples: ptychography, tomography, nano-diffraction and waveguide-imaging Göttingen series in X-ray physics Volume 14 Universitätsverlag Göttingen 2015 Bibliographische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. This work has been financially supported by the DFG Collaborative Research Center SFB 755 “Nanoscale Photonic Imaging” Address of the Author Dr. Robin Niklas Wilke e-mail: [email protected] Dissertation for the award of the degree “Doctor rerum naturalium” of the Georg-August-Universität Göttingen within the doctoral program PROPHYS of the Georg-August University School of Science (GAUSS) Thesis Committee: Prof. Dr. Tim Salditt Prof. Dr. Claus Ropers This work is protected by German Intellectual Property Right Law. It is also available as an Open Access version through the publisher’s homepage and the Online Catalogue of the State and University Library of Goettingen (http://www.sub.uni-goettingen.de). The conditions of the license terms of the online version apply. Layout: Dr. Robin Niklas Wilke Cover: Jutta Pabst Cover image: Dr. Robin Niklas Wilke © 2015 Universitätsverlag Göttingen http://univerlag.uni-goettingen.de ISBN: 978-3-86395-190-0 ISSN: 2191-9860 Preface of the series editor s The Göttingen series in x-ray physics is intended as a collection of research monographs in x-ray science, carried out at the Institute for X-ray Physics at the Georg-August-Universität in Göttingen, and in the framework of its related research networks and collaborations. It covers topics ranging from x-ray microscopy, nano-focusing, wave propagation, image reconstruction, tomography, short x-ray pulses to applications of nanoscale x- ray imaging and biomolecular structure analysis. In most but not all cases, the contributions are based on Ph.D. dissertations. The individual monographs should be enhanced by putting them in the context of related work, often based on a common long term research strategy, and funded by the same research networks. We hope that the series will also help to enhance the visibility of the research carried out here and help others in the field to advance similar projects. Prof. Dr. Sarah Köster Prof. Dr. Tim Salditt Editors Göttingen June 2014 Contents Nomenclature v Introduction 1 Theory 7 1.1 Scalar Wave-Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Propagation of Scalar Wave-Fields . . . . . . . . . . . . . . 7 1.1.2 Remarks on the Numerical Propagation of Scalar Wave-Fields 12 1.1.3 Partial Coherence . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 X-Rays in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.1 Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.2 The Projection Approximation . . . . . . . . . . . . . . . . 24 1.2.3 Dose vs. Resolution . . . . . . . . . . . . . . . . . . . . . . 30 1.3 Imaging with X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.2 The Phase Problem . . . . . . . . . . . . . . . . . . . . . . 35 1.3.3 Coherent Di(cid:27)ractive Imaging . . . . . . . . . . . . . . . . . 36 1.3.4 Sampling in CDI . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.5 Phase Retrieval Algorithms for Isolated Objects . . . . . . 39 1.3.6 Ptychography . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.3.7 The ePIE algorithm . . . . . . . . . . . . . . . . . . . . . . 41 1.3.8 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.3.9 The Fourier Slice Theorem . . . . . . . . . . . . . . . . . . 43 1.3.10 Filtered Back Projection Algorithm . . . . . . . . . . . . . 43 Bacterial Samples 47 2.1 Deinococcus radiodurans . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 Bacillus subtilis & Bacillus thuringiensis . . . . . . . . . . . . . . . 51 2.3 Sample Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.1 Cell Culture of D. radiodurans . . . . . . . . . . . . . . . . 55 2.3.2 Cell Culture of B. subtilis & B. thuringiensis . . . . . . . . 57 2.3.3 PreparationofUltra-thinSectionsforTransmissionElectron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3.4 Vitri(cid:28)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.5 Lyophilisation. . . . . . . . . . . . . . . . . . . . . . . . . . 63 Experiments 69 3.1 Ptychographic Imaging and Nano-Di(cid:27)raction of D. radiodurans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . 71 3.1.3 Details and Terminology: Cellular Nano-Di(cid:27)raction . . . . 71 3.1.4 Results: Cellular Nano-Di(cid:27)raction . . . . . . . . . . . . . . 72 3.1.5 Details and Theory: Ptychographic Imaging . . . . . . . . . 79 ii Contents 3.1.6 Details: Tomographic Reconstruction . . . . . . . . . . . . 82 3.1.7 Results: PtychographicImagingoftheResolutionChartand Wave-Field Analysis . . . . . . . . . . . . . . . . . . . . . . 83 3.1.8 Resolution vs. Coherence . . . . . . . . . . . . . . . . . . . 94 3.1.9 Results: Ptychographic Imaging Towards a 3D Representa- tion of D. radiodurans Cells . . . . . . . . . . . . . . . . . . 97 3.1.10 Results: Tomo-Ptychographic Imaging of D. radiodurans cells100 3.1.11 Results: TEM Analysis of D. radiodurans . . . . . . . . . . 103 3.1.12 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . 107 3.2 Scanning Hard X-ray Microscopy Imaging Modalities for Geobio- logical Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.2.1 Sample Origin & Sample Preparations . . . . . . . . . . . . 111 3.2.2 Details: Scanning X-Ray Fluorescence and Scanning Transmission X-Ray Experiments . . . . . . . . . . . . . . . 111 3.2.3 Details: ScanningTransmissionX-RayandX-RayPtychog- raphy Experiment . . . . . . . . . . . . . . . . . . . . . . . 113 3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2.5 Details & Results: SEM-EDX Analysis. . . . . . . . . . . . 126 3.2.6 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . 129 3.3 STCS in High-Resolution X-Ray Ptychography Using KB Focusing 132 3.3.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . 133 3.3.2 Details: Analysis . . . . . . . . . . . . . . . . . . . . . . . . 136 3.3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . 138 3.3.4 Summary & Conclusion . . . . . . . . . . . . . . . . . . . . 142 3.4 An STCS Application in High-Resolution X-Ray Ptychography . . 144 3.4.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . 145 3.4.2 Details: STCS Preparations . . . . . . . . . . . . . . . . . . 147 3.4.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3.4.4 Details: Data Recording & Data Treatment . . . . . . . . . 148 3.4.5 Results: Ptychographic Reconstruction of KB Wave-Fields 149 3.4.6 Results: Ptychographic Imaging of Nanowires . . . . . . . . 153 3.4.7 Discussion, Conclusion & Outlook . . . . . . . . . . . . . . 155 3.5 Waveguide-Based Imaging of B. thuringiensis and B. subtilis . . . 161 3.5.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . 161 3.5.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . 162 3.5.3 Details: Theory, Data Recording & Data Treatment . . . . 164 3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 3.5.5 Conclusion, Discussion & Outlook . . . . . . . . . . . . . . 185 4 Summary, Conclusion & Outlook 187 A Fourier Transform Terminology 191 B Culture Media 192
Description: