ebook img

Coherence. In Signal Processing and Machine Learning PDF

495 Pages·2022·5.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coherence. In Signal Processing and Machine Learning

David Ramírez Ignacio Santamaría Louis Scharf Coherence In Signal Processing and Machine Learning Coherence David Ramírez • Ignacio Santamaría (cid:129) Louis Scharf Coherence In Signal Processing and Machine Learning DavidRamírez IgnacioSantamaría UniversidadCarlosIIIdeMadrid UniversidaddeCantabria Madrid,Spain Santander,Spain LouisScharf ColoradoStateUniversity FortCollins,CO,USA ISBN978-3-031-13330-5 ISBN978-3-031-13331-2 (eBook) https://doi.org/10.1007/978-3-031-13331-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToAnaBelén,Carmen,andMerche DavidRamírez ToIsabel,Cristina,Inés,andIgnacio IgnacioSantamaría Tothenextgeneration LouisScharf Preface This book is directed to graduate students, practitioners, and researchers in signal processingandmachinelearning.Abasicunderstandingoflinearalgebraandprob- abilityisassumed.Thisbackgroundiscomplementedinthebookwithappendices onmatrixalgebra,(complex)multivariatenormaltheory,andrelateddistributions. The book begins in Chap.1 with a breezy account of coherence as it has com- monly appeared in science, engineering, signal processing, and machine learning. Chapter 2isacomprehensive account of classicalleastsquares theory,withafew originalvariationsoncross-validationandmodel-orderdetermination.Compression of ambient space dimension is analyzed by comparing multidimensional scaling andarandomizedsearchalgorithminspiredbytheJohnson-Lindenstrausslemma. But the central aim of the book is to analyze coherence in its many guises, beginningwiththecorrelationcoefficientanditsmultivariateextensionsinChap.3. Chapters 4–8 contain a wealth of results on maximum likelihood theory in the complexmultivariatenormalmodelforestimatingparametersanddetectingsignals in first- and second-order statistical models. Chapters 5 and 6 are addressed to matched and adaptive subspace detectors. Particular attention is paid to the geometries,invariances,andnulldistributionsofthesesubspacedetectors.Chapters 7and8extendtheseresultstodetectionofsignalsthatarecommontotwoormore channels, and to detection of spatial correlation and cyclostationarity. Coherence playsacentralroleinthesechapters. Chapter9addressessubspaceaveraging,anemergingtopicofinterestinsignal processing and machine learning. The motivation is to identify subspace models (or centroids) for measurements so that images may be classified or noncoherent communication signals may be decoded. The dimension of the average or central subspace can also be estimated efficiently and applied to source enumeration in array processing. In Chap.10, classical quadratic performance bounds on the accuracyofparameterestimatorsarecomplementedwithanaccountofinformation geometry. The motivation is to harmonize performance bounds for parameter estimators with the corresponding geometry of the underlying manifold of log- likelihood random variables. Chapter 11 concludes the book with an account of other problems and methods in signal processing and machine learning where coherenceisanorganizingprinciple. This book is more research monograph than textbook. However, many of its chapters would serve as complementary resource materials in a graduate-level vii viii Preface courseonsignalprocessing,machinelearning,orstatistics.Theappendicescontain comprehensive accounts of matrix algebra and distribution theory, topics that join optimization theory to form the mathematical foundations of signal processing and machine learning. Chapters 2–4 would complement textbooks on multivariate analysisbycoveringleastsquares,linearminimummean-squarederrorestimation, and hypothesis testing of covariance structure in the complex multivariate normal model.Chapters5–8containanaccountofmatchedandadaptivesubspacedetectors that would complement a course on detection and estimation, multisensor array processing, and related topics. Chapters 9–11 would serve as resource materials inacourseonadvancedtopicsinsignalprocessingandmachinelearning. Itwouldbe futiletoattempt anacknowledgment toallof our students,friends, and colleagues who have influenced our thinking and guided our educations. But several merit mention for their contribution of important ideas to this book: YuriAbramovich,PiaAbbaddo,JavierÁlvarez-Vizoso,AntonioArtés-Rodríguez, Mahmood Azimi-Sadjadi, Carlos Beltrán, Olivier Besson, Pascal Bondon, Ron Butler, Margaret Cheney, Yuejie Chi, Edwin Chong, Doug Cochran, Henry Cox, Víctor Elvira, Yossi Francos, Ben Friedlander, Antonio García Marqués, Scott Goldstein,ClaudeGueguen,AlfredHanssen,StephenHoward,JesúsIbáñez,Steven Kay, Michael Kirby, Nick Klausner, Shawn Kraut, Ramdas Kumaresan, Roberto López-Valcarce,MikeMcCloud,ToddMcWhorter,BillMoran,TomMullis,Danilo Orlando, Pooria Pakrooh, Daniel P. Palomar, Jesús Pérez-Arriaga, Chris Peterson, AliPezeshki,BernardPicinbono,JoséPríncipe,GiuseppeRicci,ChristRichmond, Peter Schreier, Santiago Segarra, Songsri Sirianunpiboon, Steven Smith, John Thomas, Rick Vaccaro, Steven Van Vaerenbergh, Gonzalo Vázquez-Vilar, Javier Vía, Haonan Wang, and Yuan Wang. Javier Álvarez-Vizoso, Barry Van Veen, Ron Butler,andStephenHowardwerekindenoughtoreviewchaptersandofferhelpful suggestions. David Ramírez wishes to acknowledge the generous support received from the Agencia Española de investigación (AEI), the Deutsche Forschungsgemeinschaft (DFG),theComunidaddeMadrid(CAM),andtheOfficeofNavalResearch(ONR) Global. Ignacio Santamaría gratefully acknowledges the various agencies that have funded his research over the years, in particular, the Agencia Española de inves- tigación (AEI) and the funding received in different projects of the Plan Nacional deI+D+IoftheSpanishgovernment. LouisScharfacknowledges,withgratitude,generousresearchsupportfromthe USNationalScienceFoundation(NSF),OfficeofNavalResearch(ONR),AirForce Office of Scientific Research (AFOSR), and Defense Advanced Research Projects Agency(DARPA). Madrid,Spain DavidRamírez Santander,Spain IgnacioSantamaría FortCollins,CO,USA LouisScharf December2021 Contents 1 Introduction................................................................. 1 1.1 TheCohererofHertz,Branly,andLodge .......................... 2 1.2 Interference,Coherence,andtheVanCittert-ZernikeStory....... 2 1.3 HanburyBrown-TwissEffect ....................................... 4 1.4 ToneWobbleandCoherenceforTuning ........................... 6 1.5 BeampatternsandDiffractionofElectromagneticRadiation byaSlit............................................................... 7 1.6 LIGOandtheDetectionofEinstein’sGravitationalWaves ....... 9 1.7 CoherenceandtheHeisenbergUncertaintyRelations............. 10 1.8 Coherence,Ambiguity,andtheMoyalIdentities .................. 13 1.9 Coherence,Correlation,andMatchedFiltering.................... 13 1.10 CoherenceandMatchedSubspaceDetectors....................... 18 1.11 WhatQualifiesasaCoherence?..................................... 21 1.12 WhyComplex? ...................................................... 21 1.13 WhatistheRoleofGeometry? ..................................... 24 1.14 MotivatingProblems................................................. 24 1.15 APreviewoftheBook .............................................. 26 1.16 ChapterNotes........................................................ 30 2 LeastSquaresandRelated ................................................ 33 2.1 TheLinearModel.................................................... 35 2.2 Over-DeterminedLeastSquaresandRelated ...................... 37 2.2.1 LinearPrediction .......................................... 40 2.2.2 OrderDetermination....................................... 41 2.2.3 Cross-Validation........................................... 43 2.2.4 WeightedLeastSquares................................... 44 2.2.5 ConstrainedLeastSquares ................................ 45 2.2.6 ObliqueLeastSquares..................................... 46 2.2.7 TheBLUE(orMVUBorMVDR)Estimator ............ 48 2.2.8 SequentialLeastSquares.................................. 50 2.2.9 TotalLeastSquares........................................ 51 2.2.10 Least Squares and Procrustes Problems for ChannelIdentification..................................... 54 2.2.11 LeastSquaresModalAnalysis............................ 55 ix x Contents 2.3 Under-determinedLeastSquaresandRelated...................... 56 2.3.1 Minimum-NormSolution ................................. 56 2.3.2 SparseSolutions ........................................... 57 2.3.3 MaximumEntropySolution............................... 61 2.3.4 MinimumMean-SquaredErrorSolution................. 63 2.4 MultidimensionalScaling ........................................... 63 2.5 TheJohnson-LindenstraussLemma ................................ 68 2.6 ChapterNotes........................................................ 75 Appendices................................................................... 76 2.A CompletingtheSquareinHermitianQuadraticForms ............ 76 2.A.1 GeneralizingtoMultipleMeasurementsandOther CostFunctions............................................. 76 2.A.2 LMMSEEstimation ....................................... 77 3 Coherence,ClassicalCorrelations,andtheirInvariances ............. 79 3.1 CoherenceBetweenaRandomVariableandaRandomVector... 80 3.2 CoherenceBetweenTwoRandomVectors......................... 86 3.2.1 RelationshipwithCanonicalCorrelations................ 87 3.2.2 TheCirculantCase ........................................ 88 3.2.3 RelationshipwithPrincipalAngles....................... 88 3.2.4 DistributionofEstimatedSignal-to-NoiseRatioin AdaptiveMatchedFiltering............................... 90 3.3 CoherenceBetweenTwoTimeSeries .............................. 91 3.4 Multi-ChannelCoherence........................................... 94 3.5 PrincipalComponentAnalysis...................................... 95 3.6 Two-ChannelCorrelation............................................ 98 3.7 MultistageLMMSEFilter........................................... 106 3.8 ApplicationtoBeamformingandSpectrumAnalysis.............. 110 3.8.1 TheGeneralizedSidelobeCanceller ..................... 111 3.8.2 CompositeCovarianceMatrix ............................ 111 3.8.3 Distributions of the Conventional and Capon Beamformers............................................... 113 3.9 Canonicalcorrelationanalysis ...................................... 115 3.9.1 CanonicalCoordinates .................................... 116 3.9.2 DimensionReductionBasedonCanonicaland Half-CanonicalCoordinates............................... 117 3.10 PartialCorrelation ................................................... 118 3.10.1 RegressingTwoRandomVectorsontoOne.............. 119 3.10.2 RegressingOneRandomVectorontoTwo............... 121 3.11 ChapterNotes........................................................ 123 4 CoherenceandClassicalTestsintheMultivariateNormal Model ........................................................................ 125 4.1 HowLimitingIstheMultivariateNormalModel?................. 125 4.2 LikelihoodintheMVNModel...................................... 126 4.2.1 Sufficiency ................................................. 127 4.2.2 Likelihood.................................................. 127 Contents xi 4.3 HypothesisTesting................................................... 130 4.4 InvarianceinHypothesisTesting.................................... 132 4.5 TestingforSphericityofRandomVariables........................ 134 4.5.1 SphericityTest:ItsInvariancesandNullDistribution ... 134 4.5.2 Extensions.................................................. 136 4.6 Testingforsphericityofrandomvectors ........................... 138 4.7 TestingforHomogeneityofCovarianceMatrices.................. 139 4.8 TestingforIndependence............................................ 141 4.8.1 TestingforIndependenceofRandomVariables.......... 141 4.8.2 TestingforIndependenceofRandomVectors............ 143 4.9 Cross-ValidationofaCovarianceModel ........................... 145 4.10 ChapterNotes........................................................ 147 5 MatchedSubspaceDetectors.............................................. 149 5.1 SignalandNoiseModels............................................ 150 5.2 TheDetectionProblemandItsInvariances......................... 154 5.3 DetectorsinaFirst-OrderModelforaSignalinaKnown Subspace ............................................................. 155 5.3.1 Scale-InvariantMatchedSubspaceDetector ............. 156 5.3.2 MatchedSubspaceDetector............................... 157 5.4 Detectors in a Second-Order Model for a Signal in a KnownSubspace..................................................... 158 5.4.1 Scale-InvariantMatchedSubspaceDetector ............. 158 5.4.2 MatchedSubspaceDetector............................... 161 5.5 DetectorsinaFirst-OrderModelforaSignalinaSubspace KnownOnlybyitsDimension...................................... 162 5.5.1 Scale-InvariantMatchedDirectionDetector ............. 162 5.5.2 MatchedDirectionDetector............................... 163 5.6 Detectors in a Second-Order Model for a Signal in a SubspaceKnownOnlybyitsDimension........................... 164 5.6.1 Scale-InvariantMatchedDirectionDetector ............. 165 5.6.2 MatchedDirectionDetector............................... 168 5.7 FactorAnalysis ...................................................... 169 5.8 AMIMOVersionoftheReed-YuDetector......................... 171 5.9 ChapterNotes........................................................ 176 Appendices................................................................... 177 5.A VariationsonMatchedSubspaceDetectorsinaFirst-Order ModelforaSignalinaKnownSubspace .......................... 177 5.A.1 Scale-Invariant, Geometrically Averaged, MatchedSubspaceDetector............................... 177 5.A.2 Refinement:SpecialSignalSequences ................... 178 5.A.3 Rapprochement ............................................ 179 5.B Derivation of the Matched Subspace Detector in a Second-OrderModelforaSignalinaKnownSubspace.......... 180

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.