ebook img

Coexistence of a non thermal jet and a complex ultra fast X-ray outflow in a moderately luminous AGN PDF

0.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coexistence of a non thermal jet and a complex ultra fast X-ray outflow in a moderately luminous AGN

Astronomy&Astrophysicsmanuscriptno.IRAS17020˙radio˙arxiv (cid:13)c ESO2017 January26,2017 Coexistence of a non thermal jet and a complex ultra fast X-ray outflow in a moderately luminous AGN M.Giroletti1,⋆,F.Panessa2,A.L.Longinotti3,,Y.Krongold4,M.Guainazzi5,6,E.Costantini7,M.Santos-Lleo5 1 INAFIstitutodiRadioastronomia,viaGobetti101,40129Bologna,Italy 2 INAFIstitutodiAstrofisicaePlanetologiaSpazialidiRoma,ViadelFossodelCavaliere100,00133Roma,Italy 3 CONACYT-InstitutoNacionaldeAstrof´ısica,O´pticayElectro´nica,LuisE.Erro1,Tonantzintla,Puebla,Me´xico,C.P.72840 4 InstitutodeAstronomia,UniversidadNacionalAutonomadeMexico,ApartadoPostal70264,04510MexicoD.F.,Mexico 7 5 ESAC,P.O.Box,78E-28691VillanuevadelaCan˜ada,Madrid,Spain 1 6 InstituteofSpaceandAstronauticalScience,3-1-1Yoshinodai,Chuo-ku,Sagamihara,Kanagawa,Japan 0 7 SRONNetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 2 n Received;accepted a J ABSTRACT 5 Context.RecentXMM-NewtonobservationshaverevealedthatIRAS17020+4544 isaveryunusual exampleofblackholewind- 2 producedfeedbackbyamoderatelyluminousAGNinaspiralgalaxy. Aims.Sincethesourceisknownforbeingaradioemitter,weinvestigatedaboutthepresenceandthepropertiesofanon-thermal ] A component. Methods.WeobservedIRAS17020+4544withtheVeryLongBaselineArrayat5,8,15,and24GHzwithinamonthofthe2014 G XMM-Newtonobservations.Wefurtheranalysedarchivaldatatakenin2000and2012. . Results.Wedetectthesourceat5GHzandonshortbaselinesat8GHz.At15and24GHz,thesourceisbelowourbaselinesensitivity h forfringefitting,indicatingthelackofprominentcompactfeatures.Themorphologyisthatofanasymmetricdouble,withsignificant p diffuseemission.Thespectrumbetween5and8GHzisrathersteep(S(ν)∼ν−(1.0±0.2)).Ourre-analysisofthearchivaldataat5and8 - o GHzprovidesresultsconsistentwiththenewobservations,suggestingthatfluxdensityandstructuralvariabilityarenotimportantin r thissource.Weputalimitontheseparationspeedbetweenthemaincomponentsof<0.06c. t Conclusions.IRAS17020+4544showsinterestingfeaturesofseveralclassesofobjects:itspropertiesaretypicalofcompactsteep s a spectrumsources,lowpowercompactsources,radio-emittingnarrowlineSeyfert1galaxies.However,itcannotbeclassifiedinany [ ofthesecategories,remainingsofaraone-of-a-kindobject. 1 Keywords.galaxies:active–galaxies:Seyfert–galaxies:nuclei–galaxies:jets v 8 9 1. Introduction spiral galaxy with black hole mass of M ∼ 5.9 × 106M 2 BH ⊙ (Wang&Lu 2001). We have observed it in January 2014 with 7 Ionized gas outflows from the nuclei of active galaxies (active XMM-Newton,obtainingahigh-resolutionX-rayspectrum.Our 0 galactic nuclei, hereafter AGN) are a relatively common phe- observations reveal a series of absorption lines corresponding . 1 nomenon. They are of great interest since they transport mass to at least 5 outflowing componentswith velocity in the range 0 andenergytothehostgalaxyinaprocessknownasAGNfeed- of 23,000-33,000km/s (Longinottietal. 2015). The energetics 7 back, which has fundamental impact on galaxy properties and of the wind indicate that it might be able to produce feedback 1 evolution(DiMatteoetal.2005).Inthiscontext,ultra-fastout- onthehostgalaxy.Evidenceforsuchphenomenonisalso pro- : flows (UFOs, see e.g. Chartasetal. 2002; Poundsetal. 2003) v videdbythepresenceoflargescalemoleculargasoutflowingat i are particularly relevant because of their mass outflow rate lowvelocitythatisassociatedtothefastX-raywind(Longinotti X (0.01−1M yr−1) and kinetic energy(1042−1045 erg s−1). A ⊙ etal. submitted),as predictedbyseveralfeedbackmodels(e.g. r much less common phenomenon (less than 10% of AGNs) is a Faucher-Giguere& Quataert 2012, Zubovas& King 2012).At the presenceof a pair ofrelativistic jets ofnon-thermalplasma the same time, the presence of brightand compactradio emis- emerging from the central nucleus, which are generally de- sionindicatesthatthissourceisaradioloud(RL)NLS1andthat tectedin theformofcollimatedstructuresatradiowavelength. italsohasaradiojet(Doietal.2007,2011;Gu&Chen2010). In recent years, several works have studied the coexistence of Inthepresentpaper,wepresentnewhighangularresolution, fast outflows and relativistic jets and their possible interplay multi-frequencyVeryLongBaselineInterferometry(VLBI)ra- (see Tombesietal. 2014, and references therein). A connec- dio observationsobtainednear simultaneouslywith the XMM- tionbetweenthetwophenomenaisalsopredictedbymagneto- Newton observations. We further report on the analysis of hydrodynamic (MHD) models (e.g. Tchekhovskoyetal. 2011; archivalVLBIdatasets,toprovideconstraintsontheproperties Fukumuraetal.2014). oftheejectionprocessinthissource. IRAS17020+4544(locatedatR.A.17h03m30.3830s,Dec. +45◦ 40′ 47′′.167,z = 0.0604)isanidealtargettofurtherex- The paper is organized as follows: we describe our new observations and archival data analysis in Sect. 2; we present plore this subject. It is a bright Narrow Line Seyfert 1 (NLS1) the results in Sect. 3 and a review of the radio properties of ⋆ Email:[email protected] IRAS17020+4544fromtheliteratureinSect.4;finally,wedis- 1 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 10 10 E B W 5 5 s s d d n n o o c c se 0 se 0 c c Ar Ar Milli -5 Milli -5 -10 -10 15 10 5 0 -5 -10 -15 15 10 5 0 -5 -10 -15 MilliArc seconds MilliArc seconds Fig.1.VLBAimagesofIRAS17020+4544on2014February12at5GHz(lefthandsidepanel)and8.4GHz(rightpanel),with contourstracedat(−1,1,2,4,...,32)×the ∼ 3σnoiselevel,whichis 0.2and 0.6mJybeam−1 at5 and8GHz, respectively.The halfpeakbeamwidthisshownintheupperleftcornerofeachpanel,andis4.6mas×1.4masinpositionangle(PA)−19◦and8.0 mas×3.4masinPA19◦at5and8GHz,respectively.Notetheunusuallylargerbeamat8GHz,duetothelackoffringedetections onthelongestbaselinesatthisfrequency.Inthe5GHzimage,model-fitellipticalGaussiancomponentsareshownascrossesand labelledE,B,W,fromeasttowest. cuss them in Sect. 5. Throughout the paper, we use a ΛCDM 2.2.Archivaldata cosmology with h = 0.705, Ω = 0.27, and Ω = 0.73 m Λ 2.2.1. 2000June&Augustdata (Komatsuetal. 2009). With these values, the redshift of the source correspondsto a luminositydistance of D = 269 Mpc L The peak brightness and total flux density at 5 GHz obtained and to an angular scale of 1mas=1.16pc; proper motion of 1 in our observationsare ∼ 5 times lower than those reported at mas/yr correspondsto an apparent speed of 4.0c. The spectral thesamefrequencybyGu&Chen(2010).Consideringthenon- indexαisdefinedsuchthatS(ν)∼ν−αandpositionangles(P.A.) detections at higher frequency, we are confident that the error aredefinedpositivenorththrougheast. onourmeasurementis notlargerthanthe typical,conservative 10% calibration uncertainty. Therefore, in order to investigate possibleamplitudeandstructuralvariabilitywedownloadedand re-analysedtheVLBAdatasetspresentedbyGu&Chen(2010). 2. Observationsanddatareduction ThesedatasetsareBM033DandBM033E,takenon2000June 16andAugust21,respectively.Bothdatasetswereobtainedwith 2.1.Newdata 2IFsof8MHzbandwidtheach,indualpolarization,foratotal datarateof128Mbps.Thedelay,rate,andphasesolutionswere We observed IRAS 17020+4544 with the NRAO Very Long determinedonthenearbycalibratorJ1713+4916andtransferred BaselineArray(VLBA)on2014February12,20dayslaterthan tothetargetsource;otherstepsofthecalibrationwereidentical theXMM-Newtonpointing.Weobservedthesourceat5,8,15, tothosedescribedforthenewobservations.Thetotalintegration and24GHz,foranetintegrationtimeof10,20,60,and60min- timeonIRAS17020+4544wasabout100minutesperobserva- utes, respectively. We recorded data with the new 2 Gbps rate tion. offeredbytheVLBA,correspondingto8basebandchannelsof The images at the two 2000 epochs are consistent in terms 32MHzbandwidtheach,infullpolarization.Basedonthehigh of intensity and structure, so we combined the two visibility sensitivityprovidedbythisobservingmodeandonthefluxden- datasetstofurtherimprovetheimagesensitivityandfidelity.We sitypublishedbyGu&Chen(2010),wedidnotobserveaphase thenproducedafinalimagewithanadditionaliterationofphase calibratorforphasereferencing. onlyandphaseandamplitudeself-calibration. We carried out the data reduction following the usual pro- cedures in AIPS, applying calibrations for the total electronic 2.2.2. 2012Jan&Febdata contentoftheionosphereatν≤8GHz,theearthorientationpa- rameters, the correlator digital sampling, the combined system We also found and downloaded two five minute scans on temperature and gain curves, the parallactic angle, and the in- IRAS 17020+4544obtained in the context of a large observa- strumentalsingle banddelays.We then fringefitted the data in tional VLBA project at 8 GHz. These observations took place orderto removeresidualdelays, ratesand phasevariations;we on2012Jan12(VLBAexperimentcode:BC196ZQ)and2012 used as input modelan image producedfrom the same dataset Feb 8 (code BC201AC). In both experiments, 8 channels with analysedbyGu&Chen(2010)butre-analysedbyourselves(see 16MHz bandwidtheach andsingle polarizationwererecorded Sect. 2.2). At 5 GHz, we foundsolutions for most stations (all andcorrelated.Thesourcewasbracketedby1minutescanson but Brewster); at 8 GHz we found solutions only for stations 1705+456,whichweusedtodeterminedelay,rate,andphaseso- formingrelativelyshortbaselines;at15and24GHz,we could lutions.HancockandSaint-Croixdidnotproducedataineither not find any solution. For the 5 and 8 GHz datasets, we then run because the calibrator was not detected (probablyresolved proceededwiththe standarditerationsofhybridmapping,with out) on baselines to these stations. After the standard calibra- phaseonlyself-calibrationatfirstandphaseandamplitudeself- tion, we split the data withoutaveragingin time nor frequency calibrationinthefinalcycles. (otherthanwithineachoftheeightIFs),sincethephasetracking 2 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 -2 -1 0 10 10 E A1 A2 W 5 s d 5 on nds sec 0 Arc seco 0 MilliArc -5 Milli -5 -10 -10 15 10 5 0 -5 -10 -15 MilliArc seconds 15 10 5 0 -5 -10 -15 MilliArc seconds Fig.3. VLBA image of IRAS 17020+4544 on the combined datasetfrom2000JuneandAugustobservationsat5GHz,with Fig.2. Simultaneous 5-8 GHz spectral index VLBA image of contours traced at (−1,1,2,4,...,32)× the ∼ 3σ noise level, IRAS17020+4544on2014Feb12.Contoursshowtotalinten- whichis0.27mJybeam−1.Thehalfpeakbeamwidthisshown sityat5GHz,convolvedwiththe8GHzrestoringbeam;colours in the upper left corner of each panel and it is 3.8 mas × 1.2 showthespectralindexvalues. masinPA−21◦.Crossesandlettersindicateandlabelmodel-fit ellipticalGaussiancomponents. positionwasseveralhundredsmilliarcsecondfromtheposition ofthe sourcedeterminedinthe otherphasereferencingexperi- ment.Inthisway,wewereabletoproduceimagesnotaffected Theimagethenshowsasteepspectrumintegratedovertheeast- bysmearingandindeedwedetectedthesourceinbothdatasets. erncomponentandaflatteroneinthewesternside.However,the uncertaintyonthewesternside spectralindexislarger,andthe easterncomponentiscertainlyaffectedbythepresenceofdiffuse 3. Results emission,whichlikelybiastheresultstosteepervalues.Indeed, if we only take the peak brightness of the component we find 3.1.Newdata similar values, indicating a flat spectrum for the most compact WeshowinFig.1thefinalimagesat5and8GHz.At5GHz,the emissionregion.Consideringtheemissiondetectedintheentire sourceis extendedin east-westdirection,with a totalflux den- VLBIimages,thesimultaneousspectralindexisα=1.0±0.4. sity of about23 mJy. A compactcomponentwith peak bright- Finally,weestimatetheupperlimittothebrightnessofany ness8.9mJy beam−1issurroundedbydiffuseemissiononboth compact structure, based on the non detection of the source at sides,brighterandmoreextendedonthewesternend.At8GHz, 24and15GHz,andonthelongestbaselinesat8GHz.The5σ the overall morphologyis similar. However, due to the lack of VLBAsensitivityforasinglebaseline,channel,andpolarization visibilities on the longestbaselines the final sensitivity and an- at8,15,and24GHzis12,28,and33mJybeam−1,respectively. gularresolutionarepoorerthanat5GHz.Thesourcecanthenbe This assumes 10, 5, and 5 minutes integration times, respec- mostbasicallydescribedasacompactasymmetricdouble,with tively,forastructurewithangularsizeof4masat8GHz(based abrightereasterncomponent(9.0mJy beam−1peakbrightness) on the non detection on baselines longer than 45 Mλ), 17 mas anda weaker,somewhatmorediffusewesternfeature.Thereis at 15 GHz and 11 mas at 24 GHz (based on the non detection clearlyalso some extendedemission bridgingthe two features. on any baselines in the 15 and 24 GHz datasets). These corre- Thetotalfluxdensityat8GHzis13mJy. spondtoupperlimitsonthebrightnesstemperatureof2.2×107 We carried out a model-fit in the image plane, in order to K,1.5×107K,and6.7×106K,atthethreefrequencies,respec- measurethebrightnesstemperatureofthemaincomponent,i.e. tively. theeasterncomponentlabelledE.Thebrightnesstemperatureis obtainedfromthefollowingformula: 3.2.Archivaldata 1 c 2 S(1+z) T = We show in Fig. 3 the image obtained from the reanalysis of b 2k (cid:18)ν(cid:19) πab B thecombineddatasetobtainedfromthe2000observations.The wherek is theBoltzmannconstant,cis thespeedoflight, morphologyisoverallconsistentwithbothournewobservations B ν is the observing frequency, S is the total flux density of the and the images reported by Gu&Chen (2010): the brightest component, a and b are the major and minor semi-axis of the componentis located at the eastern end, surroundedby diffuse component.Inourcase,ν = 5.0GHz,z = 0.0604and,forcom- emission more extended in the western direction. Local peaks ponentE,S = 14mJy,a = 2.5mas,b = 1.0mas.Theresulting are embeddedin this emission, with a final componentlocated brightnesstemperatureisT =1.0×108K. about9maswestoftheimagepeak.Thetotalfluxdensityand b We show in Fig. 2 the first quasi-simultaneousspatially re- the peak brightness recovered (S ∼ 25 mJy and P ∼ 13 5 5 solvedspectralindeximageofthesource,basedonour5and8 mJybeam−1,respectively)areinmuchcloseragreementwiththe GHzdata.Beforecombiningtheimages,wehaveconvolvedthe 2014datathanwiththevaluesreportedbyGu&Chen(2010). 5GHz imagewith thesame restoringbeamofthe8 GHzdata, We triedtoinvestigateontheoriginofthisdiscrepancybut andclippedallthepixelsbelowthe3σnoiselevelineitherim- could not come up with a final explanation. We determined a age.Asaresultofthisconvolution,thecompacteasternfeature fluxdensityof∼80mJyforthephasecalibrator,whichislower becomes“contaminated”bysomeadditionalextendedemission. thanthe2.3and8GHzvaluesreportedintheVLBAcalibrator 3 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 6 10 20 30 40 50 4 100 ds 2 n o 50 c sec 0 onds Ar ec 0 Milli -2 Arc s -50 -4 -100 -6 8 6 4 2 0 -2 -4 -6 -8 MilliArc seconds 200 150 100 50 0 -50 -100 -150 -200 Arc seconds Fig.4.VLBA8GHzimageofIRAS17020+4544on2012Feb 8, with contours traced at (−1,1,2,4)× the ∼ 3σ noise level, Fig.5.OverlayoftheNVSS(contours)andFIRST(greyscale) whichis1.0mJybeam−1.Thehalfpeakbeamwidthisshownin 1.4GHz VLA images. The NVSSHPBW is 45′′ and is shown theupperleftcornerofeachpanelanditis2.8mas×1.1masin in the bottom left corner; the FIRST HPBW is 4.5′′. Contours PA18◦. are traced at (−1,1,2,4,...) × 1.3 mJybeam−1; the grey scale isshowninthetopwedgeandspanstherangebetween0.4and 55mJybeam−1.Thehalfpeakbeamwidthisshownintheupper Epoch Component x y S5 leftcornerofeachpanelanditis2.8mas×1.1masinPA18◦. (year) (mas) (mas) (mJy) 2000 E 0.0 0.0 17.9 A1 −1.3 −0.13 3.5 3.3.Modelfitsandpropermotion A2 −3.9 −0.6 2.4 W −9.4 −0.9 2.0 We report in Table 1 the results of a model-fit in the image 2014 E 0.08 −0.05 14.1 planewithellipticalGaussiancomponentstothe2000and2014 B −3.1 −1.9 5.2 5 GHz images. We use four components to describe the 2000 W −9.1 −0.8 1.5 data (which have better coverage of the (u,v)-plane) and three componentsforthe2014data.Inanycase,themainfeaturesat Table 1. Results of model-fit to the 5 GHz images of thetwoedgesofthestructurecanbeeasilyidentified.Theirposi- IRAS17020+4544.The coordinatesare referencedto the peak tionsareconsistenttobetterthanonebeamandthefluxdensities position of the brightest componentin the 2000 combined im- arealsoconsistentwithinthecalibrationuncertainty. ages. TheseparationbetweenE andW haschangedfrom9.4mas in2002to9.2masin2014;sincethedifferenceislessthan1/5of thebeam,weclaimthatbothcomponentsarestationary,andthat theirseparationvelocitymustbesmallerthan0.015masyr−1,or 0.06c. list(148mJyonshortspacingsand117mJyonlongspacingsat 2.3GHz,217and182mJyat8GHz);thismighthaveprompted 4. RadiopropertiesofIRAS 17020+4544 Gu&Chen(2010)torescaletheamplitudesupbyafactorofa IRAS 17020+4544 is also known as B31702+457, since it few,resultinginthehighfluxdensityforthetarget.However,the was detected in the B3 survey at 408 MHz with the Bologna fluxdensityof3C345observedinthesameexperimentdidnot Northern Cross (Ficarraetal. 1985). As it is a B3 source, it is revealanysignofbeingunderestimated,andlater5GHzobser- quitebrightandindeeditisdetectedinmanyothersurveys:the vations of J1713+4916found flux density values closer to our 6th Cambridgesurvey of radio sources(6C, Halesetal. 1988), measurement;consideringalsoafairamountofvariabilitytypi- the Texas survey of radio sources (Douglasetal. 1996), and calforcompactsources,wedonotseeanyreasontomodifythe theWesterborkNorthernSkySurvey(WENSS,Rengelinketal. amplitudescaleforthe2000observationsofIRAS17020+4544. 1997) at low frequency; the NRAO VLA Sky Survey (NVSS, Inthe20128GHzexperiments,wedetectaslightlyresolved Condonetal. 1998) and the Faint Images of the Radio Sky at component,withanextensiontothenorth-westernsideandfaint Twenty Centimeters (FIRST, Beckeretal. 1995) at 1.4 GHz; diffuse emission to the west (see Fig. 4). The peak brightness the 87GB and GB6 at 5 GHz (Gregory&Condon 1991; is 7.4 and 5.9 mJybeam−1 in 2012 Jan and Feb, respectively. Gregoryetal. 1996). From its flux density and luminosity dis- Giventheveryshortobservationtime, we cannotmakestrong tance, the radio power of IRAS 17020+4544 is P = 150MHz claimsabouttheimagefidelityandanysignificantvariability.In 3.2 × 1024 WHz−1(νL = 4.8 × 1039 ergs−1) and P = ν 1.4GHz anycase, the totalcleanedflux densityis consistentamongthe 1.0×1024 WHz−1(νL = 1.5×1040 ergs−1),calculatedat150 ν epochswithavalueofS8 = 11.5mJy,alsosimilartotheresult MHzfromthe6Candat1.4GHzfromtheNVSSvalues,respec- ofour2014observations. tively. Theastrometryofthe2000and2012observationsisnoten- The FIRST image (shown with grey tones in Fig. 5) re- tirelyconsistent,witha ∼ 10masoffsetbetweenthe corepeak veals one main, bright, compact component, unresolved at the at the two frequencies.The 8 GHz observationpositionsare in ∼ 5′′ angular scale, and a secondary, fainter component lo- goodagreement(within<1mas)withthosereportedatthesame cated at 1.2′ (81 kpc projected at the IRAS 17020+4544 red- frequencybyDoietal.(2007). shift), in PA −52◦, which is also visible in the NVSS image 4 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 (contours in Fig. 5) as an extension of the main component. ratioofFIRST1.4GHzradiotoSDSSg-band.Suchvaluesputs ThefluxdensityintheNVSSisonlyslightlylargerthaninthe IRAS17020+4544firmlyintheradioloudregime. FIRST (121vs118mJy),indicatingthatthesourceiscompact Athighangularresolution,wecancompareournewandre- at this angular resolution; the total flux density in the NVSS processedVLBA data with otherVLBI observations,in partic- might also be slightly affected by the secondary component, ular the 8.4 GHz Japanese VLBI Network (JVN) observations which is only partly resolved at the 45′′ angular resolution of byDoietal.(2007)andthe1.6VLBAdatabyDoietal.(2011). the survey. The two components are in any case well sepa- Thesetwodatasetsshowafairlyresolvedmorphology,whichac- ratedintheFIRST,whichcanbeusedtodeterminetheirbright- countsforoveronehalfofthetotalfluxdensitymeasuredatthe ness ratio (118 : 6, or ∼ 20). We are thus confident that any samefrequencyby,e.g.,theVLA.Inparticular,S =79.9±4.0 1.6 flux density measured at lower resolution is only slightly af- mJyandS = 18.5±2.6mJy.Theresultingnonsimultaneous 8.4 fected by the presence of this component. A visual inspection spectralindexisα= 0.84±0.21,consistentwiththeonefound of the SDSS images doesnot revealany obviousopticalcoun- with the simultaneousdata. A furthernon detectionat 22 GHz terpart,soitremainsuncertainwhetherthisisabackgroundob- atthe < 9 mJy level,entirelyconsistentwith ourresult, is also ject or a large-scale feature associated to IRAS 17020+4544 reportedbyDoietal.(2016). itself. We note that kiloparsec scale emission is not uncom- mon in NLS1s, having been discovered in 10 objects so far (Anto´netal. 2008; Doietal. 2012, 2015; Gliozzietal. 2010; 5. Discussion Richards&Lister 2015; Whalenetal. 2006). However, with ∼ 80 kpc (projected) linear size, IRAS 17020+4544 would be Basedontheinformationgatheredbythenew,thearchival,and the largest NLS1 known so far. If the third weaker component the literature data on IRAS 17020+4544, we determine that it located further north-west were also physically associated to isajettednon-thermalsource.Thesteepoverallspectrumon∼ IRAS 17020+4544, the size would become even larger. Deep, kpc(α = 0.9,Snellenetal.2004)and∼pc(α = 1.0,thiswork) lowfrequencyobservationswith afew arcsecondangularreso- scalesindicatesthattheradioemissionhasasynchrotronorigin. lutionwillbenecessarytoclarifythisissue. Thetotalradioluminosity(P = 1.0×1024 WHz−1)and, 1.4GHz Inadditiontothese1.4GHzdata,Snellenetal.(2004)con- aboveall,thebrightnesstemperatureoftheVLBImaincompo- sidered a numberof additionalmulti-frequencyinterferometric nent(Tb =1.0×108K)arefartoolargeforstarburstprocesses, and single dish datasets between 150 MHz and 22 GHz. They andconstraintheradioemissiontohavepredominantlyanuclear reporta spectral index of α = −0.88, slightly flattening at low origin.The differencebetween the VLBI and total flux density frequency,andprovideconstraintsontheturnoverfrequencyand revealsthepresenceofradioemissiononpc-to-kpcscales,most peakfluxdensityofν < 150MHzandS > 380mJy,re- likely fuelled by the central region. Taken together, these ele- peak peak spectively.Alowfrequencyturnoverisconfirmedbytheflatter mentsindicatethattheblackholeinIRAS17020+4544ispow- (α=−0.23)spectralindexbetween325and1400MHzreported eringanon-thermalplasmajet,inadditiontotheX-rayoutflow by Massaroetal. (2014) and the non detection at 74 MHz in ofgasstudiedbyLonginottietal.(2015). the VLA Low-Frequency Survey (VLSS, whose typical point- Fromthisstartingpoint,we can thencantryto classify the sourcedetectionlimit is0.7Jy beam−1, Cohenetal. 2007). On sourceinafewdifferentways,complementaryratherthancon- the basis of its spectrum and linear size, Snellenetal. (2004) flicting.AsalreadyproposedbySnellenetal. (2004), thecom- classifythesourceasacandidatelowpowercompactsteepspec- pact structure and steep integrated radio spectrum suggest that trum(CSS)sourceandincludeitinthe“compactradiosources IRAS17020+4544isacandidateCSSsource.Differentlyfrom atlowredshift”(CORALZ)sample1. compactflat-spectrumsources,suchasblazars,CSSsourcesare To construct their spectra, Snellenetal. (2004) considered orientedontheplaneofthesky,sotheircompactnessisintrin- data taken at the same frequencyin differentepochs, thus pro- sic rather than due to projection effects, as highlighted by the vidingusalsovariabilityinformation:onlysmalldeviationsare lackofaprominentcompactflat-spectrumcore.CSSsourcesare present,suggestingthatvariabilityintheradioisnotsignificant; thoughttobetheearlystagesofevolutionofthemoreextended, ifwetakeintoaccountpossiblecalibrationuncertaintiesanddif- classical FR2 radio galaxies, as indicated by their young kine- ferentangularresolutioninthevariousobservations,theamount maticandspectralageestimates(Fantietal.1995;Murgiaetal. of real source variability has to be very limited, if any. In this 1999;Giroletti&Polatidis2009).Theparsecscalestructurepre- sense,themostremarkablefindingisthecomparisonofthesin- sented in this work is in agreement with the lack of a promi- gledish(87GBandGB6)andinterferometric(VLA)5GHzflux nent core and of strong beaming effects; however, the absence density values,with S = 26±6 mJy, S = 29±4 mJy, of componentmotionovera 14 yearstime scale doesnotindi- 87GB GB6 andS = 40±4mJy.Itisnotclearhowreliablearethesin- cate that this source is in a state of rapid growth,which would VLA gledishmeasurements,sincetheyarenearthefluxdensitylimit be typical of CSS sources. Moreover, the radio luminosity of of the catalogs(25 and 18 mJy for the 87GB and the GB6, re- IRAS 17020+4544 is also significantly (∼ 10−4×) lower than spectively).Asthe87GBdatawerereportedbymanyauthorsto thatofthearchetypicalCSSsources,suggestingthatitcouldlie estimatetheradioloudness(R),iftherealfluxdensityislarger inadifferentevolutionarypath. than26mJy,thenalsotherealRcouldbeaccordinglyhigherby Girolettietal.(2005)andKunert-Bajraszewskaetal.(2010) ∆logR ∼ +0.2.On theissue ofradioloudness,itisinteresting haveindeedintroducedtheclassoflow-powercompact(LPC)or to note that the values of R reported in the literature vary sig- low-luminosity compact (LLC) objects, which similarly to the nificantlyindifferentworks,typicallybasedontheassumptions CSS sources are thought to be intrinsically compact, yet they on the opticalspectrumused to estimate the B magnitude.The presentlowerluminosities(P <1026WHz−1)andslower 1.4GHz mostrecentvalueislogR=2.17(Doietal.2016),basedonthe or null advance velocities. These sources might be short-lived objectsortheprogenitorsoflowluminosityFR1radiosources. 1 However,laterhighangularresolutionobservationsofthefullsam- In terms of radio properties (morphology, spectrum, power), ple(deVriesetal.2009)donotincludethesource,withoutanyreason IRAS17020+4544fitswellwithinthisclass;however,itspecu- giveninthepaper liaropticalpropertiesdonotmatchthetypicalfeaturesofaFR1 5 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 progenitor:the host is a barred spiral galaxy (Ohtaetal. 2007) IRAS 17020+4544 and the source proximity would in princi- andtheopticalspectrumcharacterizesthesourceasaNLS1. plepermitustostudythisissuewithadequatelinearresolution. The presence of radio emission in NLS1 has attracted a However,the radioluminositylogνL = 40.2([ergs−1], calcu- ν lot of interest in recent times, especially after the discovery lated at ν = 1.4GHz) is comparatively large in comparison to of gamma-rayemission from a growing number of RL NLS1s thebolometricluminosity,confirmingthatIRAS17020+4544is (Abdoetal. 2009a,b; D’Ammandoetal. 2012, 2015). Gamma- aradio-loudsourceandthereforequiteexceptionalwithrespect rayemissionin NLS1sisascribedto thepresenceofa beamed to the radio-quiet population studied by Zakamska&Greene relativisticjet,similartowhathappensinblazars,althoughsome (2014). similarities with CSS sources in spectrum and size have been claimed, e.g. in PKS 2004-447(Galloetal. 2006; Orientietal. 6. Summary 2015; Schulzetal. 2015) and SDSSJ143244.91+301435.3 (Caccianigaetal. 2014). Evidence for beaming in RL NLS1s – Theradioluminosity(logL = 24.5WHz−1)istypicalof 150 in general (not only in gamma-ray NLS1s) has been found in FR1 radio galaxy, but the structure is compact, i.e. < kpc several objects, in the form of dominant cores, high bright- scale. As already hinted at by other works (Snellenetal. ness temperatures (above 1010 K, e.g. Girolettietal. 2011; 2004),itmeetsthe criteriafora lowpowercompactsource Wajimaetal. 2014; Guetal. 2015), and occasionally the pres- (LPC,Girolettietal.2005). enceofsuperluminalmotion(D’Ammandoetal.2012).Ourre- – The integrated steep spectrum (α = −0.9) clearly indicates sultsonthemorphologyandbrightnesstemperatureindicatethat thattheradioemissionhasasynchrotronorigin,i.e.thepres- IRAS 17020+4544 is different from this sub-set of the NLS1 enceofrelativisticparticlesandmagneticfields. population;yet,itremainsalsomarkedlyseparatedfromthebulk – On parsec scales, the images at 5 and 8 GHz indicate that oftheradioquietNLS1population,whichhavemuchlowerra- thesourceisclearlyextendedinanamorphousyetpredomi- diopowers(aslowas P1.4GHz ∼ 1019 WHz−1)andareseldom nantlylinearstructure,indicatingthepresenceofajetorout- detectedwithVLBI(Giroletti&Panessa2009;Doietal.2013). flowonscalesofabout10parsecs;alsothenondetectionsat OneintriguingpossibilityisthatIRAS17020+4544belongsto 15and24GHz,whencomparedwiththeVLAfluxdensities the elusive population of misaligned RL NLS1s (Bertonetal. at the same frequency, indicate that the source structure is 2015). heavilyresolved. Fromamulti-wavelengthperspective,IRAS17020+4544is – Within these diffuse emission, there is a main, brighter alsohighlyremarkableforitsX-rayproperties.WhileitsX-ray component, which one would naturally identify with the and bolometric luminosities are not exceptional (L0.3−10keV ∼ “core”, which however is not characterized by a classical 1.5×1044 ergs−1, LBOL ∼ 5.2×1044 ergs−1), the recent high flat/invertedspectrum. spectralresolution(E/∆E ∼ 1000)XMM-Newtonobservations – The lack of a prominentflat spectrum componentsuggests of Longinottietal. (2015), obtained within one month of our thattheamountofbeaminginanypossiblecoreisnegligible, VLBAdata,haverevealedauniquesub-relativisticoutflow.The i.e.theplasmadoesnothaveabulkrelativisticmotionorit spectrum shows a series of absorption lines corresponding to ismovingat a verylargeangleto the line of sight- also in atleastfiveabsorptioncomponentswith velocitiesin therange agreementwiththelackofvariability. of 23,000–33,000kms−1; the associated column densities ob- – Thelackofmotionover15yearssuggeststhattheseparation served in the X-ray wind span from 5×1020 to ∼ 1024 cm−2. speedislowerthan0.2mas/14years,i.e.<0.06c. The mass and energy output estimated by these authors indi- catethatthehighercolumndensitywindiscapableofexpelling All these properties locate IRAS 17020+4544 as a unique sufficient gas to produce feedback onto the host galaxy, even object, not easily classifiable as any standard radio emitting if the source is ∼ 100 times less luminous than quasars where AGN. In addition IRAS 17020+4544 is an optimal laboratory this phenomenon is commonly observed (Nardinietal. 2015; to study in detail AGN feedback. The coexistence of an ultra- Tombesietal. 2015). Whether the presence of radio emission fastX-raywindandamolecularlargescaleoutflowindicatethat issomehowrelatedtothispeculiarwindisaquestionworthex- thisprocessisinactionviaaninducedshock.Thepeculiarradio ploring. In a similar case of coexistence of fast X-ray outflow propertiesarelikelyrelatedtothisphenomenon.Futureradioob- andradiojet,albeitinahighradiopowersource,Tombesietal. servationsupto24GHzinphasereferencemodewillallowusto (2012)reportedthatthepressureestimatedbytheX-raycolumn obtainhigherfidelitytotalintensityandspectralimages,useful densityiscomparabletothepressureoftheradioinnerjet,there- toinvestigatetheroleoftheradioemissioninthiscontext. forelendingsupporttotheideathattheX-rayoutflowmayhelp tocollimatethejet.InthecaseofIRAS17020+4544 higherres- Acknowledgements. Weacknowledge financialcontribution fromgrantPRIN- olutionVLBAobservationswillprovideabetterestimateofthe INAF-2014.ThisresearchhasmadeuseofNASA’sAstrophysicsDataSystem Bibliographic Services. This research has made use of the NASA/IPAC spatial scale of the jetted structure and its properties, shedding Extragalactic Database (NED) which is operated by the Jet Propulsion lightonthepossiblewind-jetconnection. Laboratory, California Institute of Technology, under contract with the The mutual interactionbetween AGN winds and jets is the NationalAeronauticsandSpaceAdministration.TheNationalRadioAstronomy subjectofmuchdebate.Zakamska&Greene(2014)foundacor- ObservatoryisafacilityoftheNationalScienceFoundationoperatedunderco- operativeagreementbyAssociatedUniversities,Inc. relationbetweenradiopowerandgaskinematics(inparticular, [OIII]linevelocitywidth)inasampleofluminoustype-2radio quietquasars.Theyconsideredseveralscenariostointerpretthis correlation,andconcludedthateither(i)radiativelydrivenwinds propagateintotheinterstellarmediumofthehostgalaxy,gener- References ating shock fronts which in turn accelerate particles producing Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009a,ApJ,699,976 radioemissionor(ii)mechanicalenergyofrelativisticjetsheats Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009b,ApJ,707,L142 overpressuredcocoons,whichthenlaunchwindsofionisedgas Anto´n,S.,Browne,I.W.A.,&Marcha˜,M.J.2008,A&A,490,583 (Mullaneyetal. 2013). The detection of the X-ray outflow in Becker,R.H.,White,R.L.,&Helfand,D.J.1995,ApJ,450,559 6 M.Girolettietal.:RadiopropertiesofIRAS17020+4544 Berton,M.,Foschini,L.,Ciroi,S.,etal.2015,A&A,578,A28 Caccianiga,A.,Anto´n,S.,Ballo,L.,etal.2014,MNRAS,441,172 Chartas,G.,Brandt,W.N.,Gallagher,S.C.,&Garmire,G.P.2002,ApJ,579, 169 Cohen,A.S.,Lane,W.M.,Cotton,W.D.,etal.2007,AJ,134,1245 Condon,J.J.,Cotton,W.D.,Greisen,E.W.,etal.1998,AJ,115,1693 D’Ammando,F.,Orienti,M.,Finke,J.,etal.2012,MNRAS,426,317 D’Ammando,F.,Orienti,M.,Larsson,J.,&Giroletti,M.2015,MNRAS,452, 520 deVries,N.,Snellen, I.A.G.,Schilizzi, R.T.,Mack,K.-H.,&Kaiser, C.R. 2009,A&A,498,641 DiMatteo,T.,Springel,V.,&Hernquist,L.2005,Natur,433,604 Doi,A.,Asada,K.,&Nagai,H.2011,ApJ,738,126 Doi,A.,Fujisawa,K.,Inoue,M.,etal.2007,PASJ,59,703 Doi,A.,Nagira,H.,Kawakatu,N.,Kino,M.,Nagai,H.,&Asada,K.2012,ApJ, 760,41 Doi,A.,Asada,K.,Fujisawa,K.,Nagai,H.,Hagiwara,Y.,Wajima,K.,&Inoue, M.2013,ApJ,765,69 Doi,A.,Wajima,K.,Hagiwara,Y.,&Inoue,M.2015,ApJ,798,L30 Doi,A.,Oyama,T.,Kono,Y.,etal.2016,PASJ,68,73 Douglas,J.N.,Bash,F.N.,Bozyan,F.A.,Torrence,G.W.,&Wolfe,C.1996, AJ,111,1945 Fanti,C.,Fanti,R.,Dallacasa,D.,Schilizzi,R.T.,Spencer,R.E.,&Stanghellini, C.1995,A&A,302,317 Faucher-Gigue`re,C.-A.,&Quataert,E.2012,MNRAS,425,605 Ficarra,A.,Grueff,G.,&Tomassetti,G.1985,A&AS,59,255 Fukumura,K.,Tombesi,F.,Kazanas,D.,etal.2014,ApJ,780,120 Gallo,L.C.,Edwards,P.G.,Ferrero,E.,etal.2006,MNRAS,370,245 Giroletti,M.,Giovannini,G.,&Taylor,G.B.2005,A&A,441,89 Giroletti,M.,&Panessa,F.2009,ApJ,706,L260 Giroletti,M.,&Polatidis,A.2009,AN,330,193 Giroletti,M.,Paragi,Z.,Bignall,H.,etal.2011,A&A,528,L11 Gliozzi, M., Papadakis, I. E., Grupe, D., Brinkmann, W. P., Raeth, C., & Kedziora-Chudczer,L.2010,ApJ,717,1243 Gregory,P.C.,&Condon,J.J.1991,ApJS,75,1011 Gregory,P.C.,Scott,W.K.,Douglas,K.,&Condon,J.J.1996,ApJS,103,427 Gu,M.,&Chen,Y.2010,AJ,139,2612 Gu,M.,Chen,Y.,Komossa,S.,Yuan,W.,Shen,Z.,Wajima,K.,Zhou,H.,& Zensus,J.A.2015,ApJS,221,3 Hales,S.E.G.,Baldwin,J.E.,&Warner,P.J.1988,MNRAS,234,919 Longinotti,A.L.,Krongold,Y.,Guainazzi,M.,etal.2015,ApJ,813,L39 Komatsu,E.,Dunkley,J.,Nolta,M.R.,etal.2009,ApJS,180,330 Kunert-Bajraszewska,M.,Gawron´ski,M.P.,Labiano,A.,&Siemiginowska,A. 2010,MNRAS,408,2261 Massaro,F.,Giroletti,M.,D’Abrusco,R.,etal.2014,ApJS,213,3 Mullaney,J.R.,Alexander,D.M.,Fine,S.,etal.2013,MNRAS,433,622 Murgia,M.,Fanti,C.,Fanti,R.,Gregorini,L.,Klein,U.,Mack,K.-H.,&Vigotti, M.1999,A&A,345,769 Nardini,E.,Reeves,J.N.,Gofford,J.,etal.2015,Sci,347,860 Ohta,K.,Aoki,K.,Kawaguchi,T.,&Kiuchi,G.2007,ApJS,169,1 Orienti,M.,D’Ammando,F.,Larsson,J.,Finke,J.,Giroletti,M.,Dallacasa,D., Isacsson,T.,&StobyHoglund,J.2015,MNRAS,453,4037 Pounds,K.A.,Reeves,J.N.,King,A.R.,etal.2003,MNRAS,345,705 Rengelink,R.B.,Tang,Y.,deBruyn,A.G.,etal.1997,A&AS,124, Richards,J.L.,&Lister,M.L.2015,ApJ,800,L8 Schulz,R.,Kreikenbohm,A.,Kadler,M.,etal.2015,arXiv,arXiv:1511.02631 Snellen,I.A.G.,Mack,K.-H.,Schilizzi,R.T.,&Tschager,W.2004,MNRAS, 348,227 Tchekhovskoy,A.,Narayan,R.,&McKinney,J.C.2011,MNRAS,418,L79 Tombesi,F.,Sambruna,R.M.,Marscher,A.P.,etal.2012,MNRAS,424,754 Tombesi,F.,Tazaki,F.,Mushotzky,R.F.,etal.2014,MNRAS,443,2154 Tombesi,F.,Mele´ndez,M.,Veilleux,S.,etal.2015,Nature,519,436 Zubovas,K.,&King,A.2012,ApJ,745,L34 Wajima,K.,Fujisawa,K.,Hayashida,M.,Isobe,N.,Ishida,T.,&Yonekura,Y. 2014,ApJ,781,75 Wang,T.,&Lu,Y.2001,A&A,377,52 Whalen,D.J.,Laurent-Muehleisen,S.A.,Moran,E.C.,&Becker,R.H.2006, AJ,131,1948 Zakamska,N.L.,&Greene,J.E.2014,MNRAS,442,784 7 10 20 30 40 50 100 50 s d n o c 0 e s c r A -50 -100 200 150 100 50 0 -50 -100 -150 -200 Arc seconds

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.