ebook img

Coarse graining the phase space of $N$ qubits PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coarse graining the phase space of $N$ qubits

CoarsegrainingthephasespaceofN qubits Olivia Di Matteo,1,2 Luis L. Sa´nchez-Soto,3,4 Gerd Leuchs,4,5 and Markus Grassl4,5 1DepartmentofPhysicsandAstronomy, UniversityofWaterloo, OntarioN2L3G1, Canada 2Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada 3DepartamentodeO´ptica, FacultaddeF´ısica, UniversidadComplutense, 28040Madrid, Spain 4Max-Planck-Institut fu¨r die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany 5Institutfu¨rOptik,InformationundPhotonik,Universita¨tErlangen-Nu¨rnberg,Staudtstraße7/B2,91058Erlangen,Germany WedevelopasystematiccoarsegrainingprocedureforsystemsofN qubits. Weexploittheunderlyingge- ometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced effectivesize. Ourcoarse-grainedspacesinheritkeypropertiesoftheoriginalones. Inparticular,ourproce- durenaturallyyieldsasubsetoftheoriginalmeasurementoperators,whichcanbeusedtoconstructacoarse discreteWignerfunction. Theseoperatorsalsoconstituteasystematicchoiceofincompletemeasurementsfor thetomographerwishingtoprobeanintractablylargesystem. 7 1 0 2 I. INTRODUCTION phasespaceaspecificrank-oneprojectionoperatorrepresent- ingapurequantumstate. Foreachpointofthegrid,asuitable n quasi-probabilityastheWignerfunctioncanbedirectlycom- a Recently, the understanding of many-body quantum sys- J tems has dramatically progressed. Nowadays we are achiev- putedfromthemeasurementofthestatesassociatedwiththe linespassingthroughthatpoint. Wecoarsegrainbycombin- 0 ing an amazing degree of control over larger and larger sys- 3 tems [1, 2]. Therefore, verification during each stage of ex- inggroupsoftheselinesintothicklines,whichwewillshow tobelinesinthephasespaceofaneffectivelysmallersystem. perimental procedures is of utmost importance; quantum to- ] Ourcoarse-grainedphasespacesareendowedwithmanynice h mographyistheappropriatetoolforthatpurpose. properties. p Thegoalofquantumtomographyistoreconstructthestate - ofasystembyperformingmultiplemeasurementsonidenti- Most notably, our procedure systematically and naturally nt cally prepared copies of the system. Once the experimental revealsasubsetofmeasurementswhichonecouldusetoper- a form incomplete tomography. In addition, using the coarse- data are extracted, a numerical procedure determines which u grained points and lines, we show that one can define a dis- density matrix fits best the measurements. This estimation q crete Wigner function in largely the same way as it is de- [ can be performed using different approaches, such as maxi- mum likelihood estimation [3], or Bayesian methods [4–7]. finedintheoriginalspace.Whenplotted,thecoarsefunctions 1 resemble smoothed out versions of the originals, preserving However,tomographybecomesharderasweexploremorein- v manyoftheirprominentvisualfeatures. tricatesystems. Ifwelookatthesimple,yetillustrativecase 0 of N qubits, which will serve as the consistent thread in this 3 6 paper,onehastomakeatleast2N+1measurementsindiffer- 8 entbasesbeforeonecanclaimtoknoweverythingaboutana II. PHASESPACEOFNQUBITS 0 prioriunknownsystem. Withsuchanexponentialscalingin 1. the number of qubits, it is clear that current methods rapidly Aqubitisatwo-dimensionalquantumsystem,withHilbert 0 becomeintractableforpresentstate-of-the-artexperiments. space isomorphic to C2. It is customary to choose two nor- 7 As a result, more sophisticated tomographical techniques malized orthogonal states, say {|0(cid:105),|1(cid:105)}, as a computational 1 are called for. New protocols try to simplify the process : basis. Theunitarymatrices v by making an educated guess about the nature of the state. i Among other assumptions, this includes rank deficiency [8– X σ =|0(cid:105)(cid:104)0|−|1(cid:105)(cid:104)1|, σ =|0(cid:105)(cid:104)1|+|1(cid:105)(cid:104)0|, (2.1) z x 12],extrasymmetries[13–15],orGaussianity[16]. Whileall r these approaches are extremely efficient, their pitfall is that a generate the Pauli group P , which consists of all the whenthestartingguessisinaccurate,theyproducesignificant 1 Pauli matrices plus the identity, with multiplicative factors systematicerrors. ±1,±i[19]. Here,wepursueadifferentapproach,inspiredbyanotion ForN qubits,thecorrespondingHilbertspaceisthetensor from statistical mechanics: coarse graining [17]. This oper- productC2⊗···⊗C2=C2N.Acompactwayoflabelingboth ation transforms a probability density in phase space into a statesandelementsofthecorrespondingPauligroupP isby “coarse-grained”densitythatisapiecewiseconstantfunction, N usingthefinitefieldF . InAppendixAwebrieflysumma- a result of density averaging in cells. This is the chief idea 2N rizethebasicnotionsoffinitefieldsneededtoproceed. behind the renormalization group [18], which allows a sys- tematic investigation of the changes of a physical system as Let |ν(cid:105), ν ∈F2N, be an orthonormal basis in the Hilbert viewedatdifferentscales. space C2N (henceforth, field elements will be denoted by Inourcase,weconsiderasystemofqubitsandlookatthe Greek letters). The elements of the basis can be labeled by associated phase space, which turns out to be a discrete grid powersofaprimitiveelementσ (i.e.,arootofanirreducible of2N×2N points. Weassigntoeachsuitablydefinedlinein primitivepolynomial): {|0(cid:105),|σ(cid:105),...,|σ2N−1=1(cid:105)}. Nowthe 2 equivalentversionof(2.1)is[20–22] where f(x)=∑ x2i+2j,whichensuresthattheoper- 0≤j<i≤m−1 atorsdefinedinEq.(3.3)belowarerank-oneprojections. Z =∑χ(αν)|ν(cid:105)(cid:104)ν|, X =∑|ν+β(cid:105)(cid:104)ν|, (2.2) α β Onthephasespacegridonecanintroduceavarietyofge- ν ν ometrical structures with much the same properties as in the sothat continuous case [27–29]. The simplest are the straight lines passingthroughtheorigin(alsocalledrays),withequations Z X =χ(αβ)X Z , (2.3) α β β α whichisthediscretecounterpartoftheWeyl-Heisenbergalge- α =0, or β =λα. (2.9) braforcontinuousvariables[23]. Here,theadditivecharacter χ is defined as χ(α)=exp[iπtr(α)] and the trace of a field The rays have a very remarkable property: the monomials element(wedistinguishitfromthetraceofanoperatorbythe D(α,β)belongingtothesameraycommute,andthus,havea lowercase“tr”)isdefinedinAppendixA.Moreover,Z and commonsystemofeigenvectors{|ψ (cid:105)}, α ν,λ X arerelatedthroughthefiniteFouriertransform[24] β D(α,λα)|ψ (cid:105)=exp(iξ )|ψ (cid:105), (2.10) ν,λ ν,λ ν,λ 1 F = √ ∑χ(νν(cid:48))|ν(cid:105)(cid:104)ν(cid:48)|, (2.4) 2N ν,ν(cid:48) where λ is fixed and exp(iξν,λ) is the corresponding eigen- value,so|ψ (cid:105)=|ν(cid:105)areeigenstatesofZ (displacementop- ν,0 α sothatXα =FZαF†. eratorslabeledbytherayβ=0,whichwetakeasthehorizon- The operators (2.2) generate the Pauli group PN of N talaxis). Theprojectionoperatorsassociatedwiththelinesof qubitsand,withasuitablechoiceofbasis,theycanbefactor- equal slope are the projections onto these eigenvactors. In- izedintoatensorproductofsingle-qubitPaulioperators. To deed,wehavethat thisend,itisconvenienttoconsiderF asanN-dimensional 2N linear space over Z . It is spanned by an abstract basis 1 {θ1,...,θN},sothat2givenafieldelementα theexpansion |(cid:104)ψν,λ|ψν(cid:48),λ(cid:48)(cid:105)|2=δλ,λ(cid:48)δν,ν(cid:48)+2N(1−δλ,λ(cid:48)), (2.11) N and, in consequence, they are mutually unbiased bases α =∑a θ , a ∈Z , (2.5) i i i 2 (MUBs)[30]. i=1 Now suppose for each ray we disregard the origin (0,0), allowsustheidentificationα ⇔(a1,...,aN). Thebasis{θi} whosemonomialistheidentityoperator. Thisleavesuswith canbechosentobeorthonormalwithrespecttothetraceop- 2N−1 commuting operators. If we then consider the whole eration; i.e., tr(θiθj)=δij. This is a self-dual basis, which bundle of 2N +1 rays (which are obtained by varying the alwaysexistforthecaseofqubits. Inthisway, weassociate “slope”λ overallofF ),wecanconstructacompletesetof 2N each qubit with a particular element of the self-dual basis: MUBoperatorsarrangedina(2N−1)×(2N+1)table[31]. qubit ⇔θ. Usingthisbasis,wehavethefactorization i i To round up the scenario, we need to represent states in Z =σa1⊗···⊗σaN, X =σb1⊗···⊗σbN, (2.6) phasespace. ThediscreteWignerfunction[32]istheappro- α z z β x x priatetool. Itcanbeconsideredasaninvertiblemapping wherea =tr(αθ)andb =tr(βθ)arethecorrespondingex- i i i i pansioncoefficientsforα andβ intheself-dualbasis. 1 W (α,β)= Tr[ρ∆(α,β)], (2.12) Wenextrecall[25,26]thatthegriddefiningthephasespace ρ 2N forNqubitscanbeappropriatelylabeledbythediscretepoints (α,β),whicharepreciselytheindicesoftheoperatorsZ and sothat α X :α isthe“horizontal”axisandβ the“vertical”one. Inthis β gridwecanintroducethesetofdisplacements ρ = ∑∆(α,β)Wρ(α,β). (2.13) α,β D(α,β)=Φ(α,β)Z X , (2.7) α β Theoperationalkernelisdefinedas where Φ(α,β) is a phase required to avoid plugging extra factors when acting with D. A sensible choice for the case 1 ofqubitsisΦ2(α,β)=χ(αβ),whichensurestheHermitic- ∆(α,β)= ∑ χ(αα(cid:48)−ββ(cid:48))D(α(cid:48),β(cid:48)), (2.14) 2N ity of the displacement operators. In addition, we impose α(cid:48),β(cid:48) Φ(α,0)=1andΦ(0,β)=1,whichmeansthatthedisplace- mentsalongthe“position”axisαandthe“momentum”axisβ which,inviewofequation(2.4),canbeinterpretedasadou- arenotassociatedwithanyphase. Thesedisplacementopera- ble Fourier transform of D(α,β). One can check that this torsshiftphasespacepoints,sotheactionofD(α(cid:48),β(cid:48))maps kernel has all the good properties [33]: it is Hermitian, nor- (α,β)(cid:55)→(α+α(cid:48),β+β(cid:48)), justifying their designation. Note malizedandcovariantunderthePauligroup. Asaresult,for that we still have to fix the sign of the phase Φ(α,β). We eachpointonthegrid,thecorrespondingvalueoftheWigner choosethephaseas functioncanbecomputedfromtheprobabilitiesofmeasuring the pure states associated with the lines passing through that Φ(α,β)=itr(αβ)(−1)f(αβ), (2.8) point. 3 15 14 14 12 13 11 12 3 11 13 10 9 9 7 8 6 7 8 6 4 5 2 4 1 3 15 2 10 1 5 0 0 0 1 2 3 4 5 6 7 8 9101112131415 0 510151 2 4 8 6 7 9133111214 FIG.1. Graphicalsketchofcoarsegraining. Hereweconsiderdimension16,anditsdiagonalray,β =α. Thefirstpanelplotsallthelines oftheformβ =α+γ,parametrizedbytheshiftγ. Pointsonthesamelinehavethesamecolour. Axislabelscorrespondtopowersofthe primitiveelementofF ,withtheconventionthatσ0 isdenotedby0andσ15=1. Themiddlepanelshowstheoriginalgridwiththeaxis 16 labelspermutedsuchthatcosetelementsaregroupedtogether. Wecanseethatthisleadstodistinct4×4blockscontainingpointsofexactly fourdifferentcolours.Theseareshownexpandedoutinthesmall,lowerfourgrids.Onenoticesthatthese“coarse”blocksformthediagonal rayandallitstranslatesindimension4,whichweshowsuperimposedinthelastpanel. III. COARSEGRAINING intercept. A large, coarse-grained line is denoted as |L(λ)(cid:105), Cτ wherenowtheinterceptisawholecoset. AsheraldedintheIntroduction,ourgoalistotailorapro- Toeachlineinthefine-grainedphasespacewecanassign cedure that allows us to coarse grain the phase space of a aprojector|(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|,constructedasalinearcombinationof γ γ multiqubit system; i.e., to break it down into simpler sub- thedisplacementoperators. Wechooseasourconventionfor components. therays(γ =0)theall-positivesum Tothisend,weconsiderthenumberNofqubitstobecom- posite,i.e.N=mn.Let{µ0,...,µn−1}beabasisofF2mn with |(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|= 1 ∑D(α,λα). (3.3) respecttoF2m. Wedefine 0 0 2mn α (cid:40) (cid:41) n−1 These lines are eigenstates with eigenvalue +1 for all dis- C0= ∑τjµj | τj∈F2m , (3.1) placement operators in the sum. Projectors with nonzero in- j=1 tercepts are obtained by conjugating that of the ray with an i.e., the subspace made of linear combinations of basis ele- appropriatedisplacementoperator. mentsµ1,...,µn−1withcoefficientsinthebasefieldF2m. We The coarse lines are produced by grouping together lines canusethissetC ,whichwehenceforthrefertoastheinitial withinterceptsinthesamecoset: 0 coset,todecomposethefieldF2mn intocosets: |L(λ)(cid:105)(cid:104)L(λ)|= ∑ |(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|. (3.4) Cτ =τµ0+C0, τ ∈F2m. (3.2) Cτ Cτ γ∈Cτ γ γ The coarse-grained space will be labeled according to these Thepossiblechoicesofslopefortheselineswillbelimitedto cosets. elementsofthesubfieldF2m,asthesehavenaturalanalogues Wecanimaginetheprocessofcoarsegrainingaspartition- betweenthetwofields. ing the grid F2mn×F2mn in such a way that we superimpose AsdiscussedinmoredetailinAppendixB,thecoarserays a grid of size 2m×2m on top, with each superimposed point ofEq.(3.4)canbesimplifiedandrewrittenasthesumofdis- indexed by cosets rather than field elements in the original placementoperators grid. Each point in the coarse grid then contains a sub-grid (cid:34) (cid:35) the same size as Fn−1×Fn−1. To provide some intuition for 1 2m 2m |L(λ)(cid:105)(cid:104)L(λ)|= ∑ ∑ χ(γα) D(α,λα). (3.5) this, we show a visual example of this process in action in C0 C0 2mn Fig.1. λ γ∈C0 Ourprocedureforcoarse-grainingthegridarisesnaturally Onecancheckherethattheinnersumovertheelementsof from consideration of the line structure of phase space. We C will cause some of the displacement operators to vanish. 0 willusethethinlinesinF2mn tocreatethicklinesinthecoarse The sum in brackets in Eq. (3.5) is either zero or a positive phasespace,bygroupingtogetherlineshavingthesameslope, constant. Hence, the projection associated to the thick lines and with intercepts in the same coset. We write thin lines in areasumoverasubsetofthedisplacementoperatorsassoci- thebigfieldF2mn as|(cid:96)(γλ)(cid:105),whereλ istheslope,andγ isthe ated with the thin lines. This leads us to the key idea of our 4 work: rather than measuring all the displacement operators, we measure only those which are present in the rays of the coarse-grainedspace. We note here that the choice of C is not unique, and will 0 ultimatelydeterminetheresultantsetofdisplacementopera- tors. Forexample,aspecialcaseoccurswhenthedimension ofthesystemissquare. Inthiscase,wecanconsidertherela- tionshipbetweenthefieldsasaquadraticfieldextension,i.e. whenn=2. InthiscasewecanpartitionF22m intoF2m×F2m. Wecanthenchoosetheinitialcosetasthecopyofthesubfield FIG.3.Resultantoperatorsfromcoarse-grainingadimension8sys- F2m ⊂F22m: temdowntodimension2.(Leftpanel)Coarsegrainingusingtheba- sis{1,σ,σ2}. Theresultantmeasurementsareunitarilyequivalent C0={σi(2m+1), i=0,...,2m−1}, (3.6) toacasewheretwoofthequbitsremainuntouched. (Rightpanel) Resultant operators when the coarse-graining uses the initial basis whereσ isaprimitiveelementofF2mn andweusethenotation {σ,σ4,σ5}. Hereweobtaintheinterestingresultthatallresultant σ0 for0. Thesubsequentcosetsareobtainedadditivelyfrom operatorscommute. thissubfieldusingtherepresentativesτ =σ2m(i−1)+i. i Finally, the coarse-grained phase space inherits a coarse- grainedWignerfunction. Acoarsekernelcanbeconstructed Another basis for F4/F2 is {1,σ}. Taking all scalar mul- by grouping together kernel operators from the same coset, tiples of µ1 =σ from the prime field gives us C0 ={0,σ}. i.e. WethenobtainC1=1+C0={1,σ2}. Foreachray,wecan list the operators which survive in the inner sum over C in 0 D(C ,C )= ∑ ∑ ∆(α,β). (3.7) Eq. (3.5). Moreover, we can label the points of the coarse- τ ξ α∈Cτβ∈Cξ grained grids by those displacement operators. Disregarding the identity operator, the resulting set {11X,11Z,11Y} consti- Desired properties of a Wigner function all follow from the tutes the appropriate measurements to be performed to de- originalkernel. Aswasthecasewiththedisplacementoper- termine which coarse-grained line they are in. They are es- ators,differingchoicesofthesubsetC willleadtodiffering sentiallyPauli measurementson one ofthe twoqubits inthe 0 Wignerfunctions. system. Alternatively,thedimensionisasquare,sowecanchoose as our initial coset the subfield F : C ={0,1}. This yields 2 0 IV. EXAMPLES the secondcoset C ={σ,σ2}. Weonce againcompute the σ surviving operators using Eq. (3.5). The final result now is {XX,YY,ZZ}. Here, we see that we are making a measure- We illustrate the previous ideas with some relevant exam- mentwiththesamePaulioperatoronbothqubits,therebycap- ples. WehavewrittenaPythonsoftwarepackagecapableof turing the full correlations between the two qubits. Figure 2 generatingallthefollowingresults,whichwemakeavailable showsbothpartitioningmethodssidebyside. online[34] Thefirstnontrivialinstancewecanhaveisthecaseoftwo Ournextexampleisthecaseofdimension8. Wechooseσ qubits,sodimension4. Usingtheirreducibleprimitivepoly- arootoftheirreducibleprimitivepolynomialx3+x+1=0, nomialx2+x+1=0,wehavethatF ={0,1,σ,σ2=σ+1}. 4 Theself-dualbasisis{σ,σ+1},andweuseittoproducethe displacementoperators. FIG. 4. Resultant operators from coarse-graining a dimension 16 systemdowntodimension4. Theleftpanelcontainsthesurviving operatorsfromthegeneralbasismethod,therightpanelfromchoos- ingthesubfieldasC . ThecosetsarelistedinEqs.(4.4)and(4.5) 0 FIG.2.Resultantoperatorsfromcoarse-grainingadimension4sys- respectively.Inthecaseoftheleftpanel,theseoperatorsareunitarily temdowntodimension2.Coloursareindicativeofparticularcoarse equivalenttoasetwheretwoqubitsareuntouchedandthe2-qubit rays. TheleftimagecoarsegrainsbytakingC0={0,σ}, whereas MUBoperatorsareappliedtotherest. Therightpanelhasnosuch thelowerimageusesthesubfieldC0={0,1}. transformation. 5 0.25 0.25 0.04 0.20 0.20 0.02 0.15 0.15 0.00 00..0150 00..0150 Fourier basis Computational− b0a.s0is2 Fourier basis Computational 0ba.0s0is Fourier basis Computational 0ba.0s0is 00..0024 0.10 00..12 Fourier basis Computational− −b000a..s.000i0s42 Fourier basis Computational 0b0a..0s00i5s Fourier basis Computational −b−a000s...i021s FIG.5.(Top)Coarse-grainedWignerfunctionforthestate 1(|00(cid:105)+|11(cid:105))⊗(|00(cid:105)+|11(cid:105)).(Left)TheoriginalWignerfunctionindimension16. 2 Thex-axisrepresentsthecomputationalbasis,inthestandardordering|0000(cid:105),|0001(cid:105),|0010(cid:105),etc. TheFourierbasis,asdefinedviaEq.(2.4), isonthey-axisandissimilarlyordered. (Centre)CoarsegrainingoverF4withthepolynomialbasis{1,σ}. Heretheaxesarenotlabeledby singlestates,butratherbyasetofstatesassociatedwitheachcoset. (Right)Coarsegrainingwiththesubfieldastheinitialcoset. (Bottom) Thesamecoarsegrainingprocedureasabove,butappliedtothestate 1(|0001(cid:105)+|0010(cid:105)+|0100(cid:105)+|1000(cid:105)). 2 andobtainaself-dualbasis{σ3,σ5,σ6}. Anobviouschoice x+σ(cid:48) overF wherewedenoteaprimitiveelementofF as 4 4 forabasisofF /F isapolynomialbasis{1,σ,σ2}. Tocon- σ(cid:48). We know from Eq. (3.6) that σ(cid:48) =σ5, where σ is the 8 2 structC ,wemusttakeallpossiblelinearcombinationsofσ primitive element in F . Then F in F can be written as 0 16 4 16 andσ2withcoefficientsinF . Thisproduces {0,σ5,σ10,σ15=1}. 2 Forthegeneralcase,wechoosethebasis{1,σ}.Takingall C0={0,σ,σ2,σ4}. (4.1) F4-multiples of σ, we obtain C0 ={0,σ,σ6,σ11}. The full setofcosetsis: Weobtainthesecondcosetbyaddingtheremainingsubfield element1toC0: C0={0,σ,σ6,σ11}, Cσ5 ={σ5,σ2,σ9,σ3}, C ={σ10,σ8,σ7,σ14}, C ={1,σ4,σ13,σ12}. σ10 1 C ={1,σ3,σ5,σ6}. (4.2) (4.4) 1 Proceedinginthestandardway,andtakingintoaccountthat The traces of all elements in C0 are 0, and the traces for all aself-dualbasisis{σ3,σ7,σ12,σ13},weobtaintheoperators elementsinC1 are1. Thesurvivingfouroperatorsareshown inFig. 4. Whatis(un)interestingabouttheseoperatorsisthat inFig.3. we can transform them all into operators which completely Using a Clifford transformation, we can “trace out” two ignore two of the qubits. In particular, consider the follow- of the qubits. The sequence of CNOT gates: CNOT12 ingsequenceofoperations: CNOT43 –CNOT32 –CNOT31 – – CNOT13 – CNOT21 – CNOT31 transforms the set into CNOT14 – CNOT24. Application of this to the operators of {X1111,Z1111,Y1111}, so we see that this partitioning is, after thefirstpanelofFig.4yieldsanewsetofoperatorswherethe a global change of basis, equivalent to measuring each Pauli lasttwoqubitscontainonly11,andthefirsttwoqubitscontain ononlyasinglequbit. thefullsetofMUBoperatorsontwoqubits. If we choose instead the basis {σ,σ4,σ5} to build our Alternatively, we can choose our initial coset as the sub- cosets,wegetamoreinterestingresult: field, andthecosetrepresentativesasτ =σ4(i−1)+i. Weob- i tainthecosets C ={0,1,σ4,σ5}, C ={σ,σ2,σ3,σ6}. (4.3) 0 σ C ={0,1,σ5,σ10}, C ={σ,σ4,σ2,σ8}, 0 σ The operators that survive have the form Z X , α,β ∈ C ={σ6,σ13,σ9,σ7}, C ={σ11,σ12,σ3,σ14}. α β σ6 σ11 {0,σ4},yieldingtheoperatorsinFig.3,whichallcommute. (4.5) In this case, we are already ignoring one of the three qubits. Using Eq. (3.5) we get the table shown in the right panel of However,itisnotpossibletofindaCliffordwhichwilltrace Fig.4. Unlikeinthepreviouscase,thereisnotransformation outaremainingoneaswasthecasewiththepolynomialbasis whichwillleadtous‘tracingout’twoofthequbits.However, case. So, in a sense, using this partitioning we are ignoring wecanbringtheseoperatorsintoamorebasicformbyapply- fewerqubitsthanbefore. ingthesequenceCNOT13–CNOT24. Theresultantoperators Dimension 16 is perhaps the first really interesting case. havethepropertythatonthefirsttwoqubits,weonlyhaveX, Firstofall, wecanconsideritintwoways: m=1,n=4, or andonthelasttwoqubitsonlyZ,sothattheyallcommute. m=2,n=2. Essentially,todothepartitioning,wecanlook Toconclude,wepresentsomeofthecoarse-grainedWigner atF asaquarticextensionoverF ,oraquadraticextension functions we obtain using our method. Those in dimensions 16 2 over F . We consider the quadratic case, so we can coarse 4 and 8 are somewhat trivial, so we focus on dimension 16. 4 grain in two ways. We work with F as constructed by the Wignerfunctionsforthestates 1(|00(cid:105)+|11(cid:105))(|00(cid:105)+|11(cid:105))and 16 2 irreducibleprimitivepolynomialx4+x+1overF ,andx2+ 1(|0001(cid:105)+|0010(cid:105)+|0100(cid:105)+|1000(cid:105))arepresentedinFig.5. 2 2 6 RecallinSectionIIthatwecouldassociatetheelementsof A commutative ring is a nonempty set R with two binary F with a basis in our Hilbert space. Then, in the coarse operations, called addition and multiplication, such that it is 2N Wigner functions, when we group the field elements into an Abelian group with respect to addition, and the multipli- cosets,wecanconsiderthisalsoasgroupingtogethertheas- cationisassociative. Themosttypicalexampleistheringof sociatedbasisstates. Hence,theprobabilitiesintheseWigner integersZ,withthestandardsumandmultiplication. Onthe functions become distributed over the cosets which contain otherhand,thesimplestexampleofafiniteringisthesetZ n theconstituentbasisstatesofourtargetstate. Asaresult,the ofintegersmodulon,whichhasexactlynelements. coarseWignerfunctionsresemble‘smoother’versionsofthe A field F is a commutative ring with division, i.e., such originalonetovaryingdegrees. that 0 does not equal 1 and all elements of F except 0 have a multiplicative inverse (note that 0 and 1 here stand for the identity elements for the addition and multiplication, respec- V. CONCLUSIONS tively,whichmaydifferfromthefamiliarrealnumbers0and 1). Elements of a field form Abelian groups with respect to addition and multiplication (in this latter case, the zero ele- Compared to the continuous Wigner function, the discrete mentisexcluded). NotethatthefiniteringZ isafieldifand Wignerfunctionisanadolescentformulation,slowlydevelop- d onlyifd isaprimenumber. ingintoadultmaturity. Discretephasespaceimposesseveral The characteristic of a finite field is the smallest positive new challenges, which leads to an intricate mapping of the integerd suchthat Wignerfunction. Ourcoarsegrainingprocedureshowsawaytofacilitateour 1+1+...+1=0 (A1) understandingwhenthenumberofqubitsishigh. Whileitis (cid:124) (cid:123)(cid:122) (cid:125) alwayspossibletoignorepartofthesystemandtodetermine dtimes thefullWignerfunctionoftheresultingreduceddensityma- and it is always a prime number. Any finite field contains a trix,ourapproachallowsmorechoicesregardingwhichinfor- prime subfield Z and has dn elements, where n is a natural d mationofthewholesystemismeasured. Inanotherextremal number. Moreover, the finite field containing dn elements is case,thecoarse-grainedWignerfunctioniscompletelydeter- uniqueuptoisomorphismandiscalledtheGaloisfieldFdn. minedbyasetofcommutingoperatorsthatcanbemeasured We denote as Z [x] the ring of polynomials with coeffi- simultaneously. d cients in Z . If P(x) is an irreducible polynomial of degree d However, several open questions remain. An obvious n(thatis,onethatcannotbefactorizedoverZ ),thequotient d next step would be to extend the coarse graining procedure spaceZd[X]/P(x)providesanadequaterepresentationofFdn. to multi-qudit systems. Furthermore, knowing the coarse- Its elements can be written as polynomials that are defined grainedfunction,doesthereexistanothersubsetofmeasure- modulo the irreducible polynomial P(x). The multiplicative ments which will allow us to zoom in on specific areas of it group of Fdn is cyclic and its generator is called a primitive andgainmoreinformation? Alogicalfirstchoicewouldbeto elementofthefield. extendthesetofmeasurementssuchthattheyincludeallop- As a trivial example of a nonprime field, we consider the eratorsthatcorrespondtoslopesinthesubfield. Forexample, polynomialx2+x+1=0,whichisirreducibleoverZ .Ifσ is inthedimension16case,wewouldmeasurealloperatorsfor 2 arootofthispolynomial,theelements{0,1,σ,σ2=σ+1= theraysα=0andβ =λα,λ ∈{0,σ5,σ10,σ15},ratherthan σ−1}formthefinitefieldF andσ isaprimitiveelement. justthreefromeach. Thisstrategywouldallowustooptimize 22 Abasicmapisthetrace measurementsinaverysubtleway. Workalongtheselinesis inprogress. tr(α)=α+αd+...+αdn−1. (A2) The image of the trace is always in the prime field Z and d VI. ACKNOWLEDGMENTS satisfies O.D.M.isfundedbyCanada’sNSERC.Sheisalsograteful tr(α+α(cid:48))=tr(α)+tr(α(cid:48)). (A3) for hospitality at the MPL. IQC is supported in part by the GovernmentofCanadaandtheProvinceofOntario. L.L.S.S. Intermsofitwedefineanadditivecharacteras acknowledges financial support from the Spanish MINECO (cid:20) (cid:21) 2πi (GrantNo. FIS2015-67963-P). χ(α)=exp tr(α) , (A4) d whichpossessestwoimportantproperties: AppendixA:Finitefields χ(α+α(cid:48))=χ(α)χ(α(cid:48)), ∑ χ(αα(cid:48))=dnδ . 0,α Inthisappendixwebrieflyrecallsomebackgroundneeded α(cid:48)∈Fdn for this paper. The reader interested in more mathematical (A5) details is referred, e.g., to the excellent monograph by Lidl Any finite field Fdn can be also considered as an n- andNiederreiter[35]. dimensionallinearvectorspaceoveritsprimefieldF . Given d 7 abasis{θ },(j=1,...,n)inthisvectorspace,anyfieldele- projectorsfortherays, j mentcanberepresentedas 1 1 |(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|= ∑D(α,λα)= ∑Φ(α,λα)Z X . n 0 0 2mn 2mn α λα α α α = ∑ajθj, (A6) (B1) j=1 AsmentionedinSec.II,theprojectorsfortheshiftedlinescan beobtainedbyapplyinganappropriatedisplacementoperator withaj ∈Zd. Inthisway, wemapeachelementofFdn onto toinduceatransformation. Letusignorefornowtheraywith anorderedsetofnaturalnumbersα ⇔(a1,...,an). infiniteslope,α=0.Thenfortherestoftherays,wecanshift Twobases{θ1,...,θn}and{θ1(cid:48),...,θn(cid:48)}aredualwhen themverticallybyapplyingthedisplacementoperatorsofthe formD(0,γ): tr(θ θ(cid:48))=δ . (A7) k l k,l 1 |(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|= ∑D(0,γ)D(α,λα)D†(0,γ) γ γ 2mn A basis that is dual to itself is called self-dual. A self-dual α basisexistsifandonlyifeitherd isevenorbothnandd are = 1 ∑Φ(α,λα)X Z X X , (B2) odd. 2mn γ α λα γ α There are several natural bases in Fdn. One is the polyno- wherewerecalltheconventionthatallthephasesΦ(0,γ)=1. mialbasis,definedas Here,wecanmakefurtheruseofthecommutationrelation inEq.(2.3). Weobtain {1,σ,σ2,...,σn−1}, (A8) 1 |(cid:96)(λ)(cid:105)(cid:104)(cid:96)(λ)|= ∑Φ(α,λα)χ(γα)Z X where σ is a primitive element. An alternative is a normal γ γ 2mn α λα α basis,constitutedof 1 = ∑χ(γα)D(α,λα). (B3) 2mn {σ,σd,...,σdn−1}. (A9) Itisthenstraightforwardtoαseethatthethickrays,whichare obtainedbysummingoverallinterceptsγ incosetC ,canbe 0 Theappropriatechoiceofbasisdependsonthespecificprob- writtenas lem at hand. For example, in F22 the elements {σ,σ2} are (cid:34) (cid:35) bothrootsoftheirreduciblepolynomial. Thepolynomialba- |L(λ)(cid:105)(cid:104)L(λ)|= 1 ∑ ∑ χ(γα) D(α,λα). (B4) sis is {1,σ} and its dual is {σ2,1}, while the normal basis C0 C0 2mn {σ,σ2}isself-dual. λ γ∈C0 Finally,wementionthatfortheinfiniteslopetheanalysispro- ceedsinexactlythesameway,butthatthelinesaretranslated by displacement operators of the form D(γ,0) and Eq. (2.3) AppendixB:Derivationofequationforlineoperators givesusχ(γβ)instead. Only those operators which have a non-zero term in the Herewepresentthederivationofourequationforthesur- sum will contribute, thus we consider them as the effective viving displacement operators. We begin by considering the displacementoperatorsinthecoarsephasespace. [1] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics [8] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eis- withultracoldgases,”Rev.Mod.Phys.80,885–964(2008). ert,“Quantumstatetomographyviacompressedsensing,”Phys. [2] R. Blatt and C. F. Roos, “Quantum simulations with trapped Rev.Lett.105,150401(2010). ions,”Nat.Phys.8,277–284(2012). [9] M.Cramer,M.B.Plenio,S.T.Flammia,R.Somma,D.Gross, [3] M.G.A.ParisandJ.Rˇeha´cˇek,eds.,QuantumStateEstimation, S.D.Bartlett,O.Landon-Cardinal,D.Poulin, andY.K.Liu, Lect.Not.Phys.,Vol.649(Springer,Berlin,2004). “Efficientquantumstatetomography,”Nat.Commun.1,149EP [4] V.Buzˇek,R.Derka,G.Adam, andP.L.Knight,“Reconstruc- (2010). tionofquantumstatesofspinsystems:FromquantumBayesian [10] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quan- inference to quantum tomography,” Ann. Phys. 266, 454–496 tumtomographyviacompressedsensing:errorbounds,sample (1998). complexityandefficientestimators,”NewJ.Phys.14,095022 [5] R. Schack, T. A. Brun, and C. M. Caves, “Quantum Bayes (2012). rule,”Phys.Rev.A64,014305(2001). [11] O.Landon-CardinalandD.Poulin,“Practicallearningmethod [6] F.Husza´randN.M.T.Houlsby,“AdaptiveBayesianquantum for multi-scale entangled states,” New J. Phys. 14, 085004 tomography,”Phys.Rev.A85,052120–(2012). (2012). [7] ChristopherGranade,JoshuaCombes, andDGCory,“Practi- [12] T.Baumgratz,D.Gross,M.Cramer, andM.B.Plenio,“Scal- calBayesiantomography,”NewJ.Phys.18,033024(2016). ablereconstructionofdensitymatrices,”Phys.Rev.Lett.111, 8 020401(2013). [24] A.B.Klimov, L.L.Sa´nchez-Soto, andH.deGuise,“Multi- [13] G.To´th,W.Wieczorek,D.Gross,R.Krischek,C.Schwemmer, complementaryoperatorsviafiniteFouriertransform,”J.Phys. andH.Weinfurter,“Permutationallyinvariantquantumtomog- A38,2747–2760(2005). raphy,”Phys.Rev.Lett.105,250403(2010). [25] W.K.Wootters,“Picturingqubitsinphasespace,”IBMJ.Res. [14] T.Moroder,P.Hyllus,G.To´th,C.Schwemmer,A.Niggebaum, Dev.48,99–110(2004). S.Gaile,O.Gu¨hne, andH.Weinfurter,“Permutationallyinvari- [26] K.S.Gibbons,M.J.Hoffman, andW.K.Wootters,“Discrete antstatereconstruction,”NewJ.Phys.14,105001(2012). phase space based on finite fields,” Phys. Rev. A 70, 062101 [15] A. B. Klimov, G. Bjo¨rk, and L. L. Sa´nchez-Soto, “Opti- (2004). malquantumtomographyofpermutationallyinvariantqubits,” [27] A.B.Klimov,J.L.Romero,G.Bjo¨rk, andL.L.Sa´nchez-Soto, Phys.Rev.A87,012109(2013). “Geometricalapproachtomutuallyunbiasedbases,”J.Phys.A [16] J. Rˇeha´cˇek, S. Olivares, D. Mogilevtsev, Z. Hradil, M. G. A. 40,3987–3998(2007). Paris,S.Fornaro,V.D’Auria,A.Porzio, andS.Solimeno,“Ef- [28] A.B.Klimov,J.L.Romero,G.Bjo¨rk, andL.L.Sa´nchez-Soto, fectivemethodtoestimatemultidimensionalGaussianstates,” “Discrete phase-space structure of n-qubit mutually unbiased Phys.Rev.A79,032111(2009). bases,”Ann.Phys.324,53–72(2009). [17] P.Castiglione,M.Falcioni,A.Lesne, andA.Vulpiani,Chaos [29] C.Mun˜oz,A.B.Klimov, andLLSa´nchez-Soto,“Symmetric andCoarseGraininginStatisticalMechanics(CambridgeUni- discrete coherent states for n-qubits,” J. Phys. A 45, 244014 versityPress,Cambridge,2008). (2012). [18] S. R. White, “Density matrix formulation for quantum renor- [30] W.K.WoottersandB.D.Fields,“Optimalstate-determination malizationgroups,”Phys.Rev.Lett.69,2863–2866(1992). bymutuallyunbiasedmeasurements,”Ann.Phys.191,363–381 [19] I.ChuangandM.Nielsen,QuantumComputationandQuan- (1989). tum Information (Cambridge University Press, Cambridge, [31] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and 2000). F.Vatan,“Anewprooffortheexistenceofmutuallyunbiased [20] M.Grassl,M.Ro¨tteler, andT.Beth,“Efficientquantumcircuits bases,”Algorithmica34,512–528(2002). for non-qubit quantum error-correction codes,” Int. J. Found. [32] G.Bjo¨rk,A.B.Klimov, andL.L.Sa´nchez-Soto,“Thediscrete Comput.Sci.14,757–775(2003). Wignerfunction,”Prog.Opt.51,469–516(2008). [21] A.Vourdas,“QuantumsystemswithfiniteHilbertspace,”Rep. [33] R.L.Stratonovich,“Ondistributionsinrepresentationspace,” Prog.Phys.67,267–320(2004). Sov.Phys.JETP31,1012–1020(1956). [22] A.Vourdas,“QuantumsystemswithfiniteHilbertspace: Ga- [34] https://github.com/glassnotes/balthasar. loisfieldsinquantummechanics,”J.Phys.A40,R285–R331 [35] R. Lidl and H. Niederreiter, Introduction to Finite Fields and (2007). their Applications (Cambridge University Press, Cambridge, [23] E. Binz and S. Pods, The Geometry of Heisenberg Groups 1986). (AmericanMathematicalSociety,Providence,2008).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.