ebook img

CO2 Hydrogenation Catalysis PDF

305 Pages·2021·9.996 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CO2 Hydrogenation Catalysis

CO Hydrogenation Catalysis 2 CO Hydrogenation Catalysis 2 Edited by Yuichiro Himeda Editor All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Dr. Yuichiro Himeda publisher do not warrant the information National Institute of Advanced contained in these books, including this book, to be Industrial Science and Technology free of errors. Readers are advised to keep in mind AIST Tsukuba West, 16‐1 Onogawa that statements, data, illustrations, procedural 305‐8569 Tsukuba, Ibaraki details or other items may inadvertently be Japan inaccurate. Cover Library of Congress Card No.: Cover Design: Wiley applied for Cover Image: Courtesy of Yuichiro Himeda British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d‐nb.de>. © 2021 WILEY‐VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Print ISBN: 978‐3‐527‐34663‐9 ePDF ISBN: 978‐3‐527‐82409‐0 ePub ISBN: 978‐3‐527‐82410‐6 oBook ISBN: 978‐3‐527‐82411‐3 Typesetting SPi Global, Chennai, India Printing and Binding Printed on acid‐free paper 10 9 8 7 6 5 4 3 2 1 Himeda_ffirs.indd 4 19-02-2021 18:31:28 v Contents Preface xi 1 Introduction 1 Yuichiro Himeda and Matthias Beller 1.1 Direct Use of CO 1 2 1.2 Chemicals from CO as a Feedstock 2 2 1.3 Application and Market Studies of CO Hydrogenation Products 4 2 1.3.1 Formic Acid/Formate 4 1.3.2 Methanol 4 1.3.3 Methanation 5 1.3.4 Energy Storage 6 1.4 Supply of Materials 6 1.4.1 CO Supply 6 2 1.4.2 Energy and H Supply 8 2 1.5 Political Aspect: Tax 9 1.6 Conclusion and Perspectives 9 References 10 2 Homogeneously Catalyzed CO Hydrogenation to Formic Acid/Formate 2 by Using Precious Metal Catalysts 13 Wan-Hui Wang, Xiujuan Feng and Ming Bao 2.1 Introduction 13 2.2 Ir Complexes 14 2.2.1 Ir Complexes with N,N-ligands 14 2.2.1.1 Tautomerizable N,N-ligands with OH Groups 14 2.2.1.2 N,N-ligands with NH Group 30 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups 32 2.2.1.4 Tautomerizable N,N-ligands with Amide Group 33 2.2.2 Ir Complexes with C,N- and C,C-ligands 34 2.2.3 Ir Complexes with Pincer Ligands 35 2.3 Ru Complexes 37 2.3.1 Ru Complexes with Phosphorous Ligands 38 vi Contents 2.3.2 Ru Complexes with N,N- and N,O-ligands 40 2.3.3 Ru Complexes with Pincer Ligands 41 2.4 Rh Complexes 46 2.5 Summary and Conclusions 49 References 49 3 Homogeneously Catalyzed CO Hydrogenation to Formic Acid/Formate with 2 Non-precious Metal Catalysts 53 Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera 3.1 Introduction 53 3.2 Iron-Catalyzed CO Hydrogenation 55 2 3.2.1 Non-pincer-Type Iron Complexes 56 3.2.2 Pincer-Type Iron Complexes 63 3.3 Cobalt-Catalyzed CO Hydrogenation 69 2 3.4 Nickel-Catalyzed CO Hydrogenation 73 2 3.5 Copper-Catalyzed CO Hydrogenation 77 2 3.6 Manganese-Catalyzed CO Hydrogenation 78 2 3.7 Other Non-precious Metals for CO Functionalization 81 2 3.8 Conclusions and Perspectives 85 References 86 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol 89 Sayan Kar, Alain Goeppert and G. K. Surya Prakash 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89 4.2 Heterogeneous Catalysis for CO to Methanol 91 2 4.3 Homogeneous Catalysis – An Alternative for CO to Methanol 92 2 4.3.1 Benefits of Homogeneous Catalysis 92 4.3.2 CO Hydrogenation to Methanol Through Different Routes 92 2 4.3.3 The First Homogeneous System for CO Reduction to Methanol 93 2 4.3.4 Indirect CO Hydrogenation 94 2 4.3.5 Direct CO Hydrogenation 97 2 4.3.5.1 Through Formate Esters 97 4.3.5.2 Through Oxazolidinone or Formamides 100 4.3.6 CO to Methanol via Formic Acid Disproportionation 108 2 4.4 Conclusion 109 References 110 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts 113 Xiuli Yan and Xinzheng Yang 5.1 Introduction 113 5.2 H Activation and CO Insertion Mechanisms 114 2 2 5.2.1 Hydrogen Activation 114 5.2.2 Insertion of CO 115 2 Contents vii 5.3 Hydrogenation of CO to Formic Acid/Formate 118 2 5.3.1 Catalysts with Precious Metals 118 5.3.2 Catalysts with Non-noble Metals 128 5.4 Hydrogenation of CO to Methanol 133 2 5.5 Summary and Conclusions 142 References 145 6 Heterogenized Catalyst for the Hydrogenation of  CO2 to Formic Acid or Its Derivatives 149 Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon 6.1 Introduction 149 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150 6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161 6.5 Concluding Remarks and Future Directions 172 References 173 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate 179 Kohsuke Mori and Hiromi Yamashita 7.1 Introduction 179 7.2 Unsupported Bulk Metal Catalysts 180 7.3 Unsupported Metal Nanoparticle Catalysts 181 7.3.1 Metal Nanoparticles Without Stabilizers 181 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183 7.4 Supported Metal Nanoparticle Catalysts 184 7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185 7.4.3 Metal Nanoparticles Supported on Al O 189 2 3 7.4.4 Metal Nanoparticles Supported on TiO 191 2 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194 7.5 Embedded Single-Atom Catalysts 198 7.6 Summary and Conclusions 202 References 203 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols 207 Nat Phongprueksathat and Atsushi Urakawa 8.1 Introduction 207 8.2 CO Hydrogenation to Methanol – Past to Present 207 2 8.2.1 Syngas to Methanol 207 8.2.2 CO to Methanol 208 2 8.2.3 Thermodynamic Consideration – Chemical and Phase Equilibria 212 8.2.4 Catalyst Developments 215 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217 viii Contents 8.2.6 Beyond Industrial Cu/ZnO/Al O Catalysts 223 2 3 8.3 CO Hydrogenation to Ethanol and Higher Alcohols – Past to Present 226 2 8.3.1 Background 226 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227 8.3.2.1 Modified-Methanol Synthesis Catalyst 227 8.3.2.2 Modified Fischer–Tropsch Catalysts 230 8.3.2.3 Rhodium-Based Catalysts 231 8.3.2.4 Modified Molybdenum-Based Catalysts 232 8.4 Summary 232 References 233 9 Homogeneous Electrocatalytic CO2 Hydrogenation 237 Cody R. Carr and Louise A. Berben 9.1 CO2 Reduction to C─H Bond-Containing Compounds: Formate or Formic Acid 237 9.1.1 Survey of Catalysts 238 9.1.1.1 Group 9 Metal Complexes 238 9.1.1.2 Group 8 Metal Complexes 241 9.1.1.3 Nickel Complexes 244 9.1.1.4 Iron and Iron/Molybdenum Clusters 246 9.1.2 Hydride Transfer Mechanisms in CO Reduction to Formate 247 2 9.1.2.1 Terminal Hydrides 247 9.1.2.2 Bridging Hydrides 248 9.1.3 Kinetic Factors in Catalyst Design 249 9.1.3.1 Roles of Metal–Ligand Cooperation 249 9.1.3.2 Roles of Multiple Metal–Metal Bonds 250 9.1.4 Thermochemical Considerations in Catalyst Design 253 9.1.4.1 Selectivity for Formate over H as a Function of Hydricity 254 2 9.1.4.2 Solvent Dependence of Hydricity 255 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One C─H Bond 255 References 257 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol 259 Naoya Onishi and Yuichiro Himeda 10.1 Introduction 259 10.2 Formic Acid Dehydrogenation 260 10.2.1 Organic Solvent Systems 260 10.2.1.1 Ru 260 10.2.1.2 Ir 266 10.2.1.3 Fe 268 Contents ix 10.2.2 Aqueous Solution Systems 270 10.2.2.1 Ru 270 10.2.2.2 Ir 272 10.3 Aqueous-phase Methanol Dehydrogenation 275 10.3.1.1 Ir 279 10.3.1.2 Non-precious Metals 279 10.4 Conclusion 281 References 282 Index 285 xi Preface Carbon dioxide is widely considered to be primarily responsible for global climatic changes. Presently, scientists are facing enormous challenges in mitigating the global CO emis- 2 sions. Significant progress has recently been achieved in the research topic of the catalysis of CO hydrogenation, as one of the most important subjects in chemistry. In addition, the 2 paradigm shift from fossil fuels to low‐carbon renewable energy (solar photovoltaics and wind) in recent years will allow for the competition between the CO emission by energy 2 consumption and its fixation by CO conversion. In future, advancement in the fields of 2 carbon capture and utilization is expected. I would like to thank all the authors, who are all acknowledged as world expert in their area of CO hydrogenation, for their enthusiastic efforts to present recent advances in CO 2 2 hydrogenation. Their state‐of‐the‐art research gives exceptionally beneficial information to the researchers, teachers, and students who are interested in the research field of CO 2 hydrogenation. I anticipate that their contributions will stimulate further study in CO 2 utilization as well as CO hydrogenation. I would also like to thank the Wiley‐VCH team for 2 their continuous support. Finally, I deeply appreciate the members of my research group for their valuable assistance, especially Dr. Ryoichi Kanega for the cover design, and Dr. Hide Kambayashi for data survey. In the spring and summer of 2020, the world has been hit by the COVID‐19 pandemic. Despite these difficult times, I am delighted that this book could be completed. July 2020 Yuichiro Himeda National Institute of Advanced Industrial Science and Technology, Global Zero Emission Research Center, Tsukuba, Japan

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.