ebook img

Co-genesis of Matter and Dark Matter with Vector-like Fourth Generation Leptons PDF

0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Co-genesis of Matter and Dark Matter with Vector-like Fourth Generation Leptons

Co-genesis of Matter and Dark Matter with Vector-like Fourth Generation Leptons ChiaraArinaa,RabindraN.Mohapatrab,NarendraSahuc aGRAPPAInstitute,UniversityofAmsterdam,SciencePark904,1090GLAmsterdam,Netherlands bMarylandCenterforFundamentalPhysicsandDepartmentofPhysics,UniversityofMaryland,CollegePark,Maryland20742,USA cDepartmentofPhysics,IITHyderabad,OrdnanceFactoryCampus,Yeddumailaram502205,Medak,AP Abstract We discuss aspects of a scenario for co-genesis of matter and dark matter which extends the standard model by adding a fourth generationvector-likeleptondoubletandshowthatifthefourthneutrinoisamassivepseudo-Diracfermionwithmassinthefew hundredGeVrangeandmasssplittingofabout100keV,itslightercomponentcanbeaviableinelasticdarkmattercandidate. Its 3 relicabundanceisproducedbytheCPviolatingout-of-equilibriumdecayofthetype-IIseesawscalartriplet,whichalsogivesrise 1 totherequiredbaryonasymmetryoftheUniverseviatype-IIleptogenesis,thusprovidingasimultaneousexplanationofdarkmatter 0 2andbaryonabundanceobservedtoday. Moreover, theinducedvacuumexpectationvalueofthesamescalartripletisresponsible forthesub-eVMajoranamassestothethreeactiveneutrinos. Astablefourthgenerationofneutrinosiselusiveatcollider,however n mightbedetectedbycurrentdarkmatterdirectsearchexperiments. a J Keywords: Darkmattertheory;theoriesbeyondthestandardmodel;baryonasymmetry;neutrinotheory. 0 3 ] 1. Introduction tons,probablythemoststringentboundistheZinvisiblewidth h measuredatLEP,becauseitprovidesstrongevidenceforonly p Dark Matter (DM), which constitutes 23% of the total en- three family of light neutrinos. A 4th generation neutrino, if - pergy budget of the Universe is currently supported by the ro- present, should be very distinct in nature from the three SM etation curve of galaxies and clusters, gravitational lensing and neutrinos. Indeeditshouldbeheavierthanatleastm /2,inor- hlargescalestructureoftheUniverse. Theseindirectevidences dertoavoidconflictwithZ decaywidthmeasuremenZt. There- [ suggestthattheDMshouldbemassive,electricallyneutraland fore the model of fourth generation leptons we present is dis- 2stableonthecosmologicaltimescale[1].Theonlyinformation tinctfromtheideaofsequentialrepetitionoftheSMfermionic vabout DM hitherto known is its relic abundance which is pre- families. 5 ciselymeasuredbytheWilkinsonMicrowaveAnisotropyProbe Asiswell-known,insimpleheavyfourthgenerationexten- 3 4(WMAP)[2]andisgivenbyΩDMh2 = 0.11. However,theun- sions of SM, the heavy neutrino (N4), which is part of a lep- 0derlyingmechanismwhichgivesrisetotherelicabundanceis ton doublet L ≡ (N ,E ), does not qualify as a dark matter 4 4 4 1.unknown. since rapid N4N¯4 annihilation to SM particles via Z-exchange 1 Itisusuallypresumedthataweaklyinteractingmassivepar- reduces its relic density to a value far below what is required 2ticle of mass O(100) GeV can be a good candidate for DM as for it to be a viable DM candidate as well as is excluded by 1its annihilation cross-section < σ|v| >≈ 3×10−26cm3/s satis- directDMsearchesduetoitscouplingwiththeZ boson. Our v:fiestherequirementofrelicabundance,becauseitisproduced modelforthefourthgenerationneutrino N ishoweverdiffer- 4 iby the standard thermal freeze-out mechanism [3]. However, ent: in addition to being part of a vector-like doublet, it has X an alternative mechanism has been explored in the literature, twoadditionalfeatures,whichendowitwiththepropertiesthat arwheretherelicabundanceofDMoriginatesviatheasymmetric makeitaviabledarkmattercandidate. (i)N4isapseudo-Dirac component rather than the symmetric component of any sta- neutrino, whose Majorana mass arises from the vev (vacuum ble species. In this case, the relic abundance depends on the expectation value) of a Y = 2 Higgs triplet ∆, acquired below amount of CP-violation in the theory, in a similar way to the electroweak(wk)phasetransition. Wewillcallthisthetype-II baryogenesismechanism[4–39]. seesaw Higgs field, which anyway is present in our model to In this article we study the possibility of adding a vector- make the familiar active neutrinos acquire mass via the type- like lepton doublet to the standard model (SM) whose neutral II seesaw mechanism. The presence of this Majorana mass member (to be called fourth neutrino henceforth) could be a makes it an inelastic dark matter [49], that has the advantage candidateforDM.Indeedafourthgenerationoffermions[40– offittingtheresultsofcurrentDMsearchexperimentsandnot 46]isoneofthesimplestextensionofphysicsbeyondtheSM beingexcludedbyupperlimits. Tokeepthefourthfamilylep- with rich phenomenology and also extensively searched for at ton doublet stable, we then impose an extra Z symmetry on 2 colliders. Thepropertiesofthenewfamilyaresubjecttotight the model under which the fourth family lepton doublet L is 4 constraints from electroweak precision measurements and by oddandallotherfieldsofthetheoryareeven[50,51]: besides directsearches[47,48]. Consideringthefourthgenerationlep- PreprintsubmittedtoPhysicsLetterB January31,2013 thefourthfamilyneutrinobeinglighterthanthecorresponding 2.1. TripletSeesawandSub-eVMajoranaMassesofThreeAc- chargedlepton,itisdecoupledfromtheotherleptondoublets. tiveNeutrinos (ii)Secondly,thedecayofthetwotype-IIseesawHiggstriplets In addition to the vector-like lepton doublet, we add two via their CP violating coupling produces an asymmetry in the scalartriplets∆ withY =2. Sincethehyperchargeof∆is2, 1,2 fourthfamilyleptonnumber,whichislargeenoughsothatthe it can have bilinear coupling to Higgs doublet H as well as to depletion problem of relic density alluded to above does not theleptondoublets.Thescalarpotentialinvolving∆(fromhere occur. In fact, this asymmetry is comparable to the ordinary onwedropthesubscriptsforthetwoscalartripletsandreferto leptonnumbergeneratedinthesamedecaywhichgivesriseto themlooselyas∆)andHcanbewrittenasfollows: the matter anti-matter asymmetry in the Universe via leptoge- nesis [50, 51]. Both asymmetries can be comparable to each V(∆,H) = M2∆†∆+ λ∆(∆†∆)2−M2H†H otherinrealisticmodels. Inotherwords,thetripletmassscale ∆ 2 H λ issuperheavysothatitsCPviolatingout-of-equilibriumdecay + H(H†H)2+λ∆HH†H∆†∆ can produce asymmetry simultaneously in the DM and lepton 2 sectorandabovetheelectroweakphasetransitiontemperature, + √1 (cid:104)µ ∆†HH+h.c.(cid:105) . (1) H the lepton asymmetry for the familiar leptons gets converted 2 to the baryon asymmetry via SU(2) sphalerons [52]. In this L Thebi-linearcouplingsofleptonsandHiggstoscalartripletare case,wewanttoemphasizethatthegeneratedleptonasymme- givenby: try in the fourth generation does not get converted to baryon viasphaleronprocessessinceL beingavector-likedoublet,it 1 (cid:104) (cid:105) doesnotcontributetotheB+La4nomalyofthestandardmodel. −L⊃ √ fHM∆∆†HH+(fL)α,β∆LαLβ+h.c. , (2) 2 Ontheotherhandthesymmetriccomponentgetsdepletedvia rapidannihilation,i.e. Z-exchange. Thecommonoriginoftwo where fH = µH/M∆ and α,β = 1,2,3. Below electroweak asymmetries from the ∆ decay then naturally explain the sim- phasetransitionthescalartripletacquiresaninducedvev: ilarorderofmagnitudefortheDM-to-baryonratioandbyad- v2 justingthemassesandcouplingsinbothsectors,onecanhave (cid:104)∆(cid:105)=−fH √ , (3) Ω /Ω ∼ 5. Thus our model provides another example of 2M∆ DM B co-genesisofmatteranddarkmatter. wherev=(cid:104)H(cid:105)=246GeV.Thevalueof(cid:104)∆(cid:105)isupperboundedto It is worth mentioning that in this paper we focus on the bearound1GeVinordernottospoiltheSMprediction:ρ≈1. model building aspects of the co-genesis mechanism with re- The∆L L couplinggivesMajoranamassestothreeflavorsof α β specttoRef.[50,51]andtrytoaddresssomeissuesaboutthe activeneutrinosas: viability of the scenario described above that were left unex- √ v2 plored. In particular we propose a mechanism to introduce (M ) = 2f (cid:104)∆(cid:105)=−f f √ . (4) ν αβ αβ L,αβ H a splitting in mass between the neutral and charged partner 2M∆ of the vector-like doublet and we investigate the survival of Taking M∆ ∼ 1010 GeV, fH ∼ 1 and fL ∼ O(10−4) we get the asymmetry at electroweak phase transition. Lastly we up- M ∼ O(eV), which is compatible with the observed neutrino ν date the direct detection part with the latest data release by oscillationdata[58–60]. XENON100[53],investigateifthemodelmightaccommodate theexcessseenbytheCRESST-IIdetector[54]andifthereis 2.2. TripletSeesawandPseudo-DiracmassoffourthGenera- acompatibilitywiththeKIMSexclusionbound[55]. tionNeutrino Our letter is organised as follows. In section 2 we present TheLagrangianthatgivesthe4thfamilyneutrinoitsmass the model for a fourth generation of fermions, discussing in isgivenby: section4constraintsfromelectroweakprecisionmeasurements and direct searches at colliders. The phenomenology for gen- f −L = M L L + √4 Lciτ ∆L +h.c. (5) eratingtheasymmetriesandthemeasuredDM-to-baryonratio L4−mass D 4 4 2 4 2 4 ispresentedinsection3togetherwiththeconstraintsfromDM directsearches. Wethensummarizeinsection5. where MD generates the Dirac mass of the N4. Below elec- troweak phase transition ∆ acq√uires an induced vev and gen- erates a Majorana mass m = 2f (cid:104)∆(cid:105) for N . Therefore, the 4 4 2. FourthGenerationPseudo-DiracNeutrinoasDM DiracspinorN canbewrittenassumoftwoMajoranaspinors 4 (N )and(N ). AsaresulttheLagrangian(5)becomes: Fourthfamilyneutrinohasbeenstudiedasadarkmatterin 4,L 4,R gaugeextensionsofthestandardmodelbyseveralauthors[42, −L = M (cid:104)(N )((N )+((N )((N )(cid:105) 43,56,57]. Inthisstudy,wefocusonavectorlike4thgenera- L4−mass D 4,L 4,R 4,R 4,L (cid:104) (cid:105) tionleptondoublet,L4,whichwillgiveacandidateofinelastic + m (N4,L)c(N4,L)+(N4,R)c(N4,R) . (6) DM and being vector-like will not need the new set of quarks This implies that there is a 2 × 2 mass matrix for the fourth foranomalycancellation. generation neutrino in the basis {N ,N }. By diagonalising 4,L 4,R the mass matrix we get the two mass eigenstates N and N 1 2 2 withmasseigenvalues(MD−m)and(MD+m). Thusthemass where X∆ = n∆/s, with s = (2π2/45)g∗T3 the entropy den- splittingbetweenthetwostatesisgivenby: sity and n∆ the number density of the triplet scalar. ηL, ηL4 √ aretheefficiencyfactorswhichtakeintoaccountthedepletion δ=2m=2 2f4(cid:104)∆(cid:105). (7) ofasymmetriesduetothenumberviolatingprocessesinvolving L ,L andH.Atatemperatureaboveelectroweakphasetransi- Weassumethatthemasssplittingissmall,namelyδ∼O(100) α 4 tiontheleptonasymmetrygetsconvertedtobaryonasymmetry keV,comparedtothemassscaleofthesestates,whichisofor- viatheSU(2) sphaleronsas: der 100 GeV. Therefore, the two mass eigenstates are pseudo- L DiractypeneutrinoandactasinelasticDM.Thelighterofthem Y =−0.55Y . (11) B L is indeed stable, because of the discrete Z symmetry we im- 2 posed. Besides the fourth generation being inert, namely it As noted in [50, 51], the primordial L4 asymmetry is much does not couple to the three SM families of fermions, it does largerthantheprimordialvalueofthefamiliarleptonasymme- not couple neither to the Higgs boson, implying that all the trybyafactorof f2/f2(nearly108).Theenhancedannihilation H L YukawacouplingstotheSMHiggsfieldarezero. Themasses rateof L4 causesamuchstrongerwash-outof(cid:15)L4 viathepro- ofthevector-like4thgenerationarethereforenotlinkedtoelec- cesses L4L4 → HH than of the corresponding asymmetry (cid:15)L troweaksymmetrybreakingandarenotpredictedbythemodel. forfamiliarleptons,whosecouplingsaremuchsmaller. Using We however suppose them at the electroweak scale and take thisandtheequations(10)and(11),wegettheDMtobaryon intoaccounttheconstraintsfromLEPdirectsearches. abundance: Ω 1 m (cid:15) η 2.3. Masssplittingbetweenthechargedandneutralcomponent ΩDM = 0.55 mN4 (cid:15)L4 ηL4 , (12) B p L L ofL 4 where m ∼ 1 GeV is the proton mass and η represent the Animportantpartofthediscussionofdarkmatterneutrino p L4,L wash out effect. The details of the numerics can be found in inourmodelisthesplittingbetweenthechargedandtheneutral references[50,51], whereaphenomenologicalanalysisofthe memberofthefourthgenerationleptondoublet. Asimpleway parameterspacesatisfyingΩ ∼5Ω hasbeenrealized. Here toachievethiswithoutdisturbingotheraspectsofthemodelis DM B weplotinfigure1aparticularsolutionfortheco-genesismech- tointroduceanSMsingletlepton N withnearTeVscalemass M andadditionalHiggsdoubletH(cid:48),withyukawacouplingsof anism:weobservethattheasymmetrygeneratedintheDMsec- N tor(Y =1.0×10−10)isofthesameorderoftheasymmetryin theorderofO(0.1−1). TheextrafieldstransformundertheZ DM asL →−L ,H(cid:48) → H(cid:48) andN →−N. OnceH(cid:48) acquiresavev2 theleptons(YL =1.6×10−10)andhenceinthebaryonicsector. v(cid:48) ,4theN a4ndN fieldgeta2×2massmatrixoftheform: Theefficiencyinthedarkmatterchannelisalthoughlargerthan wk 4 the efficiency in the leptonic channel because it should com- (cid:32) M h(cid:48)v(cid:48) (cid:33) pensate the effect of a large DM mass (see equation 12) and a M = 4 wk (8) N4,N h(cid:48)v(cid:48) M small CP asymmetry; the fast channel is the Higgs one. The wk N parametersusedforthesolutionoftheBoltzmannequationsas This lowers the mass of the dark matter neutrino to the value wellastheabsoluteyieldsaregiveninthecaptionandarerep- m ≡ M ∼ M −∆m∼ M − (h(cid:48)v(cid:48)wk)2. N4 DM 4 4 MN resentative of a large portion of the allowed parameter space. Viablesolutionscanbefindfordarkmattermassesrunningup 3. Pseudo-Diracfourthgenerationneutrinoasdarkmatter toTeVscale,eventhoughtheyaredisfavouredwithrespectto solutionsatlowerdarkmattermassbecauseofthenaturalness 3.1. Co-genesisofmatteranddarkmatter principle: since the ratio of DM to baryon abundance is close Sincethescalartripletissuperheavy,itdecaysintheearly tounititismorenaturaltohavelightdarkmatterwiththesame Universeinaquasi-equilibriumstateinvariouschannels,namely efficiency and CP asymmetries than the visible matter. Larger ∆ → L L ,∆ → L L and∆ → HH. Thedecaychannelscan dark matter masses are allowed because of the compensation α β 4 4 be easily read from the Lagrangian (2). Since these couplings effectbetweenasymmetriesandefficiencyfactors,asdescribed are in general complex, charge conjugation (C) and parity (P) byequation12. are jointly violated through the interference of tree-level and We wish to point out that it is possible to construct theo- one loop self-energy correction diagrams. As a result the de- ries where the two Higgs triplets couple to the different set of cayof∆producesasymmetriesinthevisible(i.e. ∆ → LαLβ) leptons(onetofamiliaronesandtheothertoL4)duetotheex- sectorandintheDMsector(i.e. ∆ → L L ). Theasymmetry istenceofsomesymmetrybutmixwitheachotherwithasmall 4 4 intheHiggsdisappearsafterthelateracquiresavev. However, mixingaftersymmetrybreaking. Inthiscase,thehierarchybe- theasymmetriesinthevisibleandDMsectorsremainforever. tween fH and fL can be of order 10−2 or so, so that the ratio Quantitatively,theasymmetriesintheleptonanddarkmat- between (cid:15)L4 is much less than in the model described above. (cid:15)L tersectorsareasfollows There can be a larger range of parameters where current dark matterabundancecanbefitted. However,inthiscasethecon- YL ≡ nsL =(cid:15)LX∆ηL, (9) ceptofco-genesishastobesacrificedattheleadingorder. YDM ≡ nLs4 =(cid:15)L4X∆ηL4, (10) 3 0 10−12 H(z) −1 mN = 1 TeV 10−13 4 m = 100 GeV N −2 4 10−14 mN = 45 GeV 4 −3 εg((|Y|/,X)ξ10ii −4 Γ (GeV)LL44 1100−−1165 o l −5 10−17 −6 10−18 −7 10−19 −8 10−20 −2 −1 0 1 2 102 101 100 10−1 10−2 log10(z) T (GeV) Figure 1: Absolute value for the Yield of leptons (cyan solid), DM (dotted Figure2: ThescatteringrateoftheprocessL4L4 → ff¯asafunctionofthe magenta),Higgs(dashedblack),scalartripletasymmetry(solidred)plusscalar temperatureiscomparedwiththeHubbleexpansionrate. Forillustrationpur- tripletabundance(blacksolid), forasuccessfulpointwithmDM = 60GeV, posewehaveassumedtheMajoranamasssplittingtobe100keVandwehave BL=0.015,BDM=1.7×10−5,(cid:15)L=3.4×10−7,(cid:15)DM=3.6×10−8,whichleads consideredthreevaluesforthemassofthefourthgenerationneutrinoasla- toΩDM/ΩB=5.0,YL=1.6×10−10,YDM=1.0×10−10andηDM/ηL=0.48. belled. Inordertogiveaqualitative“feel”fortheaboveargument, 3.2. Cosmologicalevolutionofdarkmatterbelowelectroweak we note that the rate for the lepton number depleting process, phasetransition Γ(L L → ff¯)viaZ-exchangeisexpectedtobegivenby: Asemphasizedintheprevioussection,eventhoughthepri- 4 4 lmepotrodnialasLy4m(mDeMtr)y,assytrmomngetwryasish-mouutchefflaercgtievrethaabnovtehethfaemeilleica-r Γ(L4L4 → ff¯)(cid:39) G2F2MπD2 cθW (cid:18)2δT(cid:19)2 nnL4T3, (13) troweak phase transition epoch T = T , brings them to be of γ wk similarmagnitude. Animportantissuearisesafterelectroweak whereGF istheFermicouplingconstant,cθW thecosineofthe phasetransition,whenthereisthesmallMajoranamassforL WeinbergangleandwehaveusedtheBoltzmanndistributionto 4 whichturnsonbelowTwk. ThissplitstheL4intotwoMajorana accountforthenon-relativisticnumberdensityofN4 particles. eigenstates N1 and N2 by 100 keV mass. The question to be AsaresultbelowTwk,wefindthatthisleptonnumberdepletion addressednowis: canthetwostatesannihilatetoreduceΩ ? ratesuffersanexponentialsuppressionandthereforeitisslower DM Asithasbeennotedin[50],iftheDMmassis≥ 2TeV, L L¯ thantheexpansionrateoftheuniversefortherangeofmasses 4 4 annihilationfreezesoutbeforeT andnofurtherreductionof weareinterestedin. Hencethisprocessisnotveryeffectivein wk Ω takes place. However, what happens for lower masses reducingthedarkmatterasymmetry,asshowninfigure2. We DM needs to be discussed, i.e. do we lose the L asymmetry via thereforebelievethatoncethedarkmatterasymmetryhasbeen 4 weakannihilationprocessesbelowTwk. createdaboveTwk,itwillsurvivetillthepresentepoch. Therearetwopossiblethingsthatcanhappen: thetwoMa- AnotherissueisthepossibleoscillationofN4 → N¯4viathe joranaeigenstatescanannihilateeachotherviaboththelepton δ/2 [50, 61–63] below the temperature when triplet vev turns numberconservingandtheleptonnumberviolatingprocesses, on. NotethatiftheMajoranamassturnsonbelowthefreeze- wherethelatterinvolvestheMajoranamassδ/2. Thedominant out temperature for N4N¯4 annihilation, the oscillations simply lepton number conserving annihilation only reduces the sym- redistributestherelicdensitybetweenN1 andN2 andwhenN2 metriccomponentbutnottheasymmetricpartwhichwouldre- decaysto N1,thenetrelicdensityremainsunchanged. Thisis quire the intervention of the small Majorana mass δ/2. Since for example the case when MDM ≥ 2 TeV. If MDM ≤ 2 TeV, relicdensityofDMisduetotheasymmetricpart,iftheL vi- therearetwopossibilities: 4 olating reaction rates are out of equilibrium, in this range, the (i)UnlikegenericDM,ourDMcandidatehasweakaswell “turningon”ofδ/2willnotaffecttherelicdensity. Wethere- as magnetic moment interactions with the hot plasma of the foregiveaheuristicdiscussionofwhetherthisisthecase. We earlyuniverse. Discussionofsuchoscillationsinthepresence expect the L violating part of the annihilation to be propor- ofdensemediumastheearlyUniverseisnotverysimple[64] 4 tionaltotheparameterδ/2. and it is not clear how to estimate the oscillation rate in such 4 varyinareasonablerangeofvalues,inorderforthescattering to occur. A Majorana mass of the order of 100 keV accounts for the DAMA [66] annual modulated signal (shaded region), whileamuchwiderrangeaccountsfortheeventexcessseenin CRESST[54](bluenonfilledregion). Howeverthoseregions are severely constrained by XENON100 [53] and KIMS [55]. KIMSisveryconstrainingbeingascintillatorwithIodinecrys- tals as DAMA. Our dark matter candidate can explain simul- taneouslytheDAMAandCRESSTdetection, withamarginal compatibilityat90 %withXENON100andKIMS,foramass S range that goes from 45 GeV up to ∼ 250 GeV. If we give up theDAMAexplanation,thenitcouldaccountfortheCRESST excessuptomassesoftheorderof∼500GeV. The details on the model cross-section are given in [50], while for the numerical analysis of the latest experimental re- sultswereferto[65]. 4. ElectroweakPrecisionTestsandDirectLimitsonFourth GenerationLeptons Nowadays a fourth family of fermions, in particular chiral Figure3: 2Dmarginalposteriorpdfinthe{δ,mN4}-plane. Theshaded(blue and whose mass is related to electroweak symmetry breaking, solid)contoursdenotethe90%and99%credibleregionsforDAMA(CRESST) isveryseverelyconstrainedbyLHCwiththeHiggs-likesignal respectively. Themagentadot-dashedlineistheXENON100exclusionlimit, at125GeV,flavourviolatingprocessesandelectroweakpreci- whilethegreendashedlineistheupperboundofKIMSexperiment,at90S% siontests[67–71],perhapsalmostruledout.Oneofthereasons confidencelevel[65].Alltheastrophysicaluncertaintiesandnuisanceparame- tershavebeenmarginalizedover.ThelightgrayregionisexcludedbyLEP. isthatthe4thgenerationofquarksmodifiestheproductionof theHiggsbosonanddepletestheh→γγdecaychannel,which goes into contradiction with the experimental data. However a situation. We therefore assume that such oscillations do not the constraints on a 4th generation of fermions strongly de- playanimportantroleindepletingtheN asymmetryforM ≤ 4 DM pendontheassumptionsofthemodel[47]. Forexampleithas 2TeV. beenshownthatvector-likefamiliescanprovidethemeasured (ii)Secondpossibilityistomodifythemodelsuchthatthe branchingratioforh→γγandbecompatiblewithelectroweak Majoranamassarisesduetoatripletvev“turningon”atamuch precisionmeasurements[42]. lower temperature than T . For example, we could consider wk IfreallytheYukawacouplingsbetween L and H arezero 4 multi-HiggsdoubletmodelswiththeHiggsfieldsthatcoupleto as well, as in our model, the only constraints come from the ∆toinducetripletvevsthemselveshavevevsoforderofafew obliqueparametersSandT[72]andfromdirectmeasurements GeVs(asinhightanβtwoHiggsmodels). Thiswouldrequire at LEP. These latter are as follows: the N are pseudo-Dirac µ∆ (cid:29) M∆ (e.g. µ∆ ∼ 1013 GeVand M∆ ∼ 109 GeV).Insuch neutrinosandarestable,hencelowerbound4edbytheinvisible models, the Majorana mass δ/2 will turn on around 5 GeV so Z-decaywidth,whichgivesm > 45GeV. Theboundonthe thatwecouldallow M ≥ 100GeVandforsuchmasses,by N4 DM masscannotbeloweredfortheMajoranacase[73]becauseit thetimeδ/2turnson,theN4freeze-outwouldhavetakenplace reliesontheprocessZ → N N¯ whichcontributesonlytothe 4 4 and as we argued before, the relic density will not be reduced invisiblewidthoftheZboson.However,thechargedpartnerE± further. 4 canbesearchedforinthecolliderandisrequiredtobeheavier thanN . Inparticular,thepairproductionofE−E+atLEPwith 3.3. FourthGenerationNeutrinoandDMDirectSearches 4 4 4 subsequent decay to SM particles and missing energy (in the We now make a few comments on the implications of our formofneutrinoandDM)putsalowerlimitonitsmassscale modelfordarkmattersearch. Asnoted,thecouplingbetween tobe[48]: N and∆providesasmallMajoranamasstothe4thgeneration 4 ofneutrinos. Inthemassbasis,N1hasanoffdiagonalcoupling mE4 >101.9GeV and mE4 −mN4 ≡∆m>15GeV. (14) withtheZ boson,preventingittobeexcludedbydirectdetec- Theeffectsofnewphysics,whichdoesnotnecessarilycou- tionsearches.IfthemasssplittingisoftheorderofseveralkeV, plestoSMfermions,manifestintheWandZbosonself-energies theDMN actuallyhasenoughenergytoscatteroffnucleiand 1 andaremeasuredbythecorrectionstoobliqueparametersS,T togointoitsexcitedstateN ,whichisthedefinitionofinelastic 2 andU. Thoseparametersarewellconstrainedbyelectroweak scattering[49]. precision data and the allowed deviations from the SM model The state of art for a 4th generation inelastic neutrino is are[48]: givenbyfigure3inthe{δ,m }-plane,wherethecross-section N4 is fixed by the model, while the Majorana mass is allowed to ∆S =0.04±0.09 and ∆T =0.07±0.08 (15) 5 with∆U = 0,whichisagoodassumptionbecausetheoblique contributionfroma4thgenerationto∆U isnegligible. For a fourth generation of vector-like leptonic doublet the 100 obliquecorrectionsaregivenby: 0.02 0.02 0.001 1(cid:34)22y +14y 1 y 11y +1 ∆S = 1 2 ln 1 + 1 f(y ) 0.01 π 9 9 y 18 1 2 80 (cid:32) (cid:33)(cid:35) 7y −1 √ f(y )f(y ) + 2 f(y )− y y 4+ 1 2 , 2 1 2 8 2 (cid:76)V (cid:34) (cid:45)(cid:72)mGeEN44 60 ∆T = 8π√s2θ1Wc2θW(cid:32)yy1++yy2−yy21y−1yy2(cid:33)2(cid:35)lnyy12 m + 2 y y 1 2 ln 1 −2 , (16) (cid:61)m 40 0.005 1 2 y1−y2 y2 (cid:68) having defined y = m2/m2 while s2 is the sine square of the i i Z θW Weinbergangle. Themasstermm referstothemassofthe4th 20 i generationofleptons. Thefunction f(y)isdefinedas: i 0 100 200 mN4(cid:72)Ge3V00(cid:76) 400 0.001500 f(yi)≡ −0(cid:112)2−(cid:112)∆∆(y(iy)i)ln(cid:32)a−r1c+ta√√n−∆√(y∆1i)(yi) −arctan √−∆1(yi)(cid:33) ∆∆∆(((yyyiii)))>=<000,,, FTihgeurbela4c:kCsoonltiodulrinpelostifnodricthaeteosbolimqueerceoferrreecntcieonvsatloue∆sSfoinrt∆hSepalsanaef{umnNc4ti,o∆nmo}f. with∆(y) = −1+4y.−T1−hes−e∆r(eyis)ultsarederivedfrom[74]and i i the4thgenerationneutrinomassandoftheleptondoubletmasssplitting,as agreewellwiththezeroYukawalimitin[42]. labelled. Infigure4weshowtheobliquecorrectionstoS asafunc- tionofm and∆m: theyarenegligiblysmallinalltheconsid- N4 eredmassrangeandforabroadspectrumofmasssplittings.On thecontrary,notefromfigure5that∆T issensitivetothemass splitting between E and N only, and tends to zero for a de- 4 4 generatedoublet. Weconcludethatelectroweakprecisiondata donotconstrainthemassrangeform ,whiletheyseverelyre- E4 100 strict the mass splitting between the neutral and charged com- ponent,whichcanbeatmost65GeVat3σ. 4.1. FourthGenerationLeptonsandColliderSearches 80 The nature of the vector-like doublet L makes it loosely 4 0.31 constrained by colliders; the drawback, however, is that it is (cid:76)V e elusiveasfarasitconcernsitsdetectionaswell. Theimposed G 60 0.23 (cid:72) Z symmetry implies that in a collider the 4th generation lep- N4 2 m (cid:45) 0.15 tonsareproducedalwaysinaevennumber. Themostprobable mE4 processes are (i) pair of charged fermions (E−E+) through the (cid:61) 40 4 4 m exchangeofγ,Z bosons,(ii)combinationofchargedfermions (cid:68) 0.07 plus its neutral partner E±N via the exchange of a W boson. 4 4 At LHC the W production is larger than the production of Z 20 bosonsandthepaircreationviatheprocessqq¯ → Z → N N¯ 4 4 is reduced by almost two orders of magnitude with respect to the production of a charged lepton plus its companion neu- 0 trino [75]. Therefore the dominant production rate of L par- 100 200 300 400 500 4 ticlesisthroughW boson,namelyviatheprocessqq(cid:48) →W → mN4(cid:72)GeV(cid:76) E N . BecausethereisnomixingwiththeSMfermionicfami- 4 4 lies,E willdecaythroughtheprocessE → N W;ontheother Figure5: Sameasfigure4fortheobliquecorrectionsto∆T. Aslabelled,the 4 4 4 blacksolidlinesindicatethecentralvalueaswellasthe1,2,3σcontours. handwerecallthatthe4thgenerationneutrinoisstable. Incaseofpairproductionthewholeprocessispp→ E+E− → 4 4 N N¯ W+W−;subsequentlythepossiblefinalstatesare 4 4 1. onelepton+di-jetandmissingenergy, 6 2. twooppositelychargedleptonsandmissingenergy, [5] D.B.Kaplan,ASingleexplanationforboththebaryonanddarkmatter 3. 4di-jet+missingenergy, densities,Phys.Rev.Lett.68(1992)741–743. [6] V.A.Kuzmin,ASimultaneoussolutiontobaryogenesisanddarkmat- dependingonwhethertheWsdecayhadronically(mostproba- ter problems, Phys.Part.Nucl. 29 (1998) 257–265. arXiv:hep-ph/ 9701269. ble)ornot. [7] M.Fujii,T.Yanagida,ASolutiontothecoincidencepuzzleofOmega(B) In case the charged particles are produced along with its and Omega (DM), Phys.Lett. B542 (2002) 80–88. arXiv:hep-ph/ neutralpartnerthecompleteprocessatLHCis pp → E4N4 → 0206066. N N W. Thisresultsin [8] D.H.Oaknin,A.Zhitnitsky,Baryonasymmetry,darkmatterandquan- 4 4 tumchromodynamics,Phys.Rev.D71(2005)023519. arXiv:hep-ph/ 1. di-jets+missingenergy, 0309086. 2. singlelepton+missingenergy. [9] D. Hooper, J. March-Russell, S. M. West, Asymmetric sneutrino dark matterandtheOmega(b)/Omega(DM)puzzle,Phys.Lett.B605(2005) 228–236.arXiv:hep-ph/0410114. Thesefinalstatesdonotrelyonaparticularsignatureratherit [10] R.Kitano,I.Low,Darkmatterfrombaryonasymmetry,Phys.Rev.D71 willbelostinthehugeWbackgroundatLHC.Usually4thgen- (2005)023510.arXiv:hep-ph/0411133. eration of leptons are supposed to produce like sign di-lepton [11] N.Cosme,L.LopezHonorez,M.H.Tytgat,Leptogenesisanddarkmatter signals,whichcanbewellseparatedfromthebackgroundwith related?,Phys.Rev.D72(2005)043505.arXiv:hep-ph/0506320. [12] G. R. Farrar, G. Zaharijas, Dark matter and the baryon asymmetry, the opportune cuts, however this holds only if the neutrino is Phys.Rev.Lett.96(2006)041302.arXiv:hep-ph/0510079. unstable and decays into the detector [76, 77]. Although N4 [13] L. Roszkowski, O. Seto, Axino dark matter from Q-balls in Affleck- escapesundetectedatcolliders,itcanbeprobedbyDMdirect DinebaryogenesisandtheOmega(b)-Omega(DM)coincidenceprob- searches. Constraintsona4thgenerationofleptonfromLHC lem,Phys.Rev.Lett.98(2007)161304.arXiv:hep-ph/0608013. [14] J.McDonald, Right-handedsneutrinocondensatecolddarkmatterand dataarebeyondthescopeofthispaper,howeverweremarkthat thebaryon-to-darkmatterratio,JCAP0701(2007)001.arXiv:hep-ph/ thesemightbecarriedoutinasimilarwayasconstraintsonex- 0609126. tra dimension have been sets by means of searches of exotic [15] D. E. Kaplan, M. A. Luty, K. M. Zurek, Asymmetric Dark Matter, decaysofW bosons,seee.g.[78,79]. Phys.Rev.D79(2009)115016.arXiv:0901.4117. [16] K.Kohri,A.Mazumdar,N.Sahu,P.Stephens,ProbingUnifiedOriginof DarkMatterandBaryonAsymmetryatPAMELA/Fermi,Phys.Rev.D80 (2009)061302.arXiv:0907.0622. 5. Conclusions [17] H. An, S.-L. Chen, R. N. Mohapatra, Y. Zhang, Leptogenesis as a Common Origin for Matter and Dark Matter, JHEP 1003 (2010) 124. In summary, we presented a simple extension of the stan- arXiv:0911.4463. dardmodelbytheadditionofavector-likemassiveleptondou- [18] M. T. Frandsen, S. Sarkar, Asymmetric dark matter and the Sun, blet, wheretheneutralmemberofthedoublet N canplaythe Phys.Rev.Lett.105(2010)011301.arXiv:1003.4505. 4 [19] B.Feldstein,A.Fitzpatrick,DiscoveringAsymmetricDarkMatterwith roleofadarkmatter,ifithasasmallMajoranamass. Boththe Anti-Neutrinos,JCAP1009(2010)005.arXiv:1003.5662. asymmetry in the lepton and dark matter sector are generated [20] H.An,S.-L.Chen,R.N.Mohapatra,S.Nussinov,Y.Zhang,EnergyDe- simultaneously via out-of-equilibrium decay of triplet scalars pendenceofDirectDetectionCrossSectionforAsymmetricMirrorDark viatype-IIleptogenesis. Themodelseemstosatisfyallcosmo- Matter,Phys.Rev.D82(2010)023533.arXiv:1004.3296. [21] T.Cohen,D.J.Phalen,A.Pierce,K.M.Zurek,AsymmetricDarkMat- logical as well as laboratory constraints and has the potential terfromaGeVHiddenSector,Phys.Rev.D82(2010)056001. arXiv: toexplainthecurrentdarkmattersearchresults. Suchmodels 1005.1655. couldalsobetheoreticallymotivatedbygrandunifiedtheories [22] J.Shelton,K.M.Zurek,Darkogenesis: Abaryonasymmetryfromthe suchasE . darkmattersector,Phys.Rev.D82(2010)123512.arXiv:1008.1997. 6 [23] H.Davoudiasl,D.E.Morrissey,K.Sigurdson,S.Tulin,Hylogenesis: A UnifiedOriginforBaryonicVisibleMatterandAntibaryonicDarkMat- ter,Phys.Rev.Lett.105(2010)211304.arXiv:1008.2399. Acknowledgements [24] N.Haba, S.Matsumoto, BaryogenesisfromDarkSectorarXiv:1008. 2487. One of the authors (RNM) would like to thank Z. Chacko [25] P.-H. Gu, M. Lindner, U. Sarkar, X. Zhang, WIMP Dark Matter and forsomediscussions.TheworkofRNMhasbeensupportedby BaryogenesisarXiv:1009.2690. theNationalScienceFoundationgrantNo. PHY-0968854. CA [26] M.Blennow,B.Dasgupta,E.Fernandez-Martinez,N.Rius,Aidnogenesis viaLeptogenesisandDarkSphalerons,JHEP1103(2011)014. arXiv: issupportedbyaEuropeanCouncilStartingGrant,undergrant 1009.3159. agreementNo. 277591,PIG.Bertone. [27] J.McDonald,Baryomorphosis: RelatingtheBaryonAsymmetrytothe ’WIMPMiracle’,Phys.Rev.D83(2011)083509.arXiv:1009.3227. [28] B.Dutta,J.Kumar,AsymmetricDarkMatterfromHiddenSectorBaryo- References genesis,Phys.Lett.B699(2011)364–367.arXiv:1012.1341. [29] N.Haba, S.Matsumoto, R.Sato, SneutrinoInflationwithAsymmetric References DarkMatter,Phys.Rev.D84(2011)055016.arXiv:1101.5679. [30] A. Falkowski, J. T. Ruderman, T. Volansky, Asymmetric Dark Matter [1] e.Bertone,Gianfranco,Particledarkmatter: Observations,modelsand fromLeptogenesis,JHEP1105(2011)106.arXiv:1101.4936. searches,Cambridge,UK,UniversityPress,2010. [31] E.J.Chun,MinimalDarkMatterandLeptogenesis,JHEP1103(2011) [2] E.Komatsu,etal.,Seven-YearWilkinsonMicrowaveAnisotropyProbe 098.arXiv:1102.3455. (WMAP)Observations:CosmologicalInterpretation,Astrophys.J.Suppl. [32] M. R. Buckley, Asymmetric Dark Matter and Effective Operators, 192(2011)18.arXiv:1001.4538. Phys.Rev.D84(2011)043510.arXiv:1104.1429. [3] E.W.Kolb,M.S.Turner,TheEarlyuniverse,Front.Phys.69. [33] M.L.Graesser, I.M.Shoemaker, L.Vecchi, AsymmetricWIMPdark [4] S.Dodelson,B.R.Greene,L.M.Widrow,Baryogenesis,darkmatterand matter,JHEP1110(2011)110.arXiv:1103.2771. thewidthoftheZ,Nucl.Phys.B372(1992)467–493. [34] H.Iminniyaz,M.Drees,X.Chen,RelicAbundanceofAsymmetricDark 7 Matter,JCAP1107(2011)003.arXiv:1104.5548. [63] Y.Cui,D.E.Morrissey,D.Poland,L.Randall,CandidatesforInelastic [35] J.J.Heckman,S.-J.Rey,BaryonandDarkMatterGenesisfromStrongly DarkMatter,JHEP0905(2009)076.arXiv:0901.0557. CoupledStrings,JHEP06.arXiv:1102.5346. [64] E.K.Akhmedov,A.Wilhelm,Quantumfieldtheoreticapproachtoneu- [36] J.March-Russell,M.McCullough,AsymmetricDarkMatterviaSponta- trinooscillationsinmatter.arXiv:1205.6231. neousCo-Genesis,JCAP1203(2012)019.arXiv:1106.4319. [65] C. Arina, Chasing a consistent picture for dark matter direct searches, [37] H. Davoudiasl, R. N. Mohapatra, On Relating the Genesis of Cosmic Phys.Rev.D86(2012)123527.arXiv:1210.4011. Baryons and Dark Matter, New J.Phys. 14 (2012) 095011. arXiv: [66] R. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. Dai, et al., New re- 1203.1247. sults from DAMA/LIBRA, Eur.Phys.J. C67 (2010) 39–49. arXiv: [38] J.March-Russell,J.Unwin,S.M.West,ClosinginonAsymmetricDark 1002.1028. MatterI:Modelindependentlimitsforinteractionswithquarks, JHEP [67] M.Buchkremer,J.-M.Gerard,F.Maltoni,Closinginonaperturbative 1208(2012)029.arXiv:1203.4854. fourthgeneration,JHEP1206(2012)135.arXiv:1204.5403. [39] P.-H.Gu,FromDiracneutrinomassestobaryonicanddarkmatterasym- [68] O.Eberhardt,G.Herbert,H.Lacker,A.Lenz,A.Menzel,etal.,Impact metriesarXiv:1209.4579. ofaHiggsbosonatamassof126GeVonthestandardmodelwiththree [40] R. Mohapatra, X. Zhang, Restrictions on B-L symmetry breaking im- andfourfermiongenerations.arXiv:1209.1101. pliedbyafourthgenerationneutrino,Phys.Lett.B305(1993)106–108. [69] S.Bar-Shalom,M.Geller,S.Nandi,A.Soni,TwoHiggsdoublets,a4th arXiv:hep-ph/9301286. generationanda125GeVHiggs.arXiv:1208.3195. [41] B. Holdom, W. Hou, T. Hurth, M. Mangano, S. Sultansoy, et al., [70] L. Bellantoni, J. Erler, J. J. Heckman, E. Ramirez-Homs, Masses of FourStatementsabouttheFourthGeneration,PMCPhys.A3(2009)4. a Fourth Generation with Two Higgs Doublets, Phys.Rev. D86 (2012) arXiv:0904.4698. 034022.arXiv:1205.5580. [42] A.Joglekar,P.Schwaller,C.E.Wagner,DarkMatterandEnhancedHiggs [71] A.Djouadi,A.Lenz,Sealingthefateofafourthgenerationoffermions, toDi-photonRatefromVector-likeLeptons.arXiv:1207.4235. Phys.Lett.B715(2012)310–314.arXiv:1204.1252. [43] H.-S.Lee,A.Soni,FourthGenerationParity.arXiv:1206.6110. [72] M.E.Peskin,T.Takeuchi,Estimationofobliqueelectroweakcorrections, [44] P.H.Frampton,P.Hung,M.Sher,Quarksandleptonsbeyondthethird Phys.Rev.D46(1992)381–409. generation,Phys.Rept.330(2000)263.arXiv:hep-ph/9903387. [73] L.M.Carpenter,A.Rajaraman,RevisitingConstraintsonFourthGen- [45] M.Geller,S.Bar-Shalom,G.Eilam,A.Soni,The125GeVHiggsinthe eration Neutrino Masses. , Phys.Rev. D82 (2010) 114019. arXiv: contextoffourgenerationswith2Higgsdoublets,Phys.Rev.D86(2012) 1005.0628. 115008.arXiv:1209.4081. [74] L.Lavoura,J.P.Silva,TheObliquecorrectionsfromvector-likesinglet [46] H.An,T.Liu,L.-T.Wang,125GeVHiggsBoson,EnhancedDi-photon anddoubletquarks,Phys.Rev.D47(1993)2046–2057. Rate, and Gauged U(1)PQ-Extended MSSM, Phys.Rev. D86 (2012) [75] L.M.Carpenter,A.Rajaraman,D.Whiteson,SearchesforFourthGener- 075030.arXiv:1207.2473. ationChargedLeptons.arXiv:1010.1011. [47] J.Erler,P.Langacker,PrecisionConstraintsonExtraFermionGenera- [76] L.M.Carpenter,FourthGenerationLeptonSectorswithStableMajorana tions,Phys.Rev.Lett.105(2010)031801.arXiv:1003.3211. Neutrinos:FromLEPtoLHC.arXiv:1010.5502. [48] J. Beringer, et al., Review of Particle Physics (RPP), Phys.Rev. D86 [77] A. Rajaraman, D. Whiteson, Tevatron Discovery Potential for Fourth (2012)010001. Generation Neutrinos: Dirac, Majorana and Everything in Between. , [49] D.Tucker-Smith,N.Weiner,Inelasticdarkmatter,Phys.Rev.D64(2001) Phys.Rev.D82(2010)051702.arXiv:1005.4407. 043502.arXiv:hep-ph/0101138. [78] G.Aad,etal.,SearchfornewphenomenaintheWWtolnul’nu’final [50] C.Arina,N.Sahu,AsymmetricInelasticInertDoubletDarkMatterfrom stateinppcollisionsatsqrt(s)=7TeVwiththeATLASdetector.arXiv: TripletScalarLeptogenesis,Nucl.Phys.B854(2012)666–699. arXiv: 1208.2880. 1108.3967. [79] CMS,Searchforrandall-sundrumgravitonsdecayingintoajetplusmiss- [51] C.Arina,J.-O.Gong,N.Sahu,Unifyingdarko-lepto-genesiswithscalar ingetatcms,CMSexoticapublicphysicsresults,2011run,CMS-PAS- tripletinflation,Nucl.Phys.B865(2012)430–460.arXiv:1206.0009. EXO-11-061. [52] J.A.Harvey,M.S.Turner,Cosmologicalbaryonandleptonnumberin the presence of electroweak fermion number violation, Phys.Rev. D42 (1990)3344–3349. [53] E.Aprile,etal.,DarkMatterResultsfrom225LiveDaysofXENON100 Data,Phys.Rev.Lett.109(2012)181301.arXiv:1207.5988. [54] G.Angloher,M.Bauer,I.Bavykina,A.Bento,C.Bucci,etal.,Results from730kgdaysoftheCRESST-IIDarkMatterSearch,Eur.Phys.J.C72 (2012)1971.arXiv:1109.0702. [55] S.Kim,H.Bhang,J.Choi,W.Kang,B.Kim,etal.,NewLimitsonInter- actionsbetweenWeaklyInteractingMassiveParticlesandNucleonsOb- tainedwithCsI(Tl)CrystalDetectors,Phys.Rev.Lett.108(2012)181301. arXiv:1204.2646. [56] H.-S.Lee,Z.Liu,A.Soni,Neutrinodarkmattercandidateinfourthgen- erationscenarios,Phys.Lett.B704(2011)30–35.arXiv:1105.3490. [57] Y.-F.Zhou,ProbingthefourthgenerationMajorananeutrinodarkmatter, Phys.Rev.D85(2012)053005.arXiv:1110.2930. [58] S.Fukuda,etal.,Constraintsonneutrinooscillationsusing1258daysof Super-Kamiokandesolarneutrinodata,Phys.Rev.Lett.86(2001)5656– 5660.arXiv:hep-ex/0103033. [59] Q.Ahmad,etal.,Measurementofdayandnightneutrinoenergyspectra atSNOandconstraintsonneutrinomixingparameters,Phys.Rev.Lett.89 (2002)011302.arXiv:nucl-ex/0204009. [60] K. Eguchi, et al., A High sensitivity search for anti-nu(e)’s from the sunandothersourcesatKamLAND,Phys.Rev.Lett.92(2004)071301. arXiv:hep-ex/0310047. [61] M.R.Buckley, S.Profumo, RegeneratingaSymmetryinAsymmetric DarkMatter,Phys.Rev.Lett.108(2012)011301.arXiv:1109.2164. [62] M. Cirelli, P. Panci, G. Servant, G. Zaharijas, Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter, JCAP 1203(2012)015.arXiv:1110.3809. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.