ebook img

CMOS Operational and RF Power Amplifiers for Mobile Communications PDF

182 Pages·2005·2.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CMOS Operational and RF Power Amplifiers for Mobile Communications

KATHOLIEKEUNIVERSITEITLEUVEN FACULTEITTOEGEPASTEWETENSCHAPPEN DEPARTEMENTELEKTROTECHNIEK KasteelparkArenberg10,3001Leuven(Heverlee) CMOS Operational and RF Power Amplifiers for Mobile Communications Promotor: Thesissubmittedtoobtainthe Prof. Dr. ir. M.Steyaert degreeofdoctorinapplied sciences by Joa˜oRamos March2005 KATHOLIEKEUNIVERSITEITLEUVEN FACULTEITTOEGEPASTEWETENSCHAPPEN DEPARTEMENTELEKTROTECHNIEK KasteelparkArenberg10,3001Leuven(Heverlee) CMOS Operational and RF Power Amplifiers for Mobile Communications Jury: Thesissubmittedtoobtainthe Prof. Dr. ir. L.Froyen,Chairman degreeofdoctorinapplied Prof. Dr. ir. M.Steyaert,Promotor sciences Prof. Dr. ir. W.Sansen Prof. Dr. ir. B.Nauwelaers by Prof. Dr. ir. W.Dehaene Prof. Dr. Eng. Mª. Rosa´rio(IST,Portugal) Joa˜oRamos Ir. L.Cloetens(STMicroelectronics) UDC:621.3.049.77 March2005 © KatholiekeUniversiteitLeuven—FaculteitToegepasteWetenschappen KasteelparkArenberg1,B-3001Leuven(Belgium) All rights reserved. No part of the publication may be reproduced in any form, by print,photoprint,microfilmoranyothermeanswithoutpriorwrittenpermissionfrom theauthororthepromotor. Forrequestsorinformationaboutthereproductionofpartsofthiswork,contactK.U.Leuven, Dept. Elektrotechniek,KasteelparkArenberg10,B-3001Heverlee,Belgium. D/2005/7515/23 ISBN90-5682-588-7 Acknowledgments On the 17th August 2000 I arrived in Belgium to start what would become a unique experienceinmylife. InalotofaspectsthisPh.D.wasthebeginningofanewera– rangingfromtheenrichingexperienceoflivinginthemulti-culturalcitythatLeuven is, to the possibility of doing research in a renowned international center for analog circuitdesign. Inparticular,Iwouldliketothank: • Prof. M. Steyaert, my promotor, for his support during my stay in Leuven, by providingtheconditionsthatmadethisworkpossibleandalwayshavingamo- tivatingattitudeevenduringdifficulttimes. I’mparticularthankfulforthefree- domofresearchthatIhaveenjoyedunderhissupervision,afreedomthatInever hadbefore,norwilleverhaveagain. • Prof. W.Sansen,headofMICAS.Hishardworkandexcellentqualitiesinpass- ingonhisknowledgehavecontributedtopositionthegrouponaninternational level. • W.SansenandB.Nauwelaers,membersofthereadingcommitteefortheirsug- gestions,feedbackandcorrectionsthathelpedimprovethequalityofthetext. • Prof. W. Dehaene, Prof. Mª. Rosa´rio and Ir. L. Cloetens members of the jury and Prof. L. Froyen, chairman of the jury, for their valuable time spent on the evaluationofthisresearchwork. • MycolleagueswithwhomIhavesharedoffice91.21. KennethFrancken,Xiao- hongPeng,MarianVerhelstandYvesVanderperren.I’mthankfulforyouhaving madethatperiodapleasanttime,mostofthetimes! ;-) • Kenneth Francken and Libin Yao for their help during the defense preparation andfororganizingallthepaperworkthatallowsmetodefendthisthesis. • YannZinzius, LibinYao, JurgenDeveugele, PhilippeCoppejans, TimPiessens andBramDeMuerforallthediscussionsconcerninganalogcircuitdesign,mea- surementsandmanuscriptpreparation. AspecialthankstoErikLauwersforhis guidance. • Those from different technical backgrounds, with whom during this research work I have shared ideas: Kenneth Francken from ESAT-MICAS, Guilherme Lujan and Augusto Redolfi from IMEC, Samuel Xavier-de-Souza from ESAT- SISTA and Manuel Yarleque from ESAT-TELEMIC. Their experience, com- ments and fruitful discussions have undoubtedly contributed to the success of thisdoctorate. i ii ACKNOWLEDGMENTS • TheskilledtechnicalteamatMICAS:ElviraWouters, BenGeeraerts, Danielle Vermetten, Chris Mertens, Chris Van Grieken, Frederik Daenen, Albert Boon, Noe¨lla Gaethofs, Michel De Cooman, Viviane Muls, Tony Van Nuland, Piet Vanderwegen. Theirdedicationandcooperationhasallowedmetoconcentrate onlyondoingresearch. • TheESATcomputeradministratorteam: FrankSchoeters,PietHendriks,Marc Mangelschots,StefVerbruggen,RikTheysandEricOlemans,deservecreditfor ESATalwayshavingarunningcomputerinfrastructure,evenduringweekends. • AnDeRuyck,LucianaBaracchiniandStijnSpeelmanforbeingastheyare. • The Brazilian community, Karin Fischer and Nacho Lopezmalo together with persons from all over the world, has made this experience memorable. Their company at Alma or Pangaea, in going to the cinema or in their houses is not forgotten. • Paulo Bernardino, Paulo Santos and Augusto Marques for their friendship and forbeingtherewheneverneeded. • TheFundac¸a˜oparaaCieˆnciaeaTecnologia,Portugal,forthefinancialsupport thatmadethisresearchworkpossible. • Mostofall,Ithankyouthathavegivenmeunconditionallovethattomeisthe definitionoffamily. God, towhomIhaveprayedandtheOnethatwasalways present. The technical results are summarized in this book that you are about to read. The humanexperiencewillalwaysbeinmymindastheresultofthissingularexperience. Ithankyouall! Joa˜oRamos Leuven,March2005 Abstract In this era where the desire to always be within reach of a communication device is largerthanever,thereisagrowingneedforthedevelopmentofcircuitsthatmakethe dreamofthisGlobalVillageareality. Mobility,whileremainingreachableatalltimes, ispossiblewiththeuseofwirelesscommunicationsthathavethecommoncharacter- istic of having a limited power source in the battery. This asks for circuit techniques that increase the portable electronic device autonomy. A higher autonomy makes a productmoreusable,lighter(becauseasmallerbatteryisnecessary),andassuchmore appealingtotheconsumer. Systemswithahigherfunctionality,highercapacityanda slickdesignareonlypossibleifpowerconsumptionisreducedtotheminimum. Fur- thermore, new products are developed on a regular basis. As a consequence, system integratorsandeveryoneworkinginsuchacompetitiveenvironmentseetheirtime-to- market as a small window of opportunity. All design steps until the product reaches theshopshelveshavetobeoptimized. Usually,thefirststepsintheengineeringdevel- opmentrequirealargepercentageofthistime,whichhastobeminimizedtokeepthe priceslow. The presented work covers the modeling, analysis, design, optimization and IC char- acterizationoftwodifferenttypesofamplifiersinCMOSsuitabletobeintegratedon atransceiverformobilecommunications. The design of a low-power, low-voltage and high efficiency three stage operational amplifieriscoveredinthefirstpart. Anewfrequencycompensationtopologyispre- sented and analyzed in detail in terms of some of the most common characteristics. Furthermore, comparison with other frequency compensation topologies, and the im- pactofdifferentdesigncharacteristics(compensationandloadcapacitor,optimization emphasis, etc.) on the amplifier performance is presented. This comparison makes it possible to see the performance of each compensation topology without the influ- enceofexternaldesignfactorsbycomparingalltopologiesunderthesameconditions. Subsequently, the effect of the positioning of the poles and its impact on the power consumptionisaddressed. Finally, theproposedfrequencycompensationtopologyis optimizedusingacomputerdesignautomationapproach,simultaneouslyattheblock andtransistorlevel,resultinginconsiderablepowersavings. The second part details the design of a power amplifier for the GSM-850 standard. First,theclassEpoweramplifierdesignmethodologyiscovered. Thesimplifiedstate- spacemodelandtheautomatedsizingallowtoobtainasimplearchitecturalrepresen- tationandahighlyaccuratedescriptionoftheRFbehavior. Asaresult,theyareused togaininsightintothecircuitperformanceswherepreciseequationsincludingcircuit parasiticsarelacking. Secondly,thepossibilitytoincreasethesupplyvoltagebeyond iii iv ABSTRACT thestatedmaximumsupplyvoltageofstandardCMOSlow-voltagetechnologiesisex- plored,withtheobjectiveofincreasingtheefficiency.Andfinally,a850-MHz,30dBm classEpoweramplifierdesignedinstandardCMOStechnologyispresented. Careful analysisandinclusionofallcircuitandtest-boardparasiticsincombinationwiththeau- tomatedsizingmethodologyresultinahighefficiencyamplifiersizedinlessthanone hourofCPUtime. Also,simulationresultsareinverygoodagreementwithmeasure- ments. Asaconsequenceofthiswork,forasimilaroutputpowerlevelandfrequency ofoperation,thedesignedPAshowsthehighestefficiencyforacircuitimplementedin CMOS. Furthermore, this high efficiency is already achieved from low output power levelswhichisespeciallyimportantasthepoweramplifieristhusnotalwaysworking atthemaximumpowerlevel. The two differenttypes of amplifiers described in detail inthe following pages, were studied,optimized,designed,manufactured,andmeasuredwhilesimultaneouslyaim- ingatpoweroptimization,reduceddesigncycleandcostsaving.Thetwohigh-performance amplifiersdesignedincommercial0.35µmCMOStechnologyhavethefollowingsum- marizedcharacteristics: • Operational amplifier: with a power consumption of 275 µW and a load of 130 pF//24 kÄ, it achieves a Unity Gain Frequency (UGF) of 2.7 MHz with aPhaseMargin(PM)of52°. Anaverageslewrateof1.0V/µsismeasured. The positive and negative settling time to 1 % final settling time error is 1.4 µs and 1.0µs,respectively. • ClassEpoweramplifier: amaximumPowerAddedEfficiency(PAE)of66%is measured. Atasupplyvoltageof2.26V,amaximumoutputpowerof955mW is obtained for an input signal with a frequency equal to 855 MHz. It has a highefficiencyoverabroadrangeofoutputpowerlevelsandthePAEisalways greaterthan60%forvaluesabove158mW. Contents Acknowledgments i Abstract iii Contents v ListofFigures xi ListofTables xvii SymbolsandAbbreviations xix 1 Introduction 1 1.1 MotivationandApplications . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 CostReduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ResearchWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 OutlineoftheWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 PositiveFeedbackFrequencyCompensationforThreeStageAmplifier 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 OperationalAmplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 SingleStageAmplifiers . . . . . . . . . . . . . . . . . . . . 8 2.2.2 TwoStageAmplifiers. . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 ThreeStageAmplifiers . . . . . . . . . . . . . . . . . . . . . 9 2.3 TheNMCStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 ProposedCompensation . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 WorkingPrinciple . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Small-SignalTransferFunction . . . . . . . . . . . . . . . . 15 2.4.3 UnityGainFrequencyandPhaseMargin . . . . . . . . . . . 18 2.4.4 ClosedLoopTransferFunction . . . . . . . . . . . . . . . . 19 v vi CONTENTS 2.4.5 StabilityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.6 DesignEquations . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.7 PowerOptimization . . . . . . . . . . . . . . . . . . . . . . 21 2.5 DesignoftheOperationalAmplifier . . . . . . . . . . . . . . . . . . 22 2.5.1 CircuitImplementationandLayout . . . . . . . . . . . . . . 22 2.5.2 TestSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.3 MeasuredResults . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.4 DiscussionoftheResults . . . . . . . . . . . . . . . . . . . . 24 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 TopologyStudyofThreeStageAmplifierFrequencyCompensation 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 ComparisontootherTopologies . . . . . . . . . . . . . . . . . . . . 30 3.2.1 TopologyComparisonandPowerEstimation . . . . . . . . . 30 3.2.2 UnityGainFrequency . . . . . . . . . . . . . . . . . . . . . 31 3.2.2.1 NMC . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2.2 DFCFC . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2.3 AFFC . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2.4 TCFC . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2.5 NMCF . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2.6 PFC . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2.7 SimulationResults . . . . . . . . . . . . . . . . . . 35 3.2.3 SettlingTime . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 FinalComments . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 BlockLevel: ComparisontotheNMC . . . . . . . . . . . . . 40 3.3.1.1 OptimizationMethod . . . . . . . . . . . . . . . . 41 3.3.1.2 FrequencyResponse . . . . . . . . . . . . . . . . . 41 3.3.1.3 SlewRate . . . . . . . . . . . . . . . . . . . . . . 42 3.3.1.4 SettlingTime . . . . . . . . . . . . . . . . . . . . 42 3.3.2 TransistorLevel . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Description:
class E power amplifier designed in standard CMOS technology is presented. reason they can be extensively analyzed and manual optimization is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.